
AbsoluteValue

Math Category
The output of an AbsoluteValue is the absolute value of its Input. (Choose Full waveform from the Info menu to see
that the output waveform contains only positive values, rather than values above and below zero).

Input
This is the Sound whose absolute value is taken.

1

ADSR

Envelopes & Control Signals Category
Generates a traditional four-segment envelope with attack, initial decay, sustain, and release segments. As long as
Gate is 0, no envelope is generated. When Gate becomes positive, the attack and decay are generated. The
envelope continues to decay towards the SustainLevel until the Gate value returns to zero at which time the envelope
enters its release portion.

In a prototype with an Envelope parameter field (Oscillator, for example) you can use the ADSR as the Envelope
parameter. Envelope generators can also be used to control other parameters (such as Frequency or OnDuration).
To apply an envelope to any Sound, use the Sound and an envelope generator as Inputs to the VCA prototype. (The
VCA simply multiplies its two inputs by each other).

AttackTime
Time for the envelope to reach the maximum amplitude (attenuated by Scale) once it has been triggered.

DecayTime
Time for the envelope to decay from the maximum level down to the SustainLevel.

SustainLevel
Level that will be sustained for as long as Gate remains nonzero.

ReleaseTime
Time for envelope to decay from SustainLevel down to 0.

Type
Choose between linear envelope segments or exponential segments.

Scale
Overall level for the envelope. IF you have the Linear box checked, you can set Scale to a negative value to generate
envelopes that go from 0 down to a negative value. (Note that this makes most sense when using the ADSR to
control parameters other than amplitude, e.g. when using this as a pitch envelope).

Gate
Enter a 1 in this field to make the envelope last exactly as long as the Sound is on.

If you use an EventValue (for example, !KeyDown) in this field, the envelope can be retriggered as often as you like
for as long as this Sound is on.

When Gate becomes positive, the envelope is started; when Gate becomes zero, the envelope is released.

Legato
Legato affects the behavior of the envelope when triggered by the Gate field.

When Legato has a zero or negative value, the envelope will rapidly reset to zero before beginning the re-attack.
When Legato has a positive value, the attack will begin from the current envelope value (without first resetting to
zero).

2

AmplitudeFollower

Tracking Live Input Category
Follows the amplitude of the Input by taking an average of the absolute values of individual input samples. This is
similar to the RMS but requires less computation. TimeConstant controls how long the average runs; thus, the longer
the TimeConstant, the smoother the output (but the less quickly it can respond to transients in the Input).

Input
This is the Sound whose amplitude is tracked.

TimeConstant
This controls the response time. Longer time constants result in smoother outputs at a cost of losing some of the
detail in the attacks. Short time constants result in outputs that respond more immediately to attack transients but
that may not be as smooth for the steady state portions. For a constant input at maximum amplitude, this is the time
required for the output to reach 60% of the full output amplitude. (Note that the output may never reach the maximum
possible amplitude since it is the average of the absolute value of the amplitudes).

Scale
Attenuates the input amplitude.

3

AnalogSequencer

Sequencers Category
Generates sequences of note events and continuous controller values for EventValues in parameters of the Input.
There is a sequence of MIDI notenumbers, durations, duty cycles and velocities to supply MIDI note events to the
Input, and ExtraValues lets you supply a sequence of values for any continuous controller EventValues in the Input’s
parameters.

The length of all sequences is the length of the longest sequence; any shorter sequences will repeat their final values
in order to be as long as the longest sequence. For example, if you want all values in a sequence to be 0.5, you need
only enter the number a single time, because it will be repeated for as many times as necessary to make it as long as
the other sequences.

If Step is a constant 1, then the Durations and the DutyCycles are used to determine when !KeyDown events should
be generated and how long each key should remain down. If no other units of time are used and if the value of Rate
is 1, the numbers in the Durations sequence are interpreted in seconds. Rate is a divisor on the length of each
duration, so if Rate is greater than 1, the durations will be shorter, and if Rate is less than 1, they will be longer.

Use Step to step through the sequences one by one, according to a trigger. For example, you could use !KeyDown to
control the step rate from a MIDI sequencer, or you could use 1 bpm: (!Speed * 1024) to control it with an internal
metronome, or you could paste in an audio signal that has been passed through an amplitude follower and a
threshold to trigger each element of the sequences in synch with an audio signal, or you could use !TimingClock to
step using the MIDI clock from a software sequencer or external synthesizer.

To trigger using the Step field, you should set all Durations to the same value; this value (taken along with the value
of DutyCycle and Rate) will determine the duration of each note, and the Step trigger will specify the onset time of the
note. The value you pick for the Durations will act as a kind of "mask" on the speed of the step triggers. Notes
cannot be triggered any more often than the minimum values specified in the Durations field. This can be helpful if
you are triggering from the !TimingClock (24 triggers per beat) or an audio signal with lots of peaks in it, because it
will force the sequencer to ignore triggers that occur faster than at the desired rate.

Input
EventValues anywhere in this Sound can be controlled by the arrays of key events or continuous controller values
sequenced by this AnalogSequencer.

Left
Attenuator on the left channel amplitude.

Right
Attenuator on the right channel amplitude.

Gate
When this value changes from 0 to 1, it restarts the sequences. If Loop is checked, the sequences will repeat for as
long as Trigger is nonzero.

Use a constant value of 1 to get an infinitely repeating sequence. Use an EventValue such as !KeyDown to restart
and stop the sequence interactively.

Step
Step to the next set of values in the sequence when this value changes from a zero to a number greater than zero. If
Step is changing faster than the specified durations, some of the steps will be ignored. In other words, you can use

4

the sequence of durations as a kind of mask, constraining the minimum durations to be at least those specified in the
duration sequence.

Rate
This is the rate at which the sequences are traversed. When Rate is 1, all Durations are interpreted as seconds,
when Rate is 2, the Durations are half as long, and when Rate is 0.5 the Durations are twice as long.

Loop
Check this box to loop back to the StartIndex once the EndIndex has been reached.

StartIndex
This is the starting position of the sequence. Each position in the sequence is numbered from 0 up to the length of
the sequence minus 1.

EndIndex
This is the ending position of the sequence. Each position in the sequence is numbered from 0 up to the length of the
sequence minus 1.

Polyphony
The sequencer is monophonic, but this allows some overlap between the release of one event and the attack of the
next. Polyphony specifies how many events can be heard overlapping each other at any one time.

Durations
A sequence of durations. If no units are used, the numbers are assumed to be in seconds. Each Duration, in
conjunction with the corresponding DutyCycle, is used to determine when to send each !KeyDown and how long to
keep it down.

In this field, you must enclose expressions within curly braces, for example: {2 s * !KeyVelocity}

DutyCycles
A sequence of duty cycles where the duty cycle is the fraction of the beat during which the note is on. For example, a
duty cycle of 0.5 means that the note is on for half the beat and off for the second half of the beat. A duty cycle of 0
would mean that the note is never on, and a duty cycle of 1 would mean that the note is continuously on and never
turns off.

In this field, you must enclose expressions within curly braces, for example: {!Duty * !KeyVelocity}

Pitches
A sequence of MIDI notenumbers that will supply the pitches to any !Pitch or !KeyNumber in the parameters of the
Input.

In this field, you must enclose expressions within curly braces, for example: {60 nn + !Interval nn}

Velocities
A sequence of values between 0 and 1 that will supply the values to any !KeyVelocity in the parameters of the Input.

In this field, you must enclose expressions within curly braces, for example: {0.5 * !VelocityScale}

ExtraValues
Use this field to specify a sequence of changes for any non-keyboard EventValues in the Input. The syntax is:

#(<!EventValue> <val1> <val2>, .., <valn>)

For example, to send a sequence of 3 values for !Morph and for !Pan, you would use something like the following:

#(!Morph 0 0.25 1)

5

#(!Pan 0 0.5 1)

In this field, you must enclose expressions within curly braces, for example:

#(!Pan {0.5 - !PanSpread} {0.5 + !PanSpread})

6

AnalysisFilter

Tracking Live Input Category
Bandpass filter designed to isolate the individual harmonics of its Input. It has quadrature output (i.e. the left channel
output is the cosine part of the Input signal at that frequency; the right channel is the sine part of the Input at that
frequency); thus you can use a QuadratureOscillator to frequency shift this harmonic using single side band ring
modulation.

The filter is designed such that, if you were to add together the output of filters set at each harmonic from 0 to the
harmonic closest to half the sampling rate, the amplitude of that sum would be 1.

Input
This is the Sound that gets filtered.

Fundamental
This is the assumed fundamental frequency. In most cases, you should set it to be the same as the Input frequency.

Harmonic
This is the number of the harmonic that the filter will try to isolate. In other words, the center frequency of the filter will
be the Fundamental * this Harmonic.

7

Annotation

Variables & Annotation Category
An Annotation contains a Text commenting on its Input. It does not affect the sound of the Input in any way; it is just
a comment. The Text of an Annotation shows up in the Virtual control surface whenever the Sound is loaded. (The
text of any Annotations that occur in Sounds to the left of this one will appear below this one’s Text in the Virtual
control surface).

Input
The Text refers to this Sound.

Text
This is a textual description of the Input.

8

AR

Envelopes & Control Signals Category
Generates an envelope with the specified attack and release times with either linear or exponential segments.

In a prototype with an Envelope parameter field (Oscillator, for example) you can use an envelope generator directly
as the Envelope parameter. Envelope generators can also be used to control other parameters (such as Frequency
or OnDuration). To apply an envelope to any Sound, use the Sound and an envelope generator as Inputs to the VCA
prototype. (The VCA simply multiplies its two inputs by each other).

AttackTime
Time required for the envelope to reach its maximum value (as attenuated by Scale) whenever its Gate value
becomes positive.

ReleaseTime
Time it takes for the envelope to return to 0 once Gate changes from a positive number back to zero.

Type
Choose between linear and exponential segment shapes.

Scale
Overall attenuation on the envelope generator values.

Gate
Enter a 1 in this field to play the Sound exactly once for the duration you have specified in the Duration field.

If you use an EventValue (for example, !KeyDown) in this field, the Sound can be retriggered as often as you like
within the duration specified in the Duration field.

When Gate becomes positive, the Sound is heard; when Gate becomes zero, the Sound is released.

9

ArcTan

Math Category
The output of ArcTan is the four-quadrant arctangent of the ratio of the right channel input to the left channel input.

Input
This is the Sound whose arctangent is taken.

10

AudioInput

Sampling Category
An AudioInput represents the analog or digital inputs on the back of the Capybara. If Digital Input is selected in the
DSP Status window, then this represents the digital input.

If there are (preamplified) microphones connected to the inputs then this Sound represents the input from those
microphones. You can also connect the audio outputs of some other line-level sound generator (like a CD or DAT) to
the input.

The individual channel check boxes control which audio input channel(s) will be used. If only one channel is checked,
it will be output on both channels of the AudioInput.

Channel1
Check this box to use the channel 1 audio input of the signal processor.

Channel2
Check this box to use the channel 2 audio input of the signal processor.

Channel3
Check this box to use the channel 3 audio input of the signal processor.

Channel4
Check this box to use the channel 4 audio input of the signal processor.

Channel5
Check this box to use the channel 5 audio input of the signal processor.

Channel6
Check this box to use the channel 6 audio input of the signal processor.

Channel7
Check this box to use the channel 7 audio input of the signal processor.

Channel8
Check this box to use the channel 8 audio input of the signal processor.

11

AveragingLowPassFilter

Filters Category
Low-pass filter that operates by taking a running average of the stream of Input values. The length of the running
average is the period of the cutoff frequency. The Cutoff frequency and its harmonics are cancelled out by the filter
(and frequencies close to the cancelled frequencies are attenuated).

Input
This is the Sound that is to be low-pass filtered.

Cutoff
Frequencies above the cutoff will be attenuated by the filter.

Wavetable
This is the wavetable that is used to keep the running average of the last few samples. Select Private if you want the
next free wavetable and do not need to reference this same segment of memory again. (If you want to reference this
same memory segment from another Sound, type in a unique name for the wavetable and use that same name when
accessing the memory from the other Sound.)

Scale
This is the attenuation on the input. For the full amplitude use +1.0 or -1.0 (or 0 dB); any factor whose absolute value
is less than 1 will attenuate the output.

12

ChannelCrosser

Mixing & Panning Category
A Crossover lets you switch any portion of the left channel signal into the right channel and vice versa.

Input
The left and right channels of this Sound can be attenuated and mixed using the sliders.

LeftInLeft
This is the portion of the left input that appears in the left output.

RightInLeft
This is the portion of the right input that appears in the left output.

LeftInRight
This is the portion of the left input that appears in the right output.

RightInRight
This is the portion of the right input that appears in the right output.

13

ChannelJoin

Mixing & Panning Category
This Sound places the left channel of Left into the left output channel and the right channel of Right into the right
output channel.

Left
The left channel of this Sound is output to the left channel.

Right
The right channel of this Sound is output to the right channel.

14

Channeller

Mixing & Panning Category
If LeftChannel is checked, the left channel of Input is output on both channels.

If RightChannel is checked, the right channel of Input is output on both channels.

If both are checked, the Input is passed through unchanged.

If neither is checked, there will be no output.

Input
Either the left or right channel of this Sound will be output.

LeftChannel
If only this control is checked, the left channel of Input will be output on both channels.

RightChannel
If only this control is checked, the right channel of Input will be output on both channels.

15

Chopper

Envelopes & Control Signals Category
Multiplies the Input by a stream of "grains" or envelopes (one cycle of the selected wavetable), each lasting for
GrainDuration with InterGrainDelay silence in between. During the InterGrainDelay the Input is multiplied by zero.

Input
This Sound is multiplied by an alternating stream of grains and inter-grain silences.

GrainDuration
This is the duration of each grain. (Duration should always be greater than 0.)

InterGrainDelay
This is the delay time between grains. (Duration should always be greater than 0.)

Wavetable
One cycle of the selected wavetable will be used as the envelope of each grain.

16

CloudBank

Aggregate Synthesis Category
Grain clouds whose center frequencies and amplitudes are supplied by a SpectrumSource and whose frequency
deviation, grain duration deviation, pan, and likelihood of triggering are supplied by input Sounds.

NbrTracks
This is the number of tracks from the SpectumSource that will be used by this CloudBank.

GrainsPerTrack
The number of grains dedicated to synthesizing each track of the SpectrumSource.

BankSize
The number of grains to be scheduled on each processor. It’s best to leave this at "default" unless you are trying to
optimize it by scheduling more or fewer grains per processor.

GrainWave
This is the waveform inside each grain. This file should have exactly 4096 samples.

GrainEnvelope
This is the envelope shape on each grain. This file should have exactly 4096 samples.

GrainDur
The duration of an individual grain. To specify a constant duration, no matter what the frequency of the waveform
within each grain (implying that high frequency grains will have more cycles in them than low frequency grains):

GrainDur = <desired grain duration>
CyclesPerGrain = 0

To specify the number of waveform cycles within each grain (implies that higher frequency grains will have shorter
duration than lower frequency grains and assures that every grain will contain an integer number of full cycles of the
waveform):

GrainDur = 0 s
CyclesPerGrain = <number of cycles in each grain>

CyclesPerGrain
The integer number of full cycles of the waveform that should occur inside each grain. Use this parameter to specify
grains that are shorter for high frequencies than they are for low frequencies. If you prefer uniform grain durations
over all frequencies, set this parameter to zero and use GrainDur to set the grain duration.

Seed
Enter an integer value to be used as the seed for the random number generator used to assign spectral tracks to
grains. Enter a zero if you would like the tracks to be assigned in ascending order (this will have the effect of
sweeping upwards in frequency at medium density values).

Trigger
A new grain can start up only when the Trigger Sound is greater than 0. For random start times, use white Noise as

17

the input.

Pan
Stereo position of each grain (where 0 is hard left, 0.5 is in the middle, and 1 is hard right).

FreqMod
This Sound modulates the center frequency (obtained from the SpectrumSource). The frequency of a grain will be

freq + (freq * freqMod)

where freq is the frequency from the SpectrumSource. In other words, when FreqMod is at its maximum amplitude,
the resulting frequency can range from 0 hz up to twice the center frequency. The modulated frequency is read at the
start of each new grain. (The frequency does not change *during* the grain).

GrainDurMod
This Sound modulates the grainDur (or the CyclesPerGrain). The duration of a grain will be

grainDur + (grainDur * durMod)

In other words, the duration can range from 0 up to twice the grainDur (or CyclesPerGrain).

SpectrumSource
This should be a linear Spectrum (see the Spectral Sources category of the Prototypes for Sounds that can be used
as Spectral Sources). If your Spectrum is log instead of linear, you can use the SpectrumLogToLinear to convert it to
linear.

The SpectrumSource supplies the center frequencies and amplitudes for each grain cloud. Frequency envelope
points are on the right channel and Amplitude envelope points are on the left channel.

Interpolation
Choose linear if you would like to interpolate between the values read from the grain waveform and envelope
wavetables.

18

CloudBank-Element

Xtra Sources Category
This is one element of a CloudBank. You can cascade elements using the CascadeInput to get larger numbers of
grains (or use the CloudBank module to automatically nest as many of these as necessary). Use this module when
you want to start resynthesizing with a higher partial other than the first partial.

First
This is the first partial from the Spectrum that you want to resynthesize with the CloudBank.

Count
This is the number of partials that you want to resynthesize.

GrainWave
This is the waveform inside each grain. This file should have exactly 4096 samples.

GrainEnvelope
This is the envelope shape on each grain. This file should have exactly 4096 samples.

GrainDur
The duration of an individual grain. To specify a constant duration, no matter what the frequency of the waveform
within each grain (implying that high frequency grains will have more cycles in them than low frequency grains):

GrainDur = <desired grain duration>
CyclesPerGrain = 0

To specify the number of waveform cycles within each grain (implies that higher frequency grains will have shorter
duration than lower frequency grains and assures that every grain will contain an integer number of full cycles of the
waveform):

GrainDur = 0 s
CyclesPerGrain = <number of cycles in each grain>

CyclesPerGrain
The integer number of full cycles of the waveform that should occur inside each grain. Use this parameter to specify
grains that are shorter for high frequencies than they are for low frequencies. If you prefer uniform grain durations
over all frequencies, set this parameter to zero and use GrainDur to set the grain duration.

MaxGrains
Maximum number of grains that can be playing at any one time. The smaller this number, the less computational
power the GrainCloud requires (but the less dense the texture you can generate). For even denser textures, put
more than one GrainCloud into a Mixer, and give each GrainCloud a different Seed value.

Seed
Enter an integer value to be used as the seed for the random number generator used to assign spectral tracks to
grains. Enter a zero if you would like the tracks to be assigned in ascending order (this will have the effect of
sweeping upwards in frequency at medium density values).

19

InitialDelay
An initial delay before the first grain can be triggered. The maximum value is 4096 samp and the minimum is 0 samp.
An initial delay is not necessary unless you are cascading several of these modules and don’t want the cascaded
grains starting at the same time as the grains in this module.

Trigger
A new grain can start up only when the Trigger Sound is greater than 0. For random start times, use white Noise as
the input.

Pan
Stereo position of each grain (where 0 is hard left, 0.5 is in the middle, and 1 is hard right).

FreqMod
This Sound modulates the center frequency (obtained from the SpectrumSource). The frequency of a grain will be

freq + (freq * freqMod)

where freq is the frequency from the SpectrumSource. In other words, when FreqMod is at its maximum amplitude,
the resulting frequency can range from 0 hz up to twice the center frequency. The modulated frequency is read at the
start of each new grain. (The frequency does not change *during* the grain).

GrainDurMod
This Sound modulates the grainDur (or the CyclesPerGrain). The duration of a grain will be

grainDur + (grainDur * durMod)

In other words, the duration can range from 0 up to twice the grainDur (or CyclesPerGrain).

SpectrumSource
This should be a linear Spectrum (see the Spectral Sources category of the Prototypes for Sounds that can be used
as Spectral Sources). If your Spectrum is log instead of linear, you can use the SpectrumLogToLinear to convert it to
linear.

The SpectrumSource supplies the center frequencies and amplitudes for each grain cloud. Frequency envelope
points are on the right channel and Amplitude envelope points are on the left channel.

CascadeInput
Input will be added to the output from this CloudBank module. This is an easy way to cascade several CloudBanks in
order to resynthesize more partials than could fit on a single processor. But you can also use this as a shortcut to mix
the output of any other module with the output of this module.

Interpolation
Choose linear if you would like to interpolate between the values read from the grain waveform and envelope
wavetables.

20

Constant

Math Category
The output of a Constant is its Value. If Value is set to a number, the output of the Constant is the same number over
its entire duration.

If you paste an Event Value into the Value field of a Constant, the Constant’s output is equal to the Event Value. This
is useful for processing Event Values as if they were Sounds. For example, if you were to paste !cc07 into the Value
field of this Constant, you could then feed the Constant into a delay, put it into a waveshaper, multiply it by a sine
wave oscillator, or perform any number of other signal processing operations on it.

Value
Enter a value from -1.0 to 1.0. You can also paste Event Values or Sounds into this field (since their values fall within
the range of -1 to 1).

If you paste !Pitch or !KeyNumber into this field, you must divide it by 127 in order to scale it down to the range of 0 to
1; if you then use this Constant in the Frequency field of another Sound, remember to multiply the Constant by 127 nn
in order to scale it back into the range of 0 nn to 127 nn.

21

ContextFreeGrammar

Scripts Category
A Sound consisting of Concatenations and CenteringMixers of the Inputs is generated from the startExpression by
rewriting according to the production rules of a context-free grammar. A seed is used for repeatable results.

Inputs
These Sounds act as the terminals of the production rules; in order from top to bottom, left to right they are referred to
in the productions as s1, s2, ..., sn.

Drag a folder or any number of individual Sounds into this field.

RewriteRules
Production rules should be of the following form,

Variable -> option {| option}*.

A single uppercase letter is followed by -> and then one or more options separated by the delimiter, |. Each option
consists of a fully parenthesized expression followed by a number in brackets indicating the relative weighting of that
choice. Each expression should consist of binary combinations of Sounds, s1 - sn where n is the number of Inputs,
and Variables (single uppercase letters), separated by a comma for Concatenation or plus for a CenteringMixer. For
example, the following production rule will always generate palindromes:

A -> ((s1 , A) , (s1)) [2] |

 ((s2 , A) , (s2)) [2] |

 ((s3 , A) , (s3)) [2] |

(s1) [1] | (s2) [1] | (s3) [1].

This assumes that there are at least 3 Inputs.

StartExpression
This expression is rewritten using the production rules. It should consist of some combination of variables, A - Z, and
terminals, s1 - sn where n is the number of subSounds, separated by one of the operators, comma or plus (where a
comma represents a Concatenation and a plus represents a CenteringMixer). The starting expression represents a
Sound; it should be fully parenthesized. Some legitimate examples of startExpressions are:

(A)

(A + (s1 , B))

((E , Z) + ((T , U) , (s3 , (X , s5)))),

where A, B, E, Z, T, U, and X all appear on the left hand sides of production rules and there are at least 5 Inputs.

Seed
Type in an integer less than 65535, for example, 34897.

MaxRewrites
This is an upper bound on the number of times the startExpression will be rewritten.

22

MaxSize
This puts an upper bound on the number of Sounds that will be generated by the grammar.

Left
This controls the level of the left input channel. The maximum value is 1 and the minimum is -1. The left channel of
the input is multiplied by the value of this parameter. Some example values for Left are:

1 (no attenuation)
0 (maximum attenuation)
!Fader1 (continuous controller sets level)
!KeyVelocity (MIDI key velocity controls the amplitude)

You can also paste another signal into this field, and the amplitude will vary with the output amplitude of the pasted
signal (something like an LFO controlling the attenuation). (See the manual for a complete description of hot
parameters, EventValues, EventSources, and Map files).

Right
This controls the level of the right input channel. The maximum value is 1 and the minimum is -1. The right channel
of the input is multiplied by the value of Right. Some example values for Right are:

1 (no attenuation)
0 (maximum attenuation)
!Fader1 (continuous controller sets level)
!KeyVelocity (MIDI key velocity controls the amplitude)

You can also paste another signal into this field, and the amplitude will vary with the output amplitude of the pasted
signal (something like an LFO controlling the attenuation). (See the manual for a complete description of hot
parameters, EventValues, EventSources, and Map files).

23

Crossfade

Level, Compression, Expansion Category
Crossfades between its two Sound inputs while optionally also panning and attenuating the result.

Pan
A Pan value of 0 places the sound entirely in the left speaker, and a Pan value of 1 places it entirely in the right.
Values inbetween those extremes make the Input source appear as if it were placed somewhere inbetween the two
speakers.

Scale
Attenuates the crossfaded signal.

Snd1
This Sound will be crossfaded with Snd2.

Snd2
This Sound is crossfaded with Snd1.

Fade
0 corresponds to entirely Snd1, and 1 corresponds to entirely Snd2. Values in between correspond to mixtures of
Snd1 and Snd2.

Type
Choose between a straight, linear crossfading function (which, psychoacoustically, "jumps" in the middle) and a power
function that will sound, psychoacoustically, as if it were a linear change from one Sound to the other. The linear fade
function is sometimes the more desireable one when crossfading between control functions (See also the
Interpolation prototype).

24

DelayWithFeedback

Reverb, Delay, Feedback Category
Delays the Input signal, optionally feeding some of that delayed signal back and adding it to the current Input.

Type
Choose between Comb and Allpass filters. Both Comb and Allpass are delays with feedback. Allpass also adds
some of the direct signal to the output in order to make the long term frequency response flat. With Comb selected,
you will not hear the Input until after the first delay. With Allpass, you will hear the direct Input immediately.

Input
This is the signal to be delayed.

Scale
An attenuation factor on the Input (where 1 is full amplitude and 0 is completely attenuated so there is no more Input).

Feedback
Controls the amount of the delayed signal that is fed back and added to the Input. It is the attenuation on the
feedback signal (where 1 or 0 dB feeds back the full amplitude signal and adds that to the current Input signal).

Delay
The maximum delay time. The proportion of this time that is actually used is determined by multiplying this value by
DelayScale. Kyma needs to know the maximum possible delay in order to allocate some memory for this Sound to
use as a delay line, but the actual delay can vary over the course of the Sound from 0 s up to the value of DelayTime.

DelayScale
The proportion of DelayTime that is actually used as the delay, where 0 is no delay, and 1 is equal to the value in the
DelayTime field.

Wavetable
In almost all situations, this should be set to Private, so Kyma can allocate some unused wavetable memory to be
used as a delay time for this program. (The only time you would want to name this wavetable is if you would like
multiple delays or resonators to share a single delay line. In that case, you would type a name for the wavetable and
make sure that the other delays use the same name for their wavetables.)

Prezero
Check this box to start with an empty delay line when this program starts. If Prezero is not checked, the delay line
may have garbage in it from previous programs. This can have interesting, if unpredictable, effects and, in some
sense, models a physical object or resonator which would maintain its "state" between excitations.

Interpolation
When Linear is selected, changes to DelayScale are linearly interpolated, causing smoother changes to the delay.

When None is selected, changes to DelayScale are not interpolated, resulting in zipper noise.

For fixed delays, it is better to select None, since that uses fewer DSP resources.

25

SmoothDelayChanges
Checking this box causes the delay time to change slowly to the desired delay. Unchecking this box causes the delay
time to change immediately to the desired delay.

On Capybara-66 and earlier models, this setting has no effect.

26

Difference

Math Category
Outputs the difference of Input and minusInput.

Input
The Sound in the MinusInput field will be subtracted from this Sound.

MinusInput
MinusSound is subtracted from Sound.

27

DiskCache

Sampling Category
Stores the Input as a disk recording when Record is clicked. When Record is unclicked, the input is played off the
disk rather than computed in real time.

This Sound can be useful when you are trying to reduce the amount computation required by one branch of a large
Sound structure. Whenever you make a change to the Input, remember to click Record and recapture the new
version of Input on the disk.

Input
When Record is checked, the Input is recorded into a disk file. When Record is not checked, the recording of the
Input is played, not the Input itself.

FileName
Enter a memorable name for the samples file that will be used to "cache" the Input Sound.

Record
Check this box when you want to record the Input. Uncheck it when you want to play back the previously recorded
input.

28

DiskPlayer

Sampling Category
This Sound plays back recordings from the disk file specified in FileName, starting at the time specified in FilePosition
and continuing for the amount of time specified in Duration and at the rate specified in RateScale. Whenever Trigger
changes to a positive number, the playback restarts from FilePosition and plays again.

To treat this as a sample controlled from the MIDI keyboard, set FileName to the name of the sample, set Duration to
the total time during which you would like to be able to trigger the sample, set Trigger to !KeyDown (or a MIDI switch),
and set RateScale to the ratio of the desired frequency to the original recorded frequency, for example

!Pitch hz / 2 a hz

to use the MIDI keyboard to control a sample whose recorded pitch was 2 a.

FileName
Enter the name of a Samples file or use the Browse button to select a file from the standard file list dialog. The file
can be a recording made in Kyma, a recording imported from another program, or a sample from a CD-ROM (as long
as the file is in one of the formats listed in the Kyma manual).

FilePosition
This is the start time within the recording. In other words, you don’t have to start playback at the beginning of the file;
instead, you can start some amount of time into the file.

RateScale
This is the rate of playback. For example, use 1 to play back at the original rate, 0.5 for half speed, 2 for twice as fast,
etc.

Trigger
When the Trigger becomes nonzero, one event is triggered. You can trigger several events over the course of the
total Duration of this program as long as the value of Trigger returns to zero before the next trigger. Some example
values for Trigger are:

1 (plays once with no retriggering)
0 (the sound is silent, never triggered)
!KeyDown (trigger on MIDI key down)
!cc64 (trigger when controller 64 > 0)

You can also paste another signal into this field, and events will be triggered every time that signal changes from zero
to a positive value. (See the manual for a complete description of hot parameters, Event Values, and the Global map
files).

29

DiskRecorder

Sampling Category
Records its Input to disk for CaptureDuration when its Trigger becomes positive.

Input
This is the Sound to be recorded onto disk.

FileName
The name of the samples file where Input will be recorded.

Format
Choose the samples file format. Kyma can record or playback any of these, but if you are going to export this sample
to be used in another application, choose a format that the other application can read.

WordSize
This is the number of bits used for each sample point. 24-bit words take up the most memory but will provide the best
dynamic range and signal to noise ratio. 8-bit words provide the least dynamic range but also take up the least
amount of space on disk. If you are going to export this samples file for use in another application, choose a word
size appropriate for that application. For example, if you are creating an alert sound for a Windows application, you
would choose 8-bit words and the WAV format. But if you have 18-bit converters and digital I/O, and this is an audio
track that you want to use in ProTools, you would probably want to choose 24-bit words and the SD-II format.

Channels
Choose between monaural and stereo recording. If both channels of the Input are identical, choose Mono since it will
take half the disk space of a stereo file.

Trigger
When Trigger becomes positive, the Input will be recorded into the specified file for the specified CaptureDuration.
You cannot retrigger without replaying the DiskRecorder (so you will not accidently write over what you have just
captured on disk).

CaptureDuration
Amount of time to record the Input to disk when triggered. This duration can be shorter than the duration of the Input,
so, for example, you could have a 1 day long ADInput, and just capture 3 s of it when you trigger the recording. To
automatically set the CaptureDuration to the full duration of the Input, enter 0 s here.

Gated
When checked, Gated makes the trigger act as a gate. This means that its input is only recorded when Trigger is a
positive value (for example, if Trigger is !KeyDown, the input is only recorded while the key is held down).

30

DualParallelTwoPoleFilter

Filters Category
Two parallel second-order filter sections having fixed zeroes (at the complex location 1%0). The output of this Sound
is the sum of the outputs from the two filter sections.

This Sound is useful if you already know the complex pole locations of the filters that you want. Otherwise, use the
TwoFormantElement prototype; it will give you the same results but with more intuitive parameters (like Frequency
and Bandwidth).

Input
This is the Sound that is filtered.

Pole1
This is the pole of the first filter. Type a complex number of the form, r % i, where r is the x coordinate in the z-plane
and i is the y coordinate in the z-plane. If (r**2 + i**2) is greater than 1.0, the filter output will overflow. The second
pole of this filter is automatically the complex conjugate of this one, so you don’t have to specify it.

Scale1
This is the scale factor on the first filter section. For the full amplitude use +1.0 or -1.0; any factor whose absolute
value is less than 1 will attenuate the output.

Pole2
This is the pole of the second filter. Type a complex number of the form, r % i, where r is the x coordinate in the
z-plane and i is the y coordinate in the z-plane. If (r**2 + i**2) is greater than 1.0, the filter output will overflow. The
second pole of this filter is automatically the complex conjugate of this one, so you don’t have to specify it.

Scale2
This is the scale factor on the second filter section. For the full amplitude use +1.0 or -1.0; any factor whose absolute
value is less than 1 will attenuate the output.

31

DynamicRangeController

Level, Compression, Expansion Category
Compresses or expands the Input’s dynamic range as a function of the SideChain’s amplitude envelope.

The Input and output levels will be the same except when the SideChain amplitude envelope crosses the specified
Threshold.

If Compressor is selected, the Input will be attenuated whenever the SideChain amplitude exceeds the Threshold.

If Expander is selected, the Input amplitude will be boosted whenever the SideChain amplitude falls below the
Threshold.

You specify the Ratio of the input to the output amplitude.

Typical uses include: Limiting (compression with a very large ratio and high threshold), Gating (expansion with
extremely small ratio and low threshold), Ducking (set attack and decay to 1 or 2 seconds, put the signal you want to
duck in an out at the Input and put the controlling signal at the SideChain, and also mix the SideChain with the output
of the DynamicRangeController) , making short percussive sounds seem louder (compress, then increase the overall
gain), and smoothing out extreme changes in amplitude (particularly useful when recording to media with limited
dynamic range, such as cassette tape or videotape).

SideChain
The amplitude envelope of this signal affects the amplitude envelope on the Input. Whenever the SideChain’s
envelope crosses the Threshold, the Input’s dynamic range will be either compressed or expanded.

Input
This is the signal whose dynamic range will be compressed or expanded.

Type
Choose Compressor to compress all amplitudes above the threshold to a narrower dynamic range.

Choose Expander to expand the dynamic range of all amplitudes below the threshold to a wider dynamic range.

Ratio
This is the ratio of the Input amplitude to the output amplitude. For compression, it should be greater than 1. For
expansion, it should be less than 1. (This only affects the Input when the SideChain crosses the Threshold).

Threshold
This is the point at which a graph of Input to output level changes from a straight line to a curved line.

In compression, the Input is unchanged when the SideChain amplitude is below this threshold. When the SideChain
amplitude exceeds this threshold, the Input is attenuated.

In expansion, the Input is unchanged when the SideChain amplitude is above this threshold. When the SideChain
amplitude falls below this threshold, the Input is boosted.

AttackTime
Relates to how quickly or slowly the output amplitude will be modified whenever the Threshold is crossed. This
controls how quickly the envelope follower on the SideChain reacts to increases in the SideChain’s amplitude.

32

ReleaseTime
Relates to how quickly or slowly the output amplitude returns to normal whenever the Threshold is crossed. This
controls how quickly the envelope follower on the SideChain reacts to decreases in the SideChain’s amplitude.

Delay
Typically set to equal to the attack plus the decay time. This is to compensate for the delay introduced by the
envelope follower on the SideChain.

Gain
Besides changing the relative levels within the signal, compression and expansion usually change the overall level of
the output signal as well. Use Gain to adjust the overall level up or down.

33

Equality

Math Category
Whenever InputA equals InputB (plus or minus the Tolerance), the output of this Sound is one; at all other times, the
output is zero.

Tolerance
This is the amount of deviation from equality that is still to be considered equality.

InputA
InputA is compared, sample point by sample point, against the Sound in InputB.

InputB
InputB is compared, sample point by sample point, against the Sound in InputA.

34

FeedbackLoopInput

Xtra Category
A FeedbackLoopInput and FeedbackLoopOutput must always be used as a pair sharing the same Connection name,
start time, and duration. The FeedbackLoopInput writes into the delay line specified in Connection, and the
FeedbackLoopOutput reads out of that same delay line.

(This differs from other ways of doing feedback in that it allows Kyma’s scheduler to put the input to the delay line and
the output from the delay line on different expansion cards--freeing up more computation time for processing modules
that are in the loop. For simpler cases of feedback, use the DelayWithFeedback or simply write into memory with a
MemoryWriter and read out of it with a TimeOffset Sample, Oscillator, or TriggeredTableRead.)

Input
This is the signal that is to be delayed.

Connection
This is the name of the delay line (It must be the same as that specified in the corresponding FeedbackLoopOutput).

35

FeedbackLoopOutput

Xtra Category
A FeedbackLoopInput and FeedbackLoopOutput must always be used as a pair sharing the same Connection name,
start time, and duration. The FeedbackLoopInput writes into the delay line specified in Connection, and the
FeedbackLoopOutput reads out of that same delay line.

(This differs from other ways of doing feedback in that it allows Kyma’s scheduler to put the input to the delay line and
the output from the delay line on different expansion cards--freeing up more computation time for processing modules
that are in the loop. For simpler cases of feedback, use the DelayWithFeedback or simply write into memory with a
MemoryWriter and read out of it with a TimeOffset Sample, Oscillator, or TriggeredTableRead.)

Connection
This is the name of the delay line and must be the same as that specified in the corresponding FeedbackLoopInput.

Delay
Specify a delay time between 12 samp and 2048 samp. For longer delays, feed the output of this Sound into a
DelayWithFeedback. Shorter delays may cause clicking in the output.

36

FFT

Spectral Analysis FFT Category
The FFT takes an input from the time domain and produces an output signal in the frequency domain or vice versa.
Length is the length of the FFT.

Two independent time domain signals are present: one in the left channel and one in the right.

The frequency domain signal repeats every Length/2 samples, alternating between the spectrum of the left channel
time domain signal and the spectrum of the right channel time domain signal. The frequency signal is output in
frequency order: 0 hz, Fs / Length, 2*Fs / Length, etc. Each frequency domain sample has the real part in the left
channel and the imaginary part in the right channel.

When Inverse is not checked, the Input is a time domain signal and the output is a frequency domain signal. When
Inverse is checked, the Input is a frequency domain signal and the output is a time domain signal.

Input
This is the signal that will be transformed from the time domain to the frequency domain or vice versa.

Length
This is the window length of the FFT. It must be a power of two.

Inverse
Click here to perform an inverse FFT (to convert from a spectrum back to a time-domain waveform).

37

Filter

Filters Category
An IIR filter of the specified type, cutoff frequency, and order with gain or attenuation on the input and an attenuator
on the amount of feedback.

Input
This is the Sound to be filtered.

Type
Choose:

LowPass to attenuate all frequencies above the cutoff Frequency.

HighPass to attenuate all frequencies below the cutoff Frequency.

AllPass to allow all frequencies to pass through unattenuated (but phase shifted by (-90 * Order) degrees at the
specified Frequency, with smaller phase shifts at frequencies below that and larger ones for frequencies above).

Frequency
The cutoff frequency for the filter can be specified in units of pitch or frequency. When Feedback is close to 1, the
filter will tend "ring" at this frequency. The following are all ways to specify the A above middle C:

440 hz (in hertz or cycles per second)
4 a (as the 4th octave A)
69 nn (as a MIDI notenumber)
4 c + 9 nn (as 9 half steps above middle C)
1.0 / 0.00227273 s (inverse of a period at 44.1 kHz sample rate)

The following are examples of how to control the frequency using MIDI, the virtual control surface, or a third-party
program:

!Pitch (key number plus pitch bend)
!KeyNumber nn (MIDI notenumber)
4 c + (!Frequency * 9 nn) (continuous controller from 4 c to 4 a)

Q
Q is related to Bandwidth.

For AllPass filters, this affects the size of the phase shift on frequencies around the center Frequency (higher Q
corresponds to a narrower band of frequencies that will be phase-shifted).

For LowPass and HighPass filters, this control has no effect.

Scale
This is the attenuation or gain on the Input. The typical maximum for scale is 1, but it can be set as high as 2 if
necessary.

HighPass filters generally require lower Scale values than LowPass filters.

Feedback
The higher the Feedback, the longer the filter will ring in response to an input.

38

This is the amount of filtered signal that is fed back in and added to the Input (when low pass is selected, the
feedback is negative). Negative feedback values are the same as the positive ones but 180 degrees out of phase.

To simulate a traditional analog sound, use a 4th order low pass or high pass filter, and use feedback to increase the
"resonance".

Order
The order of the filter corresponds to the number of poles. In general, the higher the order of the filter, the sharper the
cutoff, and the more real-time computation required.

39

FilterBank

Aggregate Synthesis Category
This is a bank of bandpass filters whose center frequencies and amplitudes are controlled by the frequency and
amplitude envelopes of the Spectrum input.

NbrFilters
This is the number of filters in the bank. The number should be less than or equal to the number of partials in the
Spectrum input. The more filters you ask for, the more computation is required, so experiment with finding the
minimum number of filters that will still give you the desired result.

BankSize
This is the number of filters that Kyma will schedule on each processor. Leave this set to default unless you are
running out of realtime; in that case, try adding or subtracting one or two filters from the default BankSize, e.g.

default - 2

and using the DSP Status view to see if that results in a more even distribution of computation across your multiple
processors.

Bandwidth
This is a 0 to 1 control on the bandwidth of all the filters in the bank.

Spectrum
This should be one of the Sounds from the Spectral Sources category of the Prototypes. The FilterBank expects a
linear spectrum, so you may have to use the SpectrumLogToLinear conversion module if you are using a log
spectrum source like SpectrumInRAM.

Input
This is the signal that will be filtered through the bank of bandpass filters. In order to hear the effects of all the filters,
the Input should be a broadband signal (such as white noise) to ensure that there is energy present at all the
frequencies that can be affected by the filters.

40

FilterBank-Element

Xtra Sources Category
The FilterBank module is made up of one or more of these elements cascaded to give you more filters than can be
scheduled on a single processor. Use this module if you want to start at a higher numbered partial than 1 (the default
starting partial for the FilterBank module in the Aggregate Synthesis category of the Prototypes).

First
This is the first partial from the spectrum that you want to use to control the amplitude and center frequency of a
bandpass filter.

Count
This is the number of partials (starting from the number in the First field) that you want to resynthesize with the
FilterBank.

Bandwidth
This is a 0 to 1 control on the bandwidth of all the filters in the bank.

CascadeInput
The output of the CascadeInput Sound will be mixed with the output of this FilterBank-Element. Typically this is used
for cascading several FilterBank-Elements together and adding their inputs, but you can also use it as a shortcut to
mix the output of any module with the output of this FilterBank-Element.

Input
This is the signal that will be filtered through the bank of bandpass filters. In order to hear the effects of all the filters,
the Input should be a broadband signal (such as white noise) to ensure that there is energy present at all the
frequencies that can be affected by the filters.

Spectrum
This should be one of the Sounds from the Spectral Sources category of the Prototypes. The FilterBank expects a
linear spectrum, so you may have to use the SpectrumLogToLinear conversion module if you are using a log
spectrum source like SpectrumInRAM.

41

FIRFilter

Filters Category
The left channel of the Input is filtered by an FIR filter with the given filter tap weights.

Input
The left channel of this Sound is filtered.

Coefficients
These are the tap weights of the FIR filter.

In this field, you must enclose expressions within curly braces, for example: {!TapWeight1 * !Scale}

42

ForcedProcessorAssignment

Sampling Category
Forces the Input to be scheduled on the specified expansion card’s processor.

In almost all cases, it is better to let Kyma automatically handle the scheduling of Sounds on different processors.
However, this Sound lets you override the default scheduling and force a particular Sound to be computed on a
particular processor. Reasons for doing this might include: wanting to record a sample into the wavetable memory of
a specific expansion card (or range of cards) and being able to read out of that same memory later; or trying to
reschedule a Sound by hand if Kyma’s scheduling of it doesn’t keep up with real time (doing your own processor
allocation by hand is tricky and time-consuming and it is not necessarily recommended! See the Tutorial entitled
"What is Real Time Really" for other ways to reduce the computational complexity of a Sound that can’t keep up with
real time).

Processor
Number of the expansion card that Input will be scheduled on.

Input
Sound that will be forced onto the specified expansion card.

43

FormantBank

Aggregate Synthesis Category
The FormantBank synthesizes impulse responses for a bandpass filter centered at each of the frequencies and with
each of the amplitudes supplied by the Spectrum. The response of the filter is described by the shape of its impulse
response.

Frequency
This is the fundamental frequency for the resynthesis. It controls the rate at which new impulse responses are started
up. You can set Frequency to a constant value or control it from a MIDI keyboard or continuous controller. To use
the analyzed fundamental from the spectrum, use the SpectrumFundamental module to extract the fundamental from
the spectrum source. Paste the SpectrumFundamental into this field and multiply by the half sample rate, e.g.

([specFund] L * SignalProcessor halfSampleRate hz) nn + !Interval nn - !IntervalFormant
To deviate from the analyzed fundamental, you can add a pitch offset or multiply by a frequency scale, for example
([specFund] L * SignalProcessor halfSampleRate hz) nn + !Interval nn

To shift the formant frequencies independently of the fundamental frequency, first shift the Frequency parameter in
the Spectrum module using something like:

default hz nn + !IntervalFormant nn

Then compensate for the shift in this module’s Frequency field using something like:

([specFund] L * SignalProcessor halfSampleRate hz) nn + !Interval nn - !IntervalFormant nn

NbrFormants
This is the number of spectral partials that you want to resynthesize using the formant oscillators. This number
should be less than or equal to the number of partials in the spectrum source. The more partials you resynthesize,
the more processing power will be required, so if you run out of realtime, experiment with reducing this number to see
if you can get the same results with fewer partials.

BankSize
This is the number of formant generators that should be scheduled on each processor. You should leave this
parameter set to default unless Kyma runs out of realtime. In that case, you can try adding or subtracting a small
amount to the default Banksize, e.g.,

default + 1

and use the DSP Status view to gauge whether the processing looks more evenly distributed among your multiple
processors.

ImpulseResponse
This is the shape of the impulse response for the filter you want to synthesize at each of the partial frequencies.
Choose a simple shape like LinearEnvelope (or one of the other symmetric wavetables in Kyma>Waves>Windows) to
approximate a simple bandpass filter. Shapes with more bumps in them will give you more complex frequency
responses.

Spectrum
This is the source of frequency and amplitude envelopes for controlling the bank of impulse responses. It should be a
linear spectrum from the the Spectral Sources category of the Prototypes. Use the SpectrumLogToLinear to convert
a log spectrum (like the SpectrumInRAM) to linear.

44

NbrImpulses
This is the maximum number of impulse responses that will be playing at any one time. Normally, you should leave
this at its default setting. If you increase the number of impulse responses, the result will be louder but you will have
to reduce the BankSize in order for Kyma to properly schedule the FormantBank on multiple processors.

AllowDC
Check this box if you want to resynthesize any DC (0 hz frequency) components from the spectrum.

45

FormantBankOscillator

Xtra Sources Category
Synthesizes a filtered pulse train where the filter is based on the shape of the FormantImpulse and on the formant
frequencies, amplitudes, and bandwidths that you supply in the Spectrum parameter (which is usually a
SyntheticSpectrumFromArray Sound).

Frequency
This is the fundamental frequency of the pulse train input.

Spectrum
This should be a spectral source (typically a SyntheticSpectrumFromArray) and should specify center frequencies,
bandwidths, and amplitudes for the desired formants.

CascadeInput
Whatever Sound you place at this input will be added to the output of the current Sound. You can use this to cascade
several FormantBankOscillators or to mix the output of a different kind of Sound with the output of this Sound.

FirstFormant
The lowest numbered formant that you would like to read from the spectrum specification. This is almost always
going to be 1 (but can be set to a different number if you would like to skip over some formants or if this is one in a
chain of cascaded FormantBankOscillators).

NbrFormants
The number of formants that you would like to synthesize (which can be less than the number of formants specified in
the Spectrum input).

FormantImpulse
This is a wavetable containing the impulse response for each of the formant filters. In other words, if you were to hit
one of the formant filters with a single 1 followed by an infinite string of zeroes, this would be the output of the filter.

NbrImpulses
This is the maximum number of simultaneous impulse responses that can be generated. Leave it at its default value
unless you hear the sound breaking up (in which case you can try a smaller number).

AllowFormantAtDC
In nearly all situations, you should leave this box unchecked. You can use this option to synthesize a pulse train
whose shape is stored in the FormantImpulse wavetable. (To do this, you also have to specify a spectrum that is a
single formant centered at 0 hz or DC).

46

FrequencyScale

Frequency & Time Scaling Category
Scales the frequency of the Input by the value specified in FrequencyScale. It does this by "granulating" the input and
then either overlapping the grains to scale up in frequency, or leaving time between the grains to scale down in
frequency.

Input
This is the Sound whose frequency is to be scaled.

FreqTracker
In order to scale the frequency, we have to know the frequency.

The normal setup is to have a FrequencyTracker as the Input in this field. It could also be a Constant or a
FunctionGenerator if you already have a good frequency estimate (or intentionally want to supply a different
frequency estimate).

FrequencyScale
The frequency of the input will be multiplied by this value.

For example, to shift up by an octave, the FrequencyScale should be 2, and to shift down and octave, the scale
should be 0.5. To shift up by 3 half steps, you would use:

2 ** (3/12)

To shift down by 7 half steps, you would use:

2 ** (-7/12)

To continuously shift between 0 and 4 half steps under control of !Frequency, you could use:

2 ** (!Frequency * 4 / 12)

MaxScale
This should be equal to the FrequencyScale, or, if FrequencyScale is an Event Value, this should be the maximum
value of the Event Value.

The larger MaxScale is, the more computation time is required by the FrequencyScale.

Window
This function is used as a window or envelope on each grain.

Delay
Use this to delay the Input so that it lines up with the FrequencyTracker’s estimate of its frequency (since the
FrequencyTracker has to have at least two cycles of the Input before it can make its frequency estimate).

It should be a power of two number of samples. Use the following to calculate the delay based on the value of
MinFrequency that you have set in the FreqTracker that feeds into this module:

(2 raisedTo: ((1.0 / 120 "!<-- this should be replaced by the minFrequency in hertz!") s samp removeUnits log: 2)
ceiling) * 2 samp

47

FrequencyTracker

Tracking Live Input Category
Outputs a continuously updated estimate of the frequency of the Input.

Set the range of frequencies (MinFrequency to MaxFrequency) to be as narrow as possible given what you know
about the range of the instrument or voice you are tracking. It is recommended that you leave Confidence, Scale,
Emphasis, and Detectors at their default values until you have gotten a reasonably good frequency tracker for a given
Input. Then, if you want to fine-tune the tracker, experiment with making small changes to these values, one at a time
(starting by increasing the number of Detectors), so you can be sure of what effect each one will have on the tracking.
If the tracking gets worse instead of better, revert back to the default values.

The output of the FrequencyTracker falls within the range of 0 to1; to use this value in a frequency field, multiply it by
the maximum possible frequency:

SignalProcessor sampleRate hz * 0.5

Input
Estimates the frequency of this Sound.

MinFrequency
This is the lowest expected input frequency. In general, try to set this as high as possible given what you know about
the input. For example, if you are frequency tracking a recording or sample and know the lowest frequency, enter it
here. Or, for example, if you are tracking the frequency of a live violin, you know that there won’t be any frequencies
lower than that of the lowest open string 3 g, so if you were to enter 3 e here, you know you would be safe.

MaxFrequency
This is the highest expected input frequency. In general, set this as low as you can given what you know about the
Input. But don’t underestimate the value, because higher frequencies will then be misidentified as being an octave
lower than they really are.

Confidence
This is a measure of how confident the FrequencyTracker must be of a new estimate before it lets go of the previous
estimate. In other words, this is a control on how easily the FrequencyTracker will change to a new estimate when
the Input frequency is changing over time. A Confidence value of 1 means that the tracker must be 100% sure of its
new estimate before giving up the previous estimate; since the tracker is not omniscent it never feels *that* sure, so
the result is that it sticks with its very first guess throughout the entire Input, no matter how much the Input’s
frequency changes. Setting the Confidence to 0 means that the tracker will output every guess even if it is not
confident at all, resulting in a lot of spurious frequency estimates. Carefully adjust the Confidence to some value
between these two extremes, fine-tuning this setting depending on the Input.

Scale
This is an attenuator on the Input to the FrequencyTracker. In general, the input must be attenuated, since the
FrequencyTracker uses an autocorrelation which requires summing the contributions of at least 1000 sample points
at a time.

Detectors
This determines the sensitivity of the frequency tracking. Try starting with a value of 10, and then experiment with
more or fewer if you want to try fine tuning the frequency tracking. (More is not necessarily better; there is some
optimal number of detectors for each circumstance.)

48

Emphasis
This is a frequency-dependent weighting giving preference to higher frequency estimates. The range of this value is
0 to 1, where 1 is the highest weighting and 0 means to do no weighting. The recommmended value is 1.

49

FunctionGenerator

Envelopes & Control Signals Category
Reads the specified Wavetable for the specified OnDuration whenever it receives a Trigger.

Useful for envelope generation or for reading recordings stored in the wavetable memory (see also the Sample
prototype).

In a prototype with an Envelope parameter field (Oscillator, for example) you can use the FunctionGenerator directly
as the Envelope parameter. A FunctionGenerator can also be used to control other parameters (such as Frequency
or OnDuration). To apply an envelope to any Sound, use the Sound and an envelope generator as Inputs to the VCA
prototype. (The VCA simply multiplies its two inputs by each other).

Trigger
When the Trigger becomes nonzero, one event is triggered. You can trigger several events over the course of the
total Duration of this program as long as the value of Trigger returns to zero before the next trigger. Some example
values for Trigger are:

1 (plays once with no retriggering)
0 (the sound is silent, never triggered)
!KeyDown (trigger on MIDI key down)
!F1 (trigger when MIDI switch > 0)

You can also paste another signal into this field, and events will be triggered every time that signal changes from zero
to a nonzero value. (See the manual for a complete description of hot parameters, EventValues, EventSources, and
Map files).

OnDuration
This is the duration of each triggered event. It should be the same length or shorter than the value in Duration (which
is the total length of time that this program is available to be triggered). Think of Duration as analogous to the total
lifetime of a piano string, and OnDuration as the duration of each individual note that you play on that piano string.
The OnDuration must be greater than zero, and you must specify the units of time, for example:

2 s (for 2 seconds)
2 ms (for 2 milliseconds)
200 usec (for 200 microseconds)
2 m (for 2 minutes)
2 h (for 2 hours)
2 days
2 samp (for 2 samples)
1 / 2 hz (for the duration of one period of a 2 hz signal)

Wavetable
This is the name of the function that will be generated (or the sample that will be played) each time the
FunctionGenerator is triggered.

FromMemoryWriter
Check FromMemoryWriter when the wavetable does not come from a disk file but is recorded by a MemoryWriter in
real time.

50

GAOscillators

Xtra Sources Category
Additive synthesis using oscillators with complex waveforms (rather than sine waves). Each oscillator has its own
amplitude envelope and all oscillators share the same frequency deviation envelope.

TimeIndex
This controls the position within the frequency and amplitude envelopes, where -1 points to the beginning of the
envelopes, 0 points to the middle, and 1 points to the end of the envelopes. To move linearly from the beginning to
the end of the envelopes, use a FunctionGenerator whose wavetable is a FullRamp, or use the EventValue fullRamp
generator. For example,

!KeyDown fullRamp: 3 s

would go from -1 up to 1 whenever a MIDI key goes down.

Analysis0
This is the GA analysis file used when Morph is set to 0. A GA analysis file is an AIFF file containing each of the
wavetables, followed by each of the amplitude envelopes, followed by the frequency deviation envelope. Each of the
waveforms is 4096 samples long, and each of the amplitude envelopes and the frequency envelope is the same
length as each other (but this length varies from analysis to analysis).

To create your own analysis file from a sample, first do a spectral analysis of the sample, and then generate a GA
analysis file from that. Both of these operations can be performed using tools found in the Tools menu. (See the
tutorial on GA analysis/synthesis for full details).

Analysis1
This is the GA analysis file used when Morph is set to 1. A GA analysis file is an AIFF file containing each of the
wavetables, followed by each of the amplitude envelopes, followed by the frequency deviation envelope. Each of the
waveforms is 4096 samples long, and each of the amplitude envelopes and the frequency envelope is the same
length as each other (but this length varies from analysis to analysis).

To create your own analysis file from a sample, first do a spectral analysis of the sample, and then generate a GA
analysis file from that. Both of these operations can be performed using tools found in the Tools menu. (See the
tutorial on GA analysis/synthesis for full details).

Envelope
This is an overall envelope on all of the enveloped oscillators.

Frequency
The frequency can be specified in units of pitch or frequency. The following are all ways to specify the A above
middle C:

440 hz (in hertz or cycles per second)
4 a (as the 4th octave A)
69 nn (as a MIDI notenumber)
4 c + 9 nn (as 9 half steps above middle C)
1.0 / 0.00227273 s (inverse of a period at 44.1 kHz sample rate)

The following are examples of how to control the frequency using MIDI, the virtual control surface, or a third-party
program:

51

!Pitch (key number plus pitch bend)
!KeyNumber nn (MIDI notenumber)
4 c + (!Frequency * 9 nn) (continuous controller from 4 c to 4 a)

Morph
This controls a crossfade between each of the waveforms and envelopes in Analysis0 with each of the waveforms
and envelopes in Analysis1.

52

GenericSource

Xtra Sources Category
This Sound can represent the live input, a sample read from the disk, or a sample read from RAM. If Ask is checked,
you can choose between these three kinds of sources each time you recompile the Sound.

Source
Select the live input, an audio track on disk, or a sample in RAM.

LeftChannel
Check this box to monitor the left channel of the source signal.

RightChannel
Check this box to monitor the right channel of the source signal.

Sample
Enter the name of a sample file or click the disk icon to choose it from the file dialog.

Autoloop
Check here to loop the sample or disk.

Trigger
Whenever Trigger changes from 0 to a nonzero value, it will replay the disk or sample in RAM from the beginning.

AttackTime
Attack time for a linear envelope applied to the sample source.

ReleaseTime
Release time for a linear envelope applied to the sample source.

Scale
Scales the amplitude of the source.

Frequency
For samples in RAM or on disk, this controls the playback frequency. For samples that are unpitched, the original
frequency is assumed to be 4 c (60 nn).

53

GrainCloud

Xtra Sources Category
Generates a cloud of short-duration grains of sound, each with the specified Waveform and each with an amplitude
envelope whose shape is given by GrainEnv. The density of simultaneous grains within the cloud is controlled by
Density, with the maximum number of simultaneous grains given by MaxGrains. Amplitude controls an amplitude
envelope over the *entire* cloud (each individual grain amplitude is controlled by GrainEnv). You can control the
Frequency, stereo positioning, and duration of each grain as well as specifying how much (if any) random jitter should
be added to each of these parameters (giving the cloud a more focused or a more dispersed sound, depending on
how much randomness is added to each of the parameters).

Waveform
The waveform of the oscillator inside each grain.

GrainEnv
Defines the shape of each grain’s amplitude envelope. To minimize clicks, choose a wavetable that starts and ends
on zero.

MaxGrains
Maximum number of grains that can be playing at any one time. The smaller this number, the less computational
power the GrainCloud requires (but the less dense the texture you can generate). For even denser textures, put
more than one GrainCloud into a Mixer, and give each GrainCloud a different Seed value.

Amplitude
An overall level or amplitude envelope applied to the entire cloud. Note that this is independent of the amplitude
envelope on each individual grain.

Density
Controls the number of new grains that can start up at any one time. Small Density values result in a sparse texture;
large Density values generate a dense texture.

GrainDur
The duration of an individual grain.

The duration of each grain is a function of three parameters:

GrainDur + CyclesPerGrain + (GrainDurJitter * 2 * (GrainDur + CyclesPerGrain))

To specify the number of waveform cycles within each grain (implies that higher frequency grains will have shorter
duration than lower frequency grains and assures that every grain will contain an integer number of full cycles of the
waveform):

GrainDur = 0 s
CyclesPerGrain = <number of cycles in each grain>

To specify a constant duration, no matter what the frequency of the waveform within each grain (implying that high
frequency grains will have more cycles in them than low frequency grains):

GrainDur = <desired grain duration>
CyclesPerGrain = 0

54

GrainDurJitter
The amount of random jitter added to the grain duration value when a new grain starts up. When GrainDurJitter is 0,
every new grain will have the same duration. At the other extreme, when it is set to 1, the durations vary randomly
from 0 to twice the specified duration.

CyclesPerGrain
The integer number of full cycles of the waveform that should occur inside each grain. Use this parameter to specify
grains that are shorter for high frequencies than they are for low frequencies. If you prefer uniform grain durations
over all frequencies, set this parameter to zero and use GrainDur to set the grain duration.

Frequency
Frequency of the oscillator within each grain.

FreqJitter
The amount of random jitter added to the Frequency value when a new grain starts up. When FreqJitter is 0, the
frequency inside each grain will be equal to the value in the Frequency parameter. When it is 1, each grain will have
a different, randomly selected frequency.

It is defined as:

(1 + (<randomNumber> * FreqJitter)) * Frequency

so when FreqJitter is 1, the frequency can range from 0 hz up to twice the specified Frequency (100% up is an octave
up, while 100% down is DC). When FreqJitter is zero, no random deviations are added to the Frequency.

Pan
Stereo position of each grain (where 0 is hard left, 0.5 is in the middle, and 1 is hard right).

PanJitter
The amount of random jitter added to the Pan value when a new grain starts up. The larger this number, the more
diffuse the apparent location, and the smaller the number, the more localized the sound.

Seed
A starting point for the random number generator. It should be a number between 0 and 1. Each different seed
number results in a different (but repeatable) sequence of random numbers. When adding several GrainClouds with
the same control parameters together in a Mixer, give each of them a different seed in order to ensure that each of
them has *different* random jitter added to its parameters (otherwise, they will just double each other).

55

GraphicalEnvelope

Envelopes & Control Signals Category
Similar to the ADSR envelope, except that you can graphically specify an arbitrary number of segments and can
specify loop points.

Typical uses include amplitude envelopes, pitch envelopes, and time index functions.

Envelope
Use this field to edit the envelope.

To add an envelope breakpoint, click the mouse while holding down the Shift key. Click and drag a breakpoint to
move it. Click a breakpoint and press the Delete key to delete it. The button at the lower right of this field is used to
control the looping behavior of the selected breakpoint.

See the section on Parameter Settings in the manual for more information.

Level
This is a scale factor (from 0 to 1) for attenuating the overall output level.

Gate
When Gate changes from zero to a nonzero, the envelope will be triggered. Gate must return to zero again before
the envelope can be retriggered. If you have specified beginning and ending segments for a loop, the envelope will
repeat the loop segments for as long as the Gate is nonzero. If the ending loop segment ends on a higher or lower
value than the start of the beginning segment, the entire looped portion will get larger or smaller each time it is
repeated (because each segment has a *slope* associated with it, not the absolute values at each point).

Rate
This is the rate at which the envelope is played.

Use 1 to play it back as shown in the Envelope parameter field (where each heavy vertical line represents one
second), 0.5 to make the envelope last twice as long, 2 to make it play twice as fast, etc.

56

GraphicEQ

Filters Category
This gives you independent control over the levels of seven, octave-wide bands ranging in center frequency from 250
hz up to 16,000 hz. You can use it for attenuating or accentuating subparts of the Input spectrum. When all levels
are set to 1, you should hear the original Input signal with no change.

Input
This is the Sound to be filtered or equalized.

CF250Hz
Controls the level of a band from DC up to about 4 f.

CF500Hz
Controls the level of an octave band from about 4 f to 5 f (350-670 hz).

CF1000Hz
Controls the level of an octave band from about 5 f to 6 f (670-1340 hz).

CF2000Hz
Controls the level of an octave band from about 6 f to 7 f (1340-2794 hz).

CF4000Hz
Controls the level of an octave band from about 7 f to 8 f (2794-5588 hz).

CF8000Hz
Controls the level of an octave band from about 8 f to 9 f (5588-11,175 hz).

CF16000Hz
Controls the level of an octave band from about 9 f to 10 f (11,175 up to half the sampling rate).

57

HarmonicResonator

Filters Category
A filter that has resonances at the specified Frequency and all of its harmonics.

Input
This is the Sound that will be filtered.

DecayTime
This is the time it will take for the input amplitude to decay to -60 dB below its initial amplitude.

Brightness
The higher this value, the longer it will take for the high frequency partials to die away, resulting in a brighter timbre.

Frequency
The frequency can be specified in units of pitch or frequency. The following are all ways to specify the A above
middle C:

440 hz (in hertz or cycles per second)
4 a (as the 4th octave A)
69 nn (as a MIDI notenumber)
4 c + 9 nn (as 9 half steps above middle C)
1.0 / 0.00227273 s (inverse of a period at 44.1 kHz sample rate)

The following are examples of how to control the frequency using MIDI, the virtual control surface, or a third-party
program:

!Pitch (key number plus pitch bend)
!KeyNumber nn (MIDI notenumber)
4 c + (!Frequency * 9 nn) (continuous controller from 4 c to 4 a)

Wavetable
Type in the name of a wavetable to use as a delay line, or select Private to let Kyma choose some free wavetable
memory for you.

Prezero
Check this box if you want to assure that the delay line is clear before it is used in this Sound. Leaving it unchecked
simulates a physical resonator by allowing the filter to remember its state between excitations.

Scale
This is an attenuator on the input Sound. For the full amplitude use +1.0 or -1.0; any factor whose absolute value is
less than 1 will attenuate the output.

58

HighShelvingFilter

Filters Category
Boosts or cuts the frequencies above the specified cutoff frequency.

Input
This is the Sound to be filtered.

CutoffFreq
Frequencies above this will be boosted or cut by the specified amount.

BoostOrCut
Indicate the amount of boost or cut in units of dB. Negative values indicate a cut, positive values a boost.

Scale
Attenuator on the input.

59

InputOutputCharacteristic

Distortion & Waveshaping Category
Each value of the input signal is mapped to a different value in the output signal. Specify the desired InValues and
their corresponding OutValues. Values that lie between the ones you specify are either the same as the previous
value (Smoothing = 0), linearly interpolated between the previous and next value (Smoothing = 0.5), or interpolated
along a spline curve (Smoothing = 1). For nonzero values of Smoothing, the StartSlope and EndSlope give you the
direction of the curve before the first value and after the last value that you have specified.

Applications for this module include: waveshaping, restricting the output values of a Noise generator, or generating a
variable waveform (by setting Input to a FullRamp Oscillator or looped Sample on a FullRamp as the phase or the
index for looking up a value in the output function).

InValues
This is an array of input values in ascending order and within a range from -1 to 1. The first value should be -1 and
the last should be 1 (if not, Kyma will automatically add them). The values can be numbers or expressions.
Expressions must be delineated by curly braces, for example:

{!x0 * 0.1 + 0.1}

You can also generate the array algorithmically in Smalltalk, for example:

{(1 to: 9) collect: [:i | (i - 1) / 8.0 * 2 - 1]}

OutValues
For each number in the InValues array, this is the corresponding output value. Output values must lie between the
values -1 and 1. For example, if your InValues were

-1 -0.5 0 0.5 1
and your outValues were
1 0.5 0 0.5 1

then negative input values would be remapped to positive output values.

Expressions must be delineated by curly braces, for example:

{!x0 * 0.1 + 0.1}

You can also generate the array algorithmically in Smalltalk, for example:

{(1 to: 9) collect: [:i | (i - 1) / 8.0 * 2 - 1]}

Smoothing
For an input value that lies *between* two numbers in the InValues field, the output value can be:

* The same as the previous value (Smoothing = 0)

* The value that would lie on a straight line between the previous output value and the next output value (Smoothing =
0.5)
* The value that would like on a spline curve between the previous and the next outValues

OR something in between these behaviors if Smoothing is between 0 and 0.5 or between 0.5 and 1.

StartSlope

60

The direction of the curve before the first specified value. For example, a value of 1 is a straight line going upwards,
and a value of -1 is a straight line going downwards.

EndSlope
The direction of the curve after the last specified value. For example, a value of 1 is a straight line going upwards,
and a value of -1 is a straight line going downwards.

Input
This is the source of input values that will be remapped by the InputOutputCharacteristic to a different set of output
values.

61

Interpolate

Math Category
A linear combination of two inputs. The left channel of Input0 is multiplied by 1-leftInterp, the left channel of Input1 is
multiplied by leftInterp, and the two are added together (and the same for the right channels and rightInterp).

This Sound is useful for interpolating between control functions and envelopes (for example, interpolating between
two sets of analysis envelopes and using the result as an input to an OscillatorBank results in a spectral "morph" from
one spectrum to another before it is fed into the OscillatorBank).

Input1
When the Interpolation value is 0, this Sound is at full amplitude and Input2 is at zero amplitude.

Input2
When the Interpolation value is 1, this Sound is at full amplitude and Input1 is at zero amplitude.

LeftInterp
This parameter controls the left channel of the output. 0 results in an output of Input1 alone, and 1 results in an output
of Input2 alone. Any values between 0 and 1 result in a mix of Input1 and Input2 to be output. (If Inputs are spectral
sources, this channel is the amplitude envelopes.)

RightInterp
This parameter controls the right channel of the output. 0 results in an output of Input1 alone, and 1 results in an
output of Input2 alone. Any values between 0 and 1 result in a mix of Input1 and Input2 to be output. (If Inputs are
spectral sources, this channel is the frequency envelopes.)

62

IteratedWaveshaper

Distortion & Waveshaping Category
This is like waveshaping, except that the output of the waveshaping is fed back into the waveshaper for the specified
number of Iterations before the result is finally output.

This algorithm was submitted by Agostino Di Scipio.

Iterations
Specify the number of times the output of the waveshaper should be fed back through the shaping function before the
output.

Input
Each sample of this Sound is used as an index into the shaping function stored in the Wavetable.

Scale
This attenuation is applied prior to feeding the output back into the waveshaper for each iteration.

Wavetable
This is the shaping function. An input value of zero indexes into the middle of this table, minus one indexes into the
beginning, and plus one indexes into the end of the table.

63

KeyMappedMultisample

Sampling Category
This provides a quick way to map a large bank of samples to specific ranges of a MIDI keyboard. It can be used for
mapping large numbers of samples taken from musical instruments to narrow ranges on the keyboard (much as is
done on a standard sampler) or for being able to select and trigger large banks of sound effects in real time (from a
sequencer or from the MIDI keyboard).

To specify the samples that belong in the same bank, place all of them in the same folder or directory. Kyma will only
look at the top level of your directory, so any folders within that folder will be ignored. The ordering of the samples
within that file will be interpreted to be alphabetical by name (when ordering is important).

The files within the directory must all be mono or all stereo; mixtures of mono and stereo files are not guaranteed to
be interpreted correctly.

Frequency
Check the NoTransposition box below if you want the Frequency to equal the pitch of the recorded sample. The
frequency can be specified in units of pitch or frequency. The following are all ways to specify the A above middle C:

440 hz (in hertz or cycles per second)
4 a (as the 4th octave A)
69 nn (as a MIDI notenumber)
4 c + 9 nn (as 9 half steps above middle C)
1.0 / 0.00227273 s (inverse of a period at 44.1 kHz sample rate)

The following are examples of how to control the frequency using MIDI, the virtual control surface, or a third-party
program:

!Pitch (key number plus pitch bend)
!KeyNumber nn (MIDI notenumber)
4 c + (!Frequency * 9 nn) (continuous controller from 4 c to 4 a)

Gate
Enter a 1 in this field to play the Sound exactly once for the duration you have specified in the Duration field.

If you use an EventValue (for example, !KeyDown) in this field, the Sound can be retriggered as often as you like
within the duration specified in the Duration field.

When Gate becomes positive, the Sound is heard; when Gate becomes zero, the Sound is released and will finish
playing through the current sample and then stop.

If the sample file has loop points stored in its header, Kyma will loop the sample for as long as Gate remains positive
(so, for example, as long as the MIDI key is held down).

Velocity
If By Base Pitch is checked, this value will pick between several samples of the same base pitch but different velocity
ranges as long as you have set those ranges in the header of the samples file.

FirstSample
Use the disk icon to browse, and then select one sample file within the folder or directory containing all the samples to
be mapped.

64

LoFreq
This Sound can be triggered at any frequency. The mapping is not defined for frequencies below LoFreq.

HiFreq
This Sound can be triggered at any frequency. The mapping is not defined for frequencies above HiFreq.

Mapping
The policy for mapping note number to samples file:

OnePerHalfStep: assign each samples file in order to the next half step on the keyboard. If you run out of
samples files start over again from the first file. This is a good mode for triggering sound effects from the keyboard
since you know that each half step will trigger a different sample.

EquallySpaced: Give each samples file an equal-sized range of the keyboard. The first samples file in the list gets
the lowest range of keys, the next file gets the next block of keys, etc. This is especially useful when you have
arranged the files alphabetically in your directory from the lowest to the highest originally recorded pitches.

ByBasePitch: Use the base pitch (as specified in the header of AIFF files) to assign samples to the frequencies
closest to their originally recorded pitch. This is the best policy to use when you have a set of samples that covers the
range of a musical instrument, since it will result in the least distortion of the samples if you can play them as close as
possible to their original pitches.

ByPitchRange: Assigns each sample to the pitch range specified in the sample file header. When the ranges
overlap, sample files whose names sort later in the alphabet take precedence.

AttackTime
Duration of the attack of an envelope applied to the sample.

ReleaseTime
Duration of the release of an envelope applied to the sample.

Scale
Overall level of the sample.

Loop
Click here if you want to loop the sample using the loop points specified in the header of the samples file. (Applies
only to samples read from RAM, not those read directly from disk).

FromDisk
Click here to indicate that the sample should be read directly from disk rather than from sample RAM on the
Capybara. You can use this option when Kyma tells you that you have run out of sample RAM (because your
sample is too long or you have requested too many samples).

NoTransposition
Click here to indicate that the samples should not be transposed from their originally recorded pitches. This is so you
can use the keyboard to trigger sound effects or long disk files without changing the duration or frequency of the
recordings.

65

Level

Level, Compression, Expansion Category
Boosts or attenuates the amplitudes of the left and right channels of the Input. (Check NoGain if you will be
attenuating only, because the attenuation program is slightly more efficient than the gain program).

Input
This is the Sound whose level will be changed.

Left
The left scale factor can be any positive or negative value. For example:

0.5

-0.25

-6 db

!Amp

!KeyVelocity

!dBGain db

!Gain

!KeyNumber / 127

Right
The right scale factor can be any positive or negative value. For example:

0.5

-0.25

-6 db

!Amp

!KeyVelocity

!dBGain db

!Gain

!KeyNumber / 127

NoGain
Check this box if you want to attenuate only (in other words if the magnitude of both Left and Right are known to be
numbers less than or equal to 1).

66

LimeInterpreter

Scripts Category
Reads binary files produced by the Lime music notation program and maps values to parameters of Kyma Sounds.
This allows you to "play" scores produced in Lime using Kyma Sounds as the instruments.

FileName
This is the name of a binary file created and saved in Lime.

Inputs
These Sounds are treated as templates. Each name should begin with a letter and contain only alpha-numeric
characters; this field will reject any Sounds with "illegal" names. You can reference these Sounds by name in the
Script field.

Script
The script contains Smalltalk code that reads and interprets data from the specified Lime binary file. See the manual
for a more details about Smalltalk.

Left
This controls the level of the left input channel. The maximum value is 1 and the minimum is -1. The left channel of
the input is multiplied by the value of this parameter. Some example values for Left are:

1 (no attenuation)
0 (maximum attenuation)
!Fader1 (continuous controller sets level)
!KeyVelocity (MIDI key velocity controls the amplitude)

You can also paste another signal into this field, and the amplitude will vary with the output amplitude of the pasted
signal (something like an LFO controlling the attenuation). (See the manual for a complete description of hot
parameters, EventValues, EventSources, and Map files).

Right
This controls the level of the right input channel. The maximum value is 1 and the minimum is -1. The right channel
of the input is multiplied by the value of Right. Some example values for Right are:

1 (no attenuation)
0 (maximum attenuation)
!Fader1 (continuous controller sets level)
!KeyVelocity (MIDI key velocity controls the amplitude)

You can also paste another signal into this field, and the amplitude will vary with the output amplitude of the pasted
signal (something like an LFO controlling the attenuation). (See the manual for a complete description of hot
parameters, EventValues, EventSources, and Map files).

67

LiveSpectralAnalysis

Tracking Live Input Category
This Sound should be used as the Spectrum parameter of an OscillatorBank. It analyzes the Input and produces
amplitude and frequency envelopes for controlling a bank of oscillators.

Input
The output of the LiveSpectralAnalysis is the spectrum of this Input.

LowestAnalyzedFreq
Check the highest frequency that will still lie below the lowest fundamental frequency of the Input. The lower this
frequency, the more time-smearing and delay, so pick the highest one that will still encompass the fundamental.

The frequency value you select will also determine how many bandpass filters are used in the analysis and, therefore,
the number of tracks or partials generated by the analysis. The lower the frequency, the more partials that are
generated:

1 F: 512
2 F: 256
3 F: 128
4 F: 64
5 F: 32

If you use this LiveSpectralAnalysis to control an OscillatorBank, this is the maximum number of oscillators that you
should specify in the OscillatorBank (you can specify fewer of them, but specifying more of them will not result in any
additional partials).

AmpScale
This is the overall amplitude level for all the partials.

FreqScale
This scales the frequency of all the oscillators without affecting the timing or duration of the amplitude envelopes.
There is no limit on the range, so to control it continuously use:

!Freq * 10

Or to control it from a MIDI keyboard use:

!KeyNumber nn hz / 60 nn hz

Response
This is the time response of the filters. Experiment to find the best time response that does not add distortion to the
sound. This specifies the bandwidth of the bandpass filters used in the analysis: "BestFreq" is the narrowest
bandwidth, "BestTime" is the widest bandwidth, and the others are intermediate bandwidths.

Harmonic
Some kinds of live morphs work better with Harmonic checked, but you should experiment with it both checked and
unchecked. It is a little trickier to do the harmonic analysis, so you should avoid checking this box except in situations
where it is required.

Once you check this box, you must also set several other parameters: LowFreq, HighFreq, InitFreq,
TrackedHarmonic, UnpitchedThreshold.

68

UnpitchedOnly
Set this value to 1, and adjust UnpitchedThreshold if you would like to hear the unpitched parts of the sound only
(transients, clicks, consonants, noise, etc). It requires that you have Harmonic checked.

UnpitchedThreshold
Set UnpitchedOnly to 1, and adjust this value if you would like to hear only the unpitched parts of the Input (clicks,
consonants, transients, noise). This requires that you have Harmonic checked.

TrackedHarmonic
Only required if you have Harmonic set. A pitch-follower attempts to track whichever harmonic you indicate in this
field. Usually it is 1 for the fundamental, but if a higher harmonic is stronger, it may be easier to track harmonic 2, 3 or
higher. The harmonic’s frequency must lie between LowFreq and HighFreq.

LowFreq
Only required if you have Harmonic checked. This is the lowest frequency you expect to see in the tracked harmonic.

HighFreq
Required only when you have Harmonic checked. This is the highest frequency you expect to encounter in the
tracked harmonic.

InitFreq
Required only if Harmonic is checked. This is an estimate of the initial frequency of the tracked harmonic.

FundamentalOnly
This only applies when Harmonic is checked. Check this box if you would like to listen to the estimated fundamental
frequency. It can help you judge whether adjusting LowFreq or HighFreq might result in a better estimate.

69

LowShelvingFilter

Filters Category
Boost or cut the spectrum below the specified cutoff frequency.

Input
This is the Sound to be filtered.

CutoffFreq
Frequencies below this will be boosted or cut by the specified amount.

BoostOrCut
Indicate the amount of boost or cut in units of dB. Negative values indicate a cut, positive values a boost.

Scale
Attenuator on the input.

70

Matrix4

Spatializing Category
This Sound is a four-input four-output matrix mixer. The four input Sounds are routed and mixed to the four output
channels of the signal processor.

This Sound only works properly as the rightmost Sound in the signal flow diagram.

In1
One of the four input Sounds.

In2
One of the four input Sounds.

In3
One of the four input Sounds.

In4
One of the four input Sounds.

InsToOut1
This parameter is a list of four mixing levels. These levels are used to mix the four inputs into an output for channel 1.

In this field, you must enclose expressions within curly braces, for example: {!Val1 * !KeyVelocity}

InsToOut2
This parameter is a list of four mixing levels. These levels are used to mix the four inputs into an output for channel 2.

In this field, you must enclose expressions within curly braces, for example: {!Val1 * !KeyVelocity}

InsToOut3
This parameter is a list of four mixing levels. These levels are used to mix the four inputs into an output for channel 3.

In this field, you must enclose expressions within curly braces, for example: {!Val1 * !KeyVelocity}

InsToOut4
This parameter is a list of four mixing levels. These levels are used to mix the four inputs into an output for channel 4.

In this field, you must enclose expressions within curly braces, for example: {!Val1 * !KeyVelocity}

71

Matrix8

Spatializing Category
This Sound is a eight-input eight-output matrix mixer. The eight input Sounds are routed and mixed to the eight output
channels of the signal processor.

This Sound only works properly as the rightmost Sound in the signal flow diagram.

In1
One of the eight input Sounds.

In2
One of the eight input Sounds.

In3
One of the eight input Sounds.

In4
One of the eight input Sounds.

In5
One of the eight input Sounds.

In6
One of the eight input Sounds.

In7
One of the eight input Sounds.

In8
One of the eight input Sounds.

InsToOut1
This parameter is a list of eight mixing levels. These levels are used to mix the eight inputs into an output for channel
1.

In this field, you must enclose expressions within curly braces, for example: {!Val1 * !KeyVelocity}

InsToOut2
This parameter is a list of eight mixing levels. These levels are used to mix the eight inputs into an output for channel
2.

In this field, you must enclose expressions within curly braces, for example: {!Val1 * !KeyVelocity}

InsToOut3
This parameter is a list of eight mixing levels. These levels are used to mix the eight inputs into an output for channel
3.

72

In this field, you must enclose expressions within curly braces, for example: {!Val1 * !KeyVelocity}

InsToOut4
This parameter is a list of eight mixing levels. These levels are used to mix the eight inputs into an output for channel
4.

In this field, you must enclose expressions within curly braces, for example: {!Val1 * !KeyVelocity}

InsToOut5
This parameter is a list of eight mixing levels. These levels are used to mix the eight inputs into an output for channel
5.

In this field, you must enclose expressions within curly braces, for example: {!Val1 * !KeyVelocity}

InsToOut6
This parameter is a list of eight mixing levels. These levels are used to mix the eight inputs into an output for channel
6.

In this field, you must enclose expressions within curly braces, for example: {!Val1 * !KeyVelocity}

InsToOut7
This parameter is a list of eight mixing levels. These levels are used to mix the eight inputs into an output for channel
7.

In this field, you must enclose expressions within curly braces, for example: {!Val1 * !KeyVelocity}

InsToOut8
This parameter is a list of eight mixing levels. These levels are used to mix the eight inputs into an output for channel
8.

In this field, you must enclose expressions within curly braces, for example: {!Val1 * !KeyVelocity}

73

MemoryWriter

Sampling Category
When Trigger becomes positive, records the Input into the wavetable memory of the signal processor for the length of
time specified in CaptureDuration.

Any Sounds that read wavetables can be used to play back this recording (for example, FunctionGenerator, Sample,
and others).

Input
The output of this Sound is recorded into the wavetable memory of the signal processor.

CaptureDuration
The length of time to record the Input. Enter 0 s if you want to record Input for its full duration.

Global
Click here to record the Input into the wavetable memory on all expansion cards (otherwise, it will be recorded only
into the memory of the expansion card on which the MemoryWriter happens to get scheduled, and Kyma will be
forced to schedule the playback Sound on that same card. If you make the recording global, it is much easier for
Kyma to schedule the playback Sounds, because it can schedule them on any cards, knowing that the recording is
available in the memory of all the cards.)

Cyclic
When Cyclic is selected, the MemoryWriter does a "looping" recording. In other words, it records for the specified
CaptureDuration; then, if Trigger is still positive, it wraps around to the beginning of the recording and continues
recording the Input, overwriting what it had previously recorded there.

RecordingName
Enter a name for the sample that you are recording into the wavetable memory. Use this same name in the playback
Sounds, so they can find the sample in the wavetable memory. Any Sound that reads from the wavetable memory
can also read the sample that you are writing into the memory with MemoryWriter. Sounds like Sample and
FunctionGenerator read arbitarily long tables, whereas Sounds like Oscillator will use only the first 4096 entries of the
named wavetable (only the first 4096 sample points).

Silent
Click here if you would like to record the Input silently, without also monitoring it at the same time.

Trigger
When the Trigger becomes nonzero, the recording is triggered. You can trigger several events over the course of the
total Duration of this program as long as the value of Trigger returns to zero before the next trigger. Some example
values for Trigger are:

1 (plays once with no retriggering)
0 (the sound is silent, never triggered)
!KeyDown (trigger on MIDI key down)
!F1 (trigger when MIDI switch > 0)

You can also paste another signal into this field, and events will be triggered every time that signal changes from zero
to a nonzero value. (See the manual for a complete description of hot parameters, EventValues, EventSources, and

74

Map files).

75

MIDIFileEcho

MIDI Out Category
This Sound reads up all MIDI events on the specified range of channels from the designated file and then echoes
them to the MIDI output.

It does not output MIDI within Kyma but copies the MIDI file directly to the DSP MIDI output.

LowChannel
The lowest MIDI channel to echo.

HighChannel
Highest MIDI channel to echo.

FileName
A MIDI file

76

MIDIMapper

MIDI In Category
Defines its Input as a MIDI voice of the specified polyphony that takes its input from the specified MIDI input channel
within the given range of pitches either in real time or from a MIDI file. Left and Right are attenuators on the left and
right channels of the audio output of this Sound.

A local map supplied in the Map field overrides the global MIDI map for any Event Values in its Input. If you don’t
need to override the global map, use MIDIVoice instead.

Input
Input (including all of its inputs) is the Sound associated with this MIDI voice. If any of Input’s parameters are Event
Values, they will be mapped to Event Sources by the Map parameter (which overrides the currently select global map
but only for Input)

Map
Enter any mappings from Event Values to Event Sources that should be *different* in Input (and its inputs) than they
are in the currently selected global map. If an Event Value is not defined here in the local map, Kyma will use the
global map to determine its Event Source.

The syntax for a mapping is:

!EventValueName is: ‘EventSourceName

Left
This controls the level of the left input channel. The maximum value is 1 and the minimum is -1. The left channel of
the input is multiplied by the value of this parameter. Some example values for Left are:

1 (no attenuation)
0 (maximum attenuation)
!Fader1 (continuous controller sets level)
!KeyVelocity (MIDI key velocity controls the amplitude)

You can also paste another signal into this field, and the amplitude will vary with the output amplitude of the pasted
signal (something like an LFO controlling the attenuation). (See the manual for a complete description of hot
parameters, EventValues, EventSources, and Map files).

Right
This controls the level of the right input channel. The maximum value is 1 and the minimum is -1. The right channel
of the input is multiplied by the value of Right. Some example values for Right are:

1 (no attenuation)
0 (maximum attenuation)
!Fader1 (continuous controller sets level)
!KeyVelocity (MIDI key velocity controls the amplitude)

You can also paste another signal into this field, and the amplitude will vary with the output amplitude of the pasted
signal (something like an LFO controlling the attenuation). (See the manual for a complete description of hot
parameters, EventValues, EventSources, and Map files).

Channel
The MIDIMapper only pays attention to this incoming MIDI channel (or MIDI events on this channel of the MIDI file).

77

Set Channel to 0 to use whatever channel is specified in the global map.

Source
Choose between live MIDI input, reading from a MIDI file, or receiving MIDI events specified in the Script field.

MidiFile
Read the MIDI event stream from this file if MIDI File is selected as the Source. Use the Browse button to bring up a
standard file list and select the filename from the list.

Polyphony
Number of simultaneous MIDI note events possible on this voice. For example, if you specify a Polyphony value of 4,
Kyma makes 4 copies of the Input Sound, so any one of them can be triggered at any time and all four can be
sounding at the same time. The higher the value of Polyphony, the more computation time is required per sample
tick.

LowPitch
The lowest MIDI pitch that this voice responds to. Be sure to include units of pitch or frequency with the value. (For
this particular Sound, if you specify this value as a frequency, Kyma will round to the nearest equal-tempered MIDI
notenumber).

This allows you to map different regions of the MIDI note range to different voices and to define keyboard splits.

HighPitch
The highest MIDI pitch that this voice responds to. Be sure to include units of pitch or frequency with the value. (For
this particular Sound, if you specify this value as a frequency, Kyma will round to the nearest equal-tempered MIDI
notenumber).

This allows you to map different regions of the MIDI note range to different voices and to define keyboard splits.

Script
When Source is set to Script, this program sends MIDI events to the Input (just as if these events were being read
from a MIDI file). See the manual for more information on algorithmically generating and manipulating MIDI events.

To specify a MIDI event, use:

self keyDownAt: <aTime> duration: <aDur> frequency: <aFreq> velocity: <aVel>.

Be sure to include units on the start time, duration, and frequency values, and specify velocity within a range of 0 to 1.
Frequency can be any value specified in hz or nn; you are not limited to the pitches from the 12-tone equal tempered
scale. All arguments must be real values (as opposed to EventValues).

As a shortcut, you can drop any of the tags, for example, the following are all valid:

self keyDownAt: 0 s.
self keyDownAt: 3 s duration: 10 beats.
self keyDownAt: 0 beats duration: 10 beats frequency: 4 c.
self keyDownAt: 5 beats duration: 0.25 beats frequency: 4 c + 0.5 nn velocity: 0.75.

This field is actually a Smalltalk program, so you can use Smalltalk expressions or control structures to generate
these events algorithmically, for example:

1 to: 12 do: [:i |
 self keyDownAt: (i - 1) beats duration: 0.25 beats frequency: 4 c + i nn velocity: (i / 12.0)].

or:

| r t |
r := Random newForKymaWithSeed: 66508.
t := 0.
100 timesRepeat: [

78

 t := t + r next.
 self keyDownAt: t s duration: 0.25 beats frequency: (r next * 1000 + 60) hz velocity: r next].

You can also create sequences and mixes of "notes" and "rests" or collections of MIDI events, each associated with
its own time tag.

To create a rest object, use:

Rest durationInBeats:

To create a note, use any of the following creation messages:

Note durationInBeats:
Note durationInBeats:frequency:
Note durationInBeats:frequency:velocity:
Note durationInBeats:velocity: frequency:
Note durationInBeats: frequency:durationInBeats:velocity:

To create a sequence of events (where an event is a Note, a Rest, an EventSequence, an EventMix, or a
TimedEventCollection) use:

EventSequence events: <anArrayOfEvents>.

To create a mix of events which all start at the same time (where an event is a Note, a Rest, an EventSequence, an
EventMix, or a TimedEventCollection) use:

EventMix events: <anArrayOfEvents>.

To create a collection of events, each of which has a starting time associated with it (where an event is a Note, a
Rest, an EventSequence, an EventMix, or a TimedEventCollection, and the starting time is specified in beats) use:

TimedEventCollection startingBeats: <anArrayOfBeatsWithNoUnits> events: <anArrayOfEvents>.

To play a Note, Rest, EventSequence or EventMix, use:

<anEvent> playOnVoice:onBeat:bpm:
<anEvent> playOnVoice:
<anEvent> playOnVoice:bpm:
<anEvent> playOnVoice:onBeat:

Transformations that can be applied to Notes, Rests, EventSequences, EventMixes or TimedEventCollections
include:

dim: <aDurationScaleFactor>
trsp: <anIntervalOfTranspositionInHalfSteps>
dbl: <anIntervalOfDoublingInHalfSteps>
retrograde

Transformations that can be applied to EventSequences, EventMixes or TimedEventCollections include:

randomOrder
randomizeTimesUsing: <aRandomStream>
 pickingEventsUsing: <aRandomStream>
 totalBeats: <durInBeats>
 quantizeTo: <shortestDur>
 maxSpacing: <longestDur>

For examples using these creation and manipulation methods, see MIDI scripts in the manual.

Shared
Check this box if you want MIDI note events on this Sound’s MIDI channel and in this Sound’s pitch range to be
shared with other Sounds with the same channel and range.

79

MIDIOutputController

MIDI Out Category
This Sound outputs its Value parameter to the MIDI output on the specified channel as the specified continuous
controller.

Channel
MIDI output channel.

ControllerNumber
This is the MIDI continuous controller number.

Value
This is the value that will be output as the controller data. Paste a Sound in here to turn a Sound into a MIDI
controller output.

80

MIDIOutputEvent

MIDI Out Category
When Gate becomes positive, a note-on message with the current values of Frequency and Amplitude is sent as the
note number and velocity on the given MIDI channel. When Gate returns to zero, a note-off message will be sent.

Frequency
There is no help available for this parameter.

Amplitude
There is no help available for this parameter.

Channel
There is no help available for this parameter.

Gate
There is no help available for this parameter.

81

MIDIOutputEventInBytes

MIDI Out Category
This Sounds sends an uninterpreted sequence of bytes to the MIDI output. You can use it to send arbitrary MIDI
events.

Bytes
Enter the MIDI message as a sequence of numbers separated by spaces. If you want to specify them in hex,
precede the number with 16r, for example:

16rFF

In this field, you must enclose expressions within curly braces, for example: {(?velocity * 0.1) rounded}

82

MIDIVoice

MIDI In Category
Defines its Input as a MIDI voice of the specified polyphony that takes its input from the specified MIDI input channel
within the given range of pitches either in real time or from a MIDI file. Left and Right are attenuators on the left and
right channels of the audio output of this Sound.

Input
Input (including all of its inputs) is the Sound associated with this MIDI voice. If any of Input’s parameters are Event
Values, they will be mapped to Event Sources by the Map parameter (which overrides the currently select global map
but only for Input)

Left
This controls the level of the left input channel. The maximum value is 1 and the minimum is -1. The left channel of
the input is multiplied by the value of this parameter. Some example values for Left are:

1 (no attenuation)
0 (maximum attenuation)
!Fader1 (continuous controller sets level)
!KeyVelocity (MIDI key velocity controls the amplitude)

You can also paste another signal into this field, and the amplitude will vary with the output amplitude of the pasted
signal (something like an LFO controlling the attenuation). (See the manual for a complete description of hot
parameters, EventValues, EventSources, and Map files).

Right
This controls the level of the right input channel. The maximum value is 1 and the minimum is -1. The right channel
of the input is multiplied by the value of Right. Some example values for Right are:

1 (no attenuation)
0 (maximum attenuation)
!Fader1 (continuous controller sets level)
!KeyVelocity (MIDI key velocity controls the amplitude)

You can also paste another signal into this field, and the amplitude will vary with the output amplitude of the pasted
signal (something like an LFO controlling the attenuation). (See the manual for a complete description of hot
parameters, EventValues, EventSources, and Map files).

Channel
The MIDIVoice only pays attention to this incoming MIDI channel (or MIDI events on this channel of the MIDI file).

Set Channel to 0 to use whatever channel is specified in the global map.

Source
Choose between live MIDI input, reading from a MIDI file, or receiving events specified in the Script field.

MidiFile
Read the MIDI event stream from this file if MIDI File is selected as the Source. Use the Browse button to bring up a
standard file list and select the filename from the list.

83

Polyphony
Number of simultaneous MIDI note events possible on this voice. For example, if you specify a Polyphony value of 4,
Kyma makes 4 copies of the Input Sound, so any one of them can be triggered at any time and all four can be
sounding at the same time. The higher the value of Polyphony, the more computation time is required per sample
tick.

LowPitch
The lowest MIDI pitch that this voice responds to. Be sure to include units of pitch or frequency with the value. (For
this particular Sound, if you specify this value as a frequency, Kyma will round to the nearest equal-tempered MIDI
notenumber).

This allows you to map different regions of the MIDI note range to different voices and to define keyboard splits.

HighPitch
The highest MIDI pitch that this voice responds to. Be sure to include units of pitch or frequency with the value. (For
this particular Sound, if you specify this value as a frequency, Kyma will round to the nearest equal-tempered MIDI
notenumber).

This allows you to map different regions of the MIDI note range to different voices and to define keyboard splits.

Script
When Source is set to Script, this program sends MIDI events to the Input (just as if these events were being read
from a MIDI file). See the manual for more information on algorithmically generating and manipulating MIDI events.

To specify a MIDI event, use:

self keyDownAt: <aTime> duration: <aDur> frequency: <aFreq> velocity: <aVel>.

Be sure to include units on the start time, duration, and frequency values, and specify velocity within a range of 0 to 1.
Frequency can be any value specified in hz or nn; you are not limited to the pitches from the 12-tone equal tempered
scale. All arguments must be real values (as opposed to EventValues).

As a shortcut, you can drop any of the tags, for example, the following are all valid:

self keyDownAt: 0 s.
self keyDownAt: 3 s duration: 10 beats.
self keyDownAt: 0 beats duration: 10 beats frequency: 4 c.
self keyDownAt: 5 beats duration: 0.25 beats frequency: 4 c + 0.5 nn velocity: 0.75.

This field is actually a Smalltalk program, so you can use Smalltalk expressions or control structures to generate
these events algorithmically, for example:

1 to: 12 do: [:i |
 self keyDownAt: (i - 1) beats duration: 0.25 beats frequency: 4 c + i nn velocity: (i / 12.0)].

or:

| r t |
r := Random newForKymaWithSeed: 66508.
t := 0.
100 timesRepeat: [
 t := t + r next.
 self keyDownAt: t s duration: 0.25 beats frequency: (r next * 1000 + 60) hz velocity: r next].

You can also create sequences and mixes of "notes" and "rests" or collections of MIDI events, each associated with
its own time tag.

To create a rest object, use:

Rest durationInBeats:

To create a note, use any of the following creation messages:

Note durationInBeats:

84

Note durationInBeats:frequency:
Note durationInBeats:frequency:velocity:
Note durationInBeats:velocity: frequency:
Note durationInBeats: frequency:durationInBeats:velocity:

To create a sequence of events (where an event is a Note, a Rest, an EventSequence, an EventMix, or a
TimedEventCollection) use:

EventSequence events: <anArrayOfEvents>.

To create a mix of events which all start at the same time (where an event is a Note, a Rest, an EventSequence, an
EventMix, or a TimedEventCollection) use:

EventMix events: <anArrayOfEvents>.

To create a collection of events, each of which has a starting time associated with it (where an event is a Note, a
Rest, an EventSequence, an EventMix, or a TimedEventCollection, and the starting time is specified in beats) use:

TimedEventCollection startingBeats: <anArrayOfBeatsWithNoUnits> events: <anArrayOfEvents>.

To play a Note, Rest, EventSequence or EventMix, use:

<anEvent> playOnVoice:onBeat:bpm:
<anEvent> playOnVoice:
<anEvent> playOnVoice:bpm:
<anEvent> playOnVoice:onBeat:

Transformations that can be applied to Notes, Rests, EventSequences, EventMixes or TimedEventCollections
include:

dim: <aDurationScaleFactor>
trsp: <anIntervalOfTranspositionInHalfSteps>
dbl: <anIntervalOfDoublingInHalfSteps>
retrograde

Transformations that can be applied to EventSequences, EventMixes or TimedEventCollections include:

randomOrder
randomizeTimesUsing: <aRandomStream>
 pickingEventsUsing: <aRandomStream>
 totalBeats: <durInBeats>
 quantizeTo: <shortestDur>
 maxSpacing: <longestDur>

For examples using these creation and manipulation methods, see MIDI scripts in the manual.

Shared
Check this box if you want MIDI note events on this Sound’s MIDI channel and in this Sound’s pitch range to be
shared with other Sounds with the same channel and range.

85

Mixer

Mixing & Panning Category
Adds all of its Inputs together. Mixes the outputs of all the Sounds in the Inputs field.

Inputs
Inputs are all added together (mixed) so they will be heard simultaneously.

Left
This controls the level of the left input channel. The maximum value is 1 and the minimum is -1. The left channel of
the input is multiplied by the value of this parameter. Some example values for Left are:

1 (no attenuation)
0 (maximum attenuation)
!Fader1 (continuous controller sets level)
!KeyVelocity (MIDI key velocity controls the amplitude)

You can also paste another signal into this field, and the amplitude will vary with the output amplitude of the pasted
signal (something like an LFO controlling the attenuation). (See the manual for a complete description of hot
parameters, EventValues, EventSources, and Map files).

Right
This controls the level of the right input channel. The maximum value is 1 and the minimum is -1. The right channel
of the input is multiplied by the value of Right. Some example values for Right are:

1 (no attenuation)
0 (maximum attenuation)
!Fader1 (continuous controller sets level)
!KeyVelocity (MIDI key velocity controls the amplitude)

You can also paste another signal into this field, and the amplitude will vary with the output amplitude of the pasted
signal (something like an LFO controlling the attenuation). (See the manual for a complete description of hot
parameters, EventValues, EventSources, and Map files).

86

Monotonizer

Frequency & Time Scaling Category
Removes pitch changes from the input and uses the specified Frequency instead.

Input
Any frequency changes in the Input will be flattened out or removed by this module.

Frequency
This is the new frequency of the monotonized input.

MinInputPitch
This is the lowest frequency you expect in the input. It must include units: hz for a frequency or nn for a notenumber.

MaxInputPitch
This is the highest frequency you expect in the input. It must include units: hz for a frequency or nn for a notenumber.

87

MultifileDiskPlayer

Sampling Category
This is similar to DiskPlayer except that you specify an array of disk file names rather than a single disk file name.

The value of Index determines which file will play on the next retrigger. (An index of 0 chooses the first file in the
array, an index of 1 chooses the second, etc.) Only one disk file will play at any one time, but the choice of file can be
made in real time. (To get more than one disk file to play simultaneously, feed this Sound into a MIDIVoice and set
the desired polyphony).

You can use a single Rate for all disk files, or make Rate a function of the Index if you want different files to play at
different rates.

The MultiFileDiskPlayer can be used whenever you need real-time random access to several different disk recordings
through a keyboard or MIDI controller. For example, it can be used to choose from a set of live sound effects and
synchronize them by hand to a film, to create a disk-based sampler with a different sample for every key on the
keyboard, to perform a composition made up of several, long disk recordings, or (if the trigger is linked to the
FrequencyTracker or EnvelopeFollower) as a synchronizable "tape part" that responds to a live performer.

FileNames
List each of the file names that could be triggered, enclosing each of them within single quotes. The Index
corresponds to the placement of the filename in this field. In other words, an index of 0 selects the first filename in
the field, and index of 1 selects the second filename, etc.

RateScale
This is the rate of playback. For example, use 1 to play back at the original rate, 0.5 for half speed, 2 for twice as fast,
etc.

Trigger
When the Trigger becomes nonzero, one event is triggered. You can trigger several events over the course of the
total Duration of this program as long as the value of Trigger returns to zero before the next trigger. Some example
values for Trigger are:

1 (plays once with no retriggering)
0 (the sound is silent, never triggered)
!KeyDown (trigger on MIDI key down)
!cc64 (trigger when controller 64 > 0)

You can also paste another signal into this field, and events will be triggered every time that signal changes from zero
to a positive value. (See the manual for a complete description of hot parameters, Event Values, and the Global map
files).

Gated
NOT IMPLEMENTED YET.

Index
This is an integer that selects which of the disk files should be played when the next trigger is received. An index of 0
selects the first file. If the index is less than 0, it selects the 0th file (the first file in the list). If the index is larger than
the length of the file list, it selects the last file in the list.

88

MultiplyingWaveshaper

Level, Compression, Expansion Category
Multiplies Input by a value read from the Wavetable at an index supplied by the NonlinearInput and attenuates or
amplifies the result by multiplying it by Scale.

Can be used as a computationally inexpensive dynamic range controller if the NonlinearInput is a signal fed through a
peak detector or RMS detector and the Input is that same signal delayed by some amount. In this situation, the
Wavetable describes the attenuation of the output amplitude as a function of input amplitude.

To design a new input-output characteristic function, open the Sample/Wavetable editor and use the
InputOutputCharacteristic template to generate a new transfer function with the desired compression/expansion
parameters.

NonlinearInput
The output of this Sound is used as an index into the Wavetable.

Input
This Sound is multiplied by the value from the Wavetable that is indexed by the NonlinearInput.

Scale
This is a gain control for the output. It can be any positive number.

Wavetable
This is the transfer function that the NonlinearInput indexes into. When used as a dynamic range control, this function
describes a multiplier on the output amplitude as a function of the input amplitude.

89

Multisample

Sampling Category
This provides a quick way to select from a number of samples. The sample files are listed in the Samples field, and
the Index field is used to determine which sample file to play whenever the Gate changes to a positive value.

Frequency
Use 0 hz here if you want the Frequency to equal the pitch of the recorded sample. The frequency can be specified
in units of pitch or frequency. Different frequencies are obtained by changing the size of the increment through the
recorded sample. The following are all ways to specify the A above middle C:

440 hz (in hertz or cycles per second)
4 a (as the 4th octave A)
69 nn (as a MIDI notenumber)
4 c + 9 nn (as 9 half steps above middle C)
1.0 / 0.00227273 s (inverse of a period at 44.1 kHz sample rate)

The following are examples of how to control the frequency using MIDI, the virtual control surface, or a third-party
program:

!Pitch (key number plus pitch bend)
!KeyNumber nn (MIDI notenumber)
4 c + (!Frequency * 9 nn) (continuous controller from 4 c to 4 a)

Gate
Enter a 1 in this field to play the Sound exactly once for the duration you have specified in the Duration field.

If you use an EventValue (for example, !KeyDown) in this field, the Sound can be retriggered as often as you like
within the duration specified in the Duration field.

When Gate becomes positive, the Sound is heard; when Gate becomes zero, the Sound is released. If the sample
file has loop points stored in its header, Kyma will loop the sample for as long as Gate remains positive (so, for
example, as long as the MIDI key is held down).

Samples
Takes a list of samples file names, each within single quotes.

Index
An expression whose value is the index into the list of filenames: 0 selects the first file in the list, 1 the second, and so
on.

AttackTime
Duration of the attack of an envelope applied to the sample.

ReleaseTime
Duration of the release of an envelope applied to the sample.

Scale
Overall level of the sample.

90

Loop
Click here if you want to loop the sample using the loop points specified in the header of the samples file.

91

MultisegmentEnvelope

Envelopes & Control Signals Category
Similar to the ADSR envelope, except that you can specify an arbitrary number of segments and can specify loop
points. See also MultiSlopeFunctionGenerator and GraphicalEnvelope. Use the GraphicalEnvelope except in those
cases where you need hot BreakPoints or Levels.

Typical uses include amplitude envelopes, pitch envelopes, and time index functions.

Durations
Enter the durations of each segment of the envelope. You must include the units of time and enclose the duration
and its units within curly braces, for example

{!Length s} or {2 s}

The number of Durations must be one less than the number of BreakPoints.

BreakPoints
These are the amplitude values at the endpoints of each segment. There should always be one more breakpoint than
there are segment durations.

Every time there is a change in slope or a "break" in the line corresponding to the envelope, you have to specify the
amplitude at that point (including the very last point in the envelope, since it does not necessarily have to end on a
zero). These numbers can be any value from 0 to 1. If you enter a larger value, the amplitude of the envelope will
approach that number at the rate required to reach that number in the given duration, but it will stick at the value of 1
once that has been reached.

In this field, you must enclose expressions within curly braces, for example: {!Val1 * !KeyVelocity}

StartLoop
The number of the first segment included in the loop (where the segments are numbered from 1 to the number of
segments). The first segment of the envelope cannot be used as the start of the loop.

EndLoop
The number of the last segment included in the loop (where the segments are numbered from 1 to the number of
segments).

Level
This is a scale factor (from 0 to 1) for attenuating the overall output level.

Gate
When Gate changes from zero to a nonzero, the envelope will be triggered. Gate must return to zero again before
the envelope can be retriggered. If you have specified beginning and ending segments for a loop, the envelope will
repeat the loop segments for as long as the Gate is nonzero. If the ending loop segment ends on a higher or lower
value than the start of the beginning segment, the entire looped portion will get larger or smaller each time it is
repeated (because each segment has a *slope* associated with it, not the absolute values at each point).

92

MultislopeFunctionGenerator

Envelopes & Control Signals Category
This is similar to the MultiSegmentEnvelope, except that you specify time points and *slopes* between the time points
(rather than time points and the levels at those time points), and you cannot loop the envelope.

GraphicalEnvelope is easier to use than the MultiSlopeFunctionGenerator except in those situations where you need
hot TimePoints and/or Slopes.

The resting value of this envelope is 1. Each time it is triggered, it generates the envelope exactly once.

TimePoints
These are the time points at which the slope of the envelope should change. There should be one more TimePoint
than there are Slopes because the slopes specify the slope of a line *between* adjacent pairs of TimePoints.

You must include the units of time and enclose the time point and its units within curly braces, for example
{!TimePoint1 s} or {2 s}

Slopes
Specify a slope for each pair of adjacent TimePoints (you should end up with one more TimePoint than you have
slopes). A slope of 1 is a 45 degree angle, slopes of less than 1 are shallower, and slopes of greater than 1 are
steeper. Negative slopes go downward at the same angle as the positive slopes go upward.

In this field, you must enclose expressions within curly braces, for example: {!Slope1 * !KeyVelocity}

Level
This is an overall amplitude scale on the entire envelope.

Gate
When this changes from a zero to a number larger than zero, the envelope is generated exactly once. The resting
value of the envelope is the maximum amplitude (1).

Rate
This is the rate at which the envelope is played. Use 1 to play it back normally, 0.5 to make the envelope last twice as
long, 2 to make it play twice as fast, etc.

93

Noise

Xtra Sources Category
Noise generates a stream of random numbers at the sample rate for use as an audio signal or as a source of jitter for
parameter controls. The distribution of the random numbers is determined by the "color" selection: White, Pink or
HotPink. InitialState is the first value in the stream. Different InitialStates result in different streams of random
numbers.

InitialState
Choose a number between -1 and 1 as a seed for the random number generator. If you want two Noise modules to
be uncorrelated with each other, give each one a unique InitialState.

Type
On each sample of White noise, any output value is equally likely. White noise has the same amount of energy in
each frequency band. For example, if you were to measure the energy in the band of frequencies from 0 to 100 hz it
would be the same as the energy in the band of frequencies from 1000 to 1100 hz. If you look at the spectrum of
White noise using Info>SpectrumAnalyzer, you can see that the spectrum appears flat or uniform across all
frequencies, because it is equal energy for all frequencies.

Pink noise has equal energy in equal pitch ranges. For example the octave from 2 a to 3 a would have the same
energy in it as the octave from 4 c to 5 c. If you look at the spectrum of Pink noise in the SpectrumAnalyzer, it looks
more lowpass than White noise, because, for example, the octave from 1000 to 2000 hz is ten times wider in
frequency space than the octave from 100 to 200 hz, even though they cover equal amounts of pitch space and have
equal energy spread across them.

In HotPink noise, the size of the changes between the current random number and the previous one are most likely to
be small. The larger the change, the less likely it is. The resulting waveform has lots of small changes in it with an
occasional large jump to a new area followed by a lot more small changes around that new value. Frequency
controls the maximum rate at which the largest changes can occur. You will be able to hear a quasi repetion rate in
the random number stream at that Frequency. If you look at the spectrum of the HotPink noise in the
SpectrumAnalyzer, you see the largest amplitude at the frequency specified in the Frequency parameter field and an
exponential drop in amplitude with increasing frequency values.

Frequency
This is active only when HotPink is checked. It controls the rate at which the largest changes can occur and thus
gives a quasi "fundamental frequency" or quasi-periodic repetition rate to the noise.

CenterValue
The random numbers are equally distributed around this center value. For audio signals, this is like a DC offset for
the noise. When you use Noise as a control signal, this is the center value (and there will be "jitter" around this center
value).

Scale
When using Noise as an audio signal, you can use this parameter to control the amplitude or level of the noise.
When using Noise as a parameter controller, this is the amount of "jitter" added to the parameter. The stream of
random numbers is multiplied by the value in Scale.

94

Oscillator

Xtra Sources Category
The Wavetable is treated as a single cycle of a periodic function. There are options for interpolation and modulation.
In general, the more options that are selected and more parameters that are time-varying, the more complicated the
computation of the Oscillator and the fewer of them you can compute in real time.

Frequency
The frequency can be specified in units of pitch or frequency. The following are all ways to specify the A above
middle C:

440 hz (in hertz or cycles per second)
4 a (as the 4th octave A)
69 nn (as a MIDI notenumber)
4 c + 9 nn (as 9 half steps above middle C)
1.0 / 0.00227273 s (inverse of a period at 44.1 kHz sample rate)

The following are examples of how to control the frequency using MIDI, the virtual control surface, or a third-party
program:

!Pitch (key number plus pitch bend)
!KeyNumber nn (MIDI notenumber)
4 c + (!Frequency * 9 nn) (continuous controller from 4 c to 4 a)

Wavetable
Select a wavetable for the oscillator. The Oscillator expects wavetables with 4096 entries.

Modulation
Select whether or not there should be frequency modulation.

Modulator
If Modulation has been set to frequency, then this Sound is the Modulator (otherwise it is ignored). Usually the
Modulator is another Oscillator, but it can be any Sound.

MaxMI
This is the value of the modulation index when the Modulator is at its full amplitude.

Interpolation
Choose linear if you would like to interpolate between the values read from the wavetable.

Envelope
This is an attenuator on the output of the Oscillator. Enter 1 (or 0 dB) for the full amplitude. For a time-varying
amplitude, paste in a Sound (such as AR, ADSR, or FunctionGenerator) or an Event Value (such as !Volume) in this
field.

PitchBend
This is a deviation from the specified Frequency computed as:

95

actualFreq := Frequency + (Frequency * pitchBend).

The maximum pitchBend value is 2 and the minimum value is 0.

Reset
When reset is nonzero, it resets the phase to zero. In other words, it sets the wavetable index to its initial position.

96

OscillatorBank

Aggregate Synthesis Category
Generates the sum of several oscillators on the specified waveform, each with its own frequency and amplitude
envelope.

NbrOscillators
This is the number of oscillators that will be added together. Each oscillator is associated with a partial from the
time-varying spectrum given in the Spectrum field.

BankSize
This is the number of oscillators that will be synthesized at a time. This is important since the signal processor has a
maximum number of oscillators it can add at a single time (typically 50-56).

For instance, if NbrOscillators is 100 and BankSize is 50, this Sound will add up two groups of 50 oscillators.

Wavetable
This is the waveform used by all the oscillators.

Spectrum
The Spectrum controls the amplitude and frequency envelopes for each oscillator. This should come from one of the
Sounds in the Spectral Sources or Spectral Modifiers categories of the System Prototypes.

97

OscilloscopeDisplay

Tracking Live Input Category
Displays the Input as an oscilloscope trace on the Virtual control surface. Use the buttons along the bottom of the
display to zoom in or out in the time or amplitude dimensions. The value at the cursor point (where the red cross
hairs meet) is displayed in the upper left. Clicking on the display freezes it so you can hold down the mouse over
specific points to read their exact values.

An Oscilloscope can be placed anywhere along the signal flow path; it does not necessarily have to be the final
Sound in a signal flow path (it could, for example, be displaying the Input to the Sound that is actually being heard). If
a Sound has more than one Oscilloscope within it, all the traces will be displayed side by side in the Virtual control
surface.

You can also view the oscilloscope trace of any Sound by selecting the Sound and then choosing Oscilloscope from
the Info menu. (But the menu method only allows you to view one Sound at a time on the Oscilloscope and does not
allow you to adjust the trigger frequency for a stable display).

Input
The amplitude of this Sound is continuously displayed on the Virtual control surface, as if by an oscilloscope.

Trigger
In order to see a picture of the waveform that does not drift across the screen, use a PulseTrain here, and set the
repetition period of the pulses to equal the inverse of the Input’s frequency. That way, the Oscilloscope is triggered
once every Input period, and you will see a single period of the Input in the display window.

98

Output4

Spatializing Category
This Sound routes the four input Sounds to the four output channels of the signal processor.

This Sound only works properly as the rightmost Sound in the signal flow diagram.

Out1
This Sound is routed to output channel 1 of the signal processor.

Out2
This Sound is routed to output channel 2 of the signal processor.

Out3
This Sound is routed to output channel 3 of the signal processor.

Out4
This Sound is routed to output channel 4 of the signal processor.

99

Output8

Spatializing Category
This Sound routes the eight input Sounds to the eight output channels of the signal processor.

This Sound only works properly as the rightmost Sound in the signal flow diagram.

Out1
This Sound is routed to output channel 1 of the signal processor.

Out2
This Sound is routed to output channel 2 of the signal processor.

Out3
This Sound is routed to output channel 3 of the signal processor.

Out4
This Sound is routed to output channel 4 of the signal processor.

Out5
This Sound is routed to output channel 5 of the signal processor.

Out6
This Sound is routed to output channel 6 of the signal processor.

Out7
This Sound is routed to output channel 7 of the signal processor.

Out8
This Sound is routed to output channel 8 of the signal processor.

100

OverlappingMixer

Mixing & Panning Category
Overlaps the start times of its Inputs by the specified OverlapTime.

Inputs
These Sounds will be played one after another, overlapping with each other by the amount of time specified in
OverlapTime. The ordering is determined by their position in the Inputs field: left to right and top to bottom.

OverlapTime
This is the amount of time that each Input overlaps with the previous Input. Be sure to include the units of time.

Left
This controls the level of the left input channel. The maximum value is 1 and the minimum is -1. The left channel of
the input is multiplied by the value of this parameter. Some example values for Left are:

1 (no attenuation)
0 (maximum attenuation)
!Fader1 (continuous controller sets level)
!KeyVelocity (MIDI key velocity controls the amplitude)

You can also paste another signal into this field, and the amplitude will vary with the output amplitude of the pasted
signal (something like an LFO controlling the attenuation). (See the manual for a complete description of hot
parameters, EventValues, EventSources, and Map files).

Right
This controls the level of the right input channel. The maximum value is 1 and the minimum is -1. The right channel
of the input is multiplied by the value of Right. Some example values for Right are:

1 (no attenuation)
0 (maximum attenuation)
!Fader1 (continuous controller sets level)
!KeyVelocity (MIDI key velocity controls the amplitude)

You can also paste another signal into this field, and the amplitude will vary with the output amplitude of the pasted
signal (something like an LFO controlling the attenuation). (See the manual for a complete description of hot
parameters, EventValues, EventSources, and Map files).

101

Pan

Mixing & Panning Category
Places the Input between the left and right speakers and optionally attenuates the overall output.

Input
This is the signal being attenuated and positioned between the speakers.

Pan
A Pan value of 0 places the sound entirely in the left speaker, and a Pan value of 1 places it entirely in the right.
Values inbetween those extremes make the Input source appear as if it were placed somewhere inbetween the two
speakers.

Scale
Attenuates the Input.

Type
When Power is selected, the Input is about as loud for Pan = 0.5 as it is for Pan = 0 and Pan = 1. When Linear is
selected, the Input is softer at the midpoint than it is at the two extremes.

102

ParameterTransformer

Scripts Category
Parameters of the Input can be altered or set by statements made in the Transformation field (for full details, see the
corresponding tutorial and chapter in the manual). All transformations take place symbolically (in other words, these
are not signal processing transformations but transformations to the parameters fields *before* the Input is compiled
and loaded into the signal processor--before it has started generating sound).

Input
The parameters of this Sound (and, in turn, any inputs *it* might have) can be set or modified by statements in the
Transformation field.

Transformation
Here are two examples of simple modifications. For examples of more elaborate transformations, see the manual.

To set the all parameters named "frequency" to 400 hz, type:

snd frequency: 400 hz.

To double all frequencies, type:

snd frequency isNil ifFalse: [snd frequency: snd frequency * 2].

103

PeakDetector

Tracking Live Input Category
Outputs an amplitude envelope for its Input by tracking increases in the Input’s absolute value. Responds to
increases in the Input amplitude within the specified AttackTime and responds to decreases in Input amplitude within
the specified ReleaseTime. Scale is an attenuator on the Input amplitude.

Input
This is the Sound whose amplitude is being tracked.

AttackTime
This is the shortest attack time that will be tracked by the PeakDetector. You are specifying that any faster increases
in amplitude should be smoothed over.

ReleaseTime
This is the shortest decay time that will be tracked by the PeakDetector. You are specifying that any faster decreases
in amplitude should be smoothed over.

Scale
This is an attenuator on the input.

104

PhaseShiftBy90

Math Category
This is a combination of two filters tuned to do a 90 degree phase shift between the left and right channels at the
specified Frequency (by shifting one channel backwards 45 degrees and the other channel forward 45 degrees).

Expand the prototype SingleSideBandRM for an example of how to use this Sound as the Envelope of a
QuadratureOscillator to do single side band ring modulation on Input.

NOTE: These filters are very sensitive to Input amplitude. Try attenuating the Input amplitude by 0.05 and gradually
adjusting it upwards until you hear distortion and then backing it off a little. (It helps to also look at the output of the
PhaseShiftBy90 on the Info Oscilloscope as you adjust the Input amplitude).

Frequency
This is the only frequency at which the 90 degree phase shift occurs. Frequency can be specified in units of pitch or
frequency. The following are all ways to specify the A above middle C:

440 hz (in hertz or cycles per second)
4 a (as the 4th octave A)
69 nn (as a MIDI notenumber)
4 c + 9 nn (as 9 half steps above middle C)
1.0 / 0.00227273 s (inverse of a period at 44.1 kHz sample rate)

The following are examples of how to control the frequency using MIDI, the virtual control surface, or a third-party
program:

!Pitch (key number plus pitch bend)
!KeyNumber nn (MIDI notenumber)
4 c + (!Frequency * 9 nn) (continuous controller from 4 c to 4 a)

Input
This is the Sound whose left and right channels will shifted 90 degrees out of phase from each other (but only at the
specified Frequency).

105

PresenceFilter

Filters Category
Acts as a band pass or band reject (notch) filter. Specify a center frequency, a bandwidth, and indicate the boost or
cut amount in units of dB (negative values are cuts, positive values boosts).

Input
This is the Sound to be filtered.

CenterFreq
The center of the boost or cut region of the spectrum.

Bandwidth
The width of the boost or cut region of the spectrum.

BoostOrCut
Indicate the amount of boost or cut in units of dB. Negative values indicate a cut, positive values a boost.

Scale
Attenuator on the input.

106

Product

Math Category
Outputs the product of its Inputs. If there are two, audio frequency inputs, this does ring modulation. If one of the
Inputs changes at sub-audio frequencies and the other is at audio frequencies, the effect will be like applying an
amplitude envelope to the Input that is at audio frequencies.

Inputs
The output of the Product is the product of all the Sounds in this field.

107

PulseGenerator

Xtra Sources Category
Generates a bandlimited square wave of the specified DutyCycle. The square wave always has a zero DC offset
regardless of the pulse width setting; this means that the minimum and maximum of the waveform will change as the
pulse width is changed.

Frequency
The frequency can be specified in units of pitch or frequency. The following are all ways to specify the A above
middle C:

440 hz (in hertz or cycles per second)
4 a (as the 4th octave A)
69 nn (as a MIDI notenumber)
4 c + 9 nn (as 9 half steps above middle C)
1.0 / 0.00227273 s (inverse of a period at 44.1 kHz sample rate)

The following are examples of how to control the frequency using MIDI, the virtual control surface, or a third-party
program:

!Pitch (key number plus pitch bend)
!KeyNumber nn (MIDI notenumber)
4 c + (!Frequency * 9 nn) (continuous controller from 4 c to 4 a)

Modulation
Select whether or not there should be frequency modulation.

Modulator
If Modulation has been set to frequency, then this Sound is the Modulator (otherwise it is ignored).

MaxMI
When Modulation is set to frequency, this is the value of the modulation index when the Modulator is at its full
amplitude.

Interpolation
Choose linear if you would like to interpolate between the values read from the wavetable.

Envelope
This is an attenuator on the output. Enter 1 (or 0 dB) for the full amplitude. For a time-varying amplitude, paste in a
Sound (such as AR, ADSR, or FunctionGenerator) or an Event Value (such as !Volume) in this field.

DutyCycle
The proportion of each period that the waveform is in the "up" portion of its cycle. (If you add up all the sample points
in a cycle, the sum is zero, no matter what the duty cycle; when the duty cycle is 0.5 the waveform is above zero half
the time and below zero for the other half cycle.).

Reset
When reset is nonzero, it resets the phase to zero. In other words, it sets the wavetable index to its initial position.

108

PulseTrain

Xtra Sources Category
If VariableDutyCycle is unchecked, then PulseTrain’s value is 1 for the first sample of each period and zero for the
remainder of each period. If VariableDutyCycle is checked, then DutyCycle controls how much of each period’s is
spent outputting 1 and how much is spent outputting 0.

Period
The amount of time for each period.

If you want a period corresponding to a certain frequency, for example 440 hz, use:

440 hz inverse

VariableDutyCycle
Check here to control the percentage of the period that the output should be one. If unchecked, the output will be one
for eactly one sample per period.

DutyCycle
Enter a value between 0 and 1, where 0 means that the output is never 1, 0.5 means that it is 1 for half of each
period, and 1 means that it is 1 for all of each period.

Gate
When Gate positive, the PulseTrain will output pulses; when zero or negative, the PulseTrain will output zero.

The first pulse will be output when the Gate becomes positive, providing a way to trigger the PulseTrain.

109

QuadOscillator

Xtra Sources Category
Multiplies the left channel of Envelope by a sine wave oscillator and the right channel of Envelope by a cosine
oscillator. The output is the sum of the ring-modulated left and right channels. If the Envelope has the same signal
but 90 degrees out of phase in the left and right channels, the lower sideband will be cancelled out, leaving only the
upper sideband (the sum of the frequencies of the Envelope and the QuadratureOscillator).

Expand the SingleSideBandRM prototype for an example of how to use this as a nonharmonic frequency shifter.

Frequency
This is the frequency of the sine and cosine oscillators. The frequency can be specified in units of pitch or frequency.
The following are all ways to specify the A above middle C:

440 hz (in hertz or cycles per second)
4 a (as the 4th octave A)
69 nn (as a MIDI notenumber)
4 c + 9 nn (as 9 half steps above middle C)
1.0 / 0.00227273 s (inverse of a period at 44.1 kHz sample rate)

The following are examples of how to control the frequency using MIDI, the virtual control surface, or a third-party
program:

!Pitch (key number plus pitch bend)
!KeyNumber nn (MIDI notenumber)
4 c + (!Frequency * 9 nn) (continuous controller from 4 c to 4 a)

Envelope
The left channel of Envelope will be multiplied by a sine and the right channel by a cosine. If this Sound has gone
through a PhaseShiftBy90 (forcing its left and right channels to be 90 degrees out of phase with each other at a
specified frequency), then putting it through the QuadratureOscillator will perform single side band ring modulation. In
this configuration, only the upper sideband is heard. To get the lower sideband alone, use a negative frequency for
the QuadratureOscillator (or else swap the left and right channels of Envelope using a ChannelCrosser).

110

REResonator

Filters Category
This is a time-varying filter whose coefficients have been derived by analyzing a digital recording (a "sample") using
the RE Analysis Tool. RE (resonator/exciter) analysis assumes that the sound was produced by an excitation signal
feeding into a resonator. This Sound is the resonator and its input is the excitation.

The most striking results occur when the analyzed signal is from a source whose resonances change dramatically
over time (e.g. human speech, singing, instruments like the didgeridoo, mouth harp, or tabla). For analyses of
instruments or other sound sources that do not change shape very much over time, the REResonator will sound like a
fixed, unchanging filter.

Input
This is the new excitation that you are substituting for the original excitation. Be sure to use extreme attenuation of
your input.

Broadband signals such as noise or pulse trains work best as inputs, because they cover more of the spectrum and
will be able to excite all the resonances of the filter.

Wavetable
This is a table of time-varying filter coefficents produced by the RE analysis. Use the RE Analysis Tool to create your
own sets of filter coefficients.

TimeIndex
This determines where to read from the sequence of filter coefficients. A value of -1 reads the beginning set of
coefficients, and a value of 1 reads the last set of coefficients. A FunctionGenerator whose wavetable is a FullRamp
will go through the coefficients in time order. To go through the coefficients at the original rate, set the duration of the
FunctionGenerator to be the same as the duration of the original, analyzed sample. Use longer or shorter durations
to stretch or compress time.

111

ReverbSection

Reverb, Delay, Feedback Category
Same as DelayWithFeedback except that the characteristics are specified in terms of DecayTime, the time it takes for
the delayed and fed-back input to die away 60 dB below its initial level.

You can use combinations of these Sounds and others to build your own reverberation algorithms.

Type
Choose between comb and allpass filters. Both comb and allpass are delays with feedback. Allpass also adds some
of the direct signal to the output in order to make the long term frequency response flat.

Input
This signal is delayed and added to itself.

Scale
An attenuation factor on the Input (where 1 is full amplitude and 0 is completely attenuated so there is no more Input).

DecayTime
This is the time it takes for the signal to die away to 60 dB below its original level.

Delay
The maximum delay time. The proportion of this time that is actually used is determined by multiplying this value by
DelayScale. Kyma needs to know the maximum possible delay in order to allocate some memory for this Sound to
use as a delay line, but the actual delay can vary over the course of the Sound from 0 s up to the value of DelayTime.

DelayScale
The proportion of DelayTime that is actually used as the delay, where 0 is no delay, and 1 is equal to the value in the
DelayTime field.

Wavetable
In almost all situations, this should be set to Private, so Kyma can allocate some unused wavetable memory to be
used as a delay time for this program. (The only time you would want to name this wavetable is if you would like
multiple delays or resonators to share a single delay line. In that case, you would type a name for the wavetable and
make sure that the other delays use the same name for their wavetables.)

Prezero
Check this box to start with an empty delay line when this program starts. If Prezero is not checked, the delay line
may have garbage in it from previous programs. This can have interesting, if unpredictable, effects.

Interpolation
When Linear is selected, changes to DelayScale will be interpolated, causing smoother changes to the delay.

When None is selected, changes to DelayScale are not interpolated, resulting in zipper noise.

For fixed delays, it is better to select None, since that uses less DSP resources.

112

SmoothDelayChanges
Checking this box causes the delay time to change slowly to the desired delay. Unchecking this box causes the delay
time to change immediately to the desired delay.

On Capybara-66 and earlier models, this setting has no effect.

113

RMSSquared

Tracking Live Input Category
This can be used to get an estimate of the amplitude envelope of the Input. The output is

input^2 * timeConst + prev * (1 - timeConst)

This is the root mean square of the input without the final square root at the end.

Input
This is the Sound whose amplitude is tracked.

TimeConstant
This controls the response time. Longer timeConstants result in smoother outputs at a cost of losing some of the
detail in the attacks. Short timeConstants result in outputs that respond more immediately to attack transients but that
may not be as smooth for the steady state portions. For a constant input at maximum amplitude, this is the time
required for the output to reach 60% of the full output amplitude. (Note that the output may never reach the maximum
possible amplitude since it is the average of the squares of the amplitudes).

Scale
Attenuates the input amplitude.

114

RunningMax

Math Category
Output is the maximum of all Input amplitudes seen so far, from the start of the Sound until the current time. To reset
the maximum to zero and restart on calculating the running max, set Reset to a nonzero value. By the end of the
Sound, if there have been no resets, the value is the maximum of all the Input’s sample points.

Input
This is the Sound whose maximum amplitude over its entire duration is being computed.

Reset
When this Sound becomes nonzero, it resets the running maximum.

115

RunningMin

Math Category
The output of this Sound is the minimum amplitude of its Input as seen so far. Whenever Reset is nonzero, the
current minimum is thrown away, and the process starts over again. If Reset is always zero, the final value of this
Sound is the minimum of all the output values of its Input.

Input
This is the Sound whose minimum amplitude is being computed.

Reset
Whenever this Sound is nonzero, the min is reset to the maximumAmplitude and the process of keeping track of the
minimum seen so far begins again.

116

Sample

Sampling Category
Plays the specified sample from the wavetable memory of the signal processor. If there is a loop stored in the header
of the sample file or if you have SetLoop checked, the sample will play once up through the LoopEnd; then it will loop
back to LoopStart and continue looping for as long as Gate has a positive value; when Gate returns to zero, the
sample will play on through LoopEnd to the end of the sample file.

If the frequency is negative, the sample will be played backwards (except on Capybara-66).

Frequency
Use default here if you want the Frequency to equal the pitch of the recorded sample. The frequency can be
specified in units of pitch or frequency. Different frequencies are obtained by changing the size of the increment
through the recorded sample. If the frequency is negative, the sample will be played backwards (except on
Capybara-66). The following are all ways to specify the A above middle C:

440 hz (in hertz or cycles per second)
4 a (as the 4th octave A)
69 nn (as a MIDI notenumber)
4 c + 9 nn (as 9 half steps above middle C)
1.0 / 0.00227273 s (inverse of a period at 44.1 kHz sample rate)

The following are examples of how to control the frequency using MIDI, the virtual control surface, or a third-party
program:

!Pitch (key number plus pitch bend)
!KeyNumber nn (MIDI notenumber)
4 c + (!Frequency * 9 nn) (continuous controller from 4 c to 4 a)

Gate
Enter a 1 in this field to play the Sound exactly once for the duration you have specified in the Duration field.

If you use an EventValue (for example, !KeyDown) in this field, the Sound can be retriggered as often as you like
within the duration specified in the Duration field.

When Gate becomes positive, the Sound is heard; when Gate becomes zero, the Sound is released and will finish
playing through the sample and then stop.

If the sample file has loop points stored in its header, Kyma will loop the sample for as long as Gate remains positive
(so, for example, as long as the MIDI key is held down).

Sample
Choose a sample from among those stored in the Wavetables folder or directory. When you compile/load/start, Kyma
will read the sample from the hard disk of the host computer and load it into the wavetable memory (the sample RAM)
of the signal processor. This Sound then reads the sample from the memory of the signal processor, not directly off
the disk.

SetLoop
Check this box if you would like to set the loop points using the LoopStart and LoopEnd parameter fields.

LoopStart
When SetLoop is checked, this is the start point of the loop (otherwise it is ignored). Enter a value in the range from 0

117

to 1, where 0 is the beginning of the sample and 1 is the end of the sample. In other words, this is the proportion of
the total sample duration when the start point should occur. (To compute the exact time within the sample where the
start point occurs, multiply LoopStart’s value by the total duration of the sample. For example, if your sample is 5
seconds long and LoopStart is set to 0.2, then the beginning of the loop is 1 second into the sample.)

LoopEnd
When SetLoop is checked, this is the end point of the loop (otherwise it is ignored). Enter a value in the range from 0
to 1, where 0 is the beginning of the sample and 1 is the end of the sample. In other words, this is the proportion of
the total sample duration when the end point should occur. (To compute the exact time within the sample where the
end point of the loop occurs, multiply LoopEnd’s value by the total duration of the sample. For example, if your
sample is 5 seconds long and LoopEnd is set to 0.4, then the end of the loop occurs at 2 seconds into the sample.)

LoopFade
When checked, this puts a quick fade in at the beginning of a loop and a quick fade out at the end to help minimize
any clicks due to discontinuities in the waveform between the beginning and end of the looped section.

Start
This is the start point of playback within the sample. Enter a value in the range from 0 to 1, where 0 is the beginning
of the sample and 1 is the end of the sample. In other words, this is the proportion of the total sample duration when
the start point should occur. (To compute the exact time within the sample where the start point occurs, multiply
Start’s value by the total duration of the sample. For example, if your sample is 5 seconds long and Start is set to 0.2,
then the beginning of the playback is 1 second into the sample.)

End
This is the end point of the sample playback. Enter a value in the range from 0 to 1, where 0 is the beginning of the
sample and 1 is the end of the sample. In other words, this is the proportion of the total sample duration when the
end should occur. (To compute the exact time within the sample where the end occurs, multiply End’s value by the
total duration of the sample. For example, if your sample is 5 seconds long and End is set to 0.4, then the end of the
playback occurs at 2 seconds into the sample.)

FromMemoryWriter
Check FromMemoryWriter when the wavetable does not come from a disk file but is recorded by a MemoryWriter in
real time.

AttackTime
Duration of the attack of an envelope applied to the sample.

ReleaseTime
Duration of the release of an envelope applied to the sample.

Scale
Overall level of the sample.

118

SampleAndHold

Sampling Category
A SampleAndHold holds onto the current value of its Input for the duration specified in HoldTime. While it is holding
onto this value, it ignores any changes in its Input’s value. When HoldTime has expired, a SampleAndHold looks at
its Input’s value again, and holds onto THAT value for HoldTime and so on.

This effectively lowers the sample rate on the Input.

Try pasting this Sound into another Sound’s Frequency field and multiplying it by the desired range of frequencies
and adding an offset frequency to it, for example:

4 c + ([SampleAndHold] * 12 nn)

where [SampleAndHold] is a this Sound copied and pasted into another Sound’s Frequency field.

Input
This is the Sound whose output is periodically sampled by the SampleAndHold.

HoldTime
The amount of time that each sampled value is held before the Input is sampled again. If you think of the
SampleAndHold as downsampling its input, then this is the period of the new, lower sample rate.

OffsetTime
This is the amount of time to initially wait before starting the process of sampling and holding.

119

SampleCloud

Sampling Category
Generates a cloud of short-duration grains, each using GrainEnv as an amplitude envelope on a short segment of
sound taken from the specified Sample at a point in the sample given by the TimeIndex. The density of simultaneous
grains within the cloud is controlled by Density, with the maximum number of simultaneous grains given by
MaxGrains. Amplitude controls an amplitude envelope over the *entire* cloud (each individual grain amplitude is
controlled by GrainEnv). You can control the stereo positioning, time point within the sample, and the duration of each
grain as well as specifying how much (if any) random jitter should be added to each of these parameters (giving the
cloud a more focused or a more dispersed sound, depending on how much randomness is added to each of the
parameters).

Sample
Enter the name of a mono sample file or click the disk icon to choose a file from the file dialog. This is the source
material for each of the short duration grains.

GrainEnv
This is the shape of the amplitude envelope on each grain. The wavetables in the Windows category make the
classic, smooth grain envelopes, and some of the shapes in Impulse Responses also give interesting results.

MaxGrains
This is the maximum number of simultaneous grains. The smaller this number, the less computational power the
SampleCloud requires (but the less dense the texture you can generate). On a Capybara-66 you should be able to
get around 28 simultaneous grains per cloud. For even denser textures, put more than one SampleCloud into a
Mixer, and give each cloud a different Seed value.

Amplitude
This is an overall level applied to the entire cloud. Paste an envelope generator into this field to give an overall
envelope to the cloud.

Density
Small Density values result in a sparse texture; large Density values generate a dense texture. This controls the
average number of new grains starting up at any given point in time.

GrainDur
This is the duration of each individual grain.

GrainDurJitter
Adds some amount of random jitter to the grain durations. When set to 1, the durations vary randomly from 0 to twice
the specified duration. When this is set to 0, all grains will have a duration of GrainDur. In other words, the actual
grain duration for each grain is:

GrainDur + (<rand> * GrainDurJitter * GrainDur)

where <rand> is a random number between -1 and 1.

Pan
This is the stereo position of each new grain where 0 is hard left, 0.5 is in the middle, and 1 is hard right.

120

PanJitter
This is the amount of random deviation added to the pan position. The larger this number, the more diffuse the
apparent location, and the smaller the number, the more localized the sound.

Seed
This should be a number between 0 and 1. The seed provides a starting point for the random number generator, so
each different seed results in a different (but repeatable) sequence of random numbers. When adding several
SampleGrains with the same control parameters together in a Mixer, give each of them a different seed in order to
ensure that each of them has *different* random jitter added to its parameters (otherwise, they will just double each
other).

FromMemoryWriter
Check this box to granulate the live input or to granulate a sample that is being changed by a MemoryWriter as the
granulation is going on. This SampleCloud should be fed into a Mixer along with a MemoryWriter that is recording
something into the sample that you are granulating with the SampleCloud. The SampleCloud should be fed through a
TimeOffset of at least 1 sample, so it is reading *after* the sample is written.

TimeIndex
This is a pointer into the Sample memory. -1 points to the beginning of the sample, 0 points to the middle, and 1
points to the end of the sample. Grains are selected from this point and from random positions in the neighborhood
(whose size is determined TimeIndexJitter) around this point.

To read through the sample in linear, forward time, you can use something like:

!KeyDown fullRamp: 10 s

which will scan the sample from beginning to end over the course of 10 seconds each time it receives a MIDI note
event.

To remove the element of time from the sample, set TimeIndex to a fixed position like 0 (the middle of the sample),
and increase TimeIndexJitter to its maximum value. Then grains will be chosen at random from all different time
points within the sample.

TimeIndexJitter
TimeIndex is a time point in the Sample, and TimeIndexJitter is an amount of random deviation forward or backward
in time from the one point specified TimeIndex. A TimeIndexJitter of zero means that all grains will be chosen from
the single point specified in TimeIndex, whereas a TimeIndexJitter of 1 means that grains may be chosen at random
from any time point in the entire sample.

121

SamplesFromDiskSingleStep

Sampling Category
As long as the Trigger is greater than zero, the SamplesFromDiskSingleStep will read samples from the disk file; if
the Trigger is less than or equal to zero, the last sample read will be output. Gate resets the pointer to the beginning
of the file.

FileName
This is the name of a sample file that you have previously created either in Kyma or in another application.

FilePosition
This is the first sample point to play back.

Trigger
As long as the Trigger is greater than zero, the SamplesFromDiskSingleStep will read samples from the disk file; if
the Trigger is less than or equal to zero, the last sample read will be output. PulseTrain is a good Sound to use as a
source of periodic triggers, and by putting an Event Value in the PulseTrain’s Period field, you can control the rate at
which the triggers occur.

Gate
Each time this value becomes positive, the Sound will start over again from the beginning of the sample. Enter a 1 in
this field to play the Sound exactly once. If you use an EventValue (for example, !KeyDown) in this field, you can
restart the sound multiple times.

122

ScaleAndOffset

Math Category
The output of this Sound is:

(Input * Scale) + Offset

This is can be useful for changing the minimum value and range of a control signal before using it to control another
Sound, as for example, in scaling or offsetting the left and right channel outputs of a SpectrumFromRAM before they
are fed into an OscillatorBank. (However, for those cases when the control signal is pasted directly into a hot
parameter field, it may be more straightforward to just use regular arithmetic to scale or offset the value in the
parameter field itself).

Input
The output of this Sound is multiplied by Scale and then the added to Offset.

LeftScale
Multiplier on the left channel. The range of allowable values is -2 to +2.

LeftOffset
Offset on the left channel. The range of allowable values is -1 to +1.

RightScale
Multiplier on the right channel. The range of allowable values is -2 to +2.

RightOffset
Offset on the right channel.Offset on the left channel. The range of allowable values is -1 to +1.

123

ScaleVocoder

Filters Category
Vocoder whose center frequencies are tuned to a base pitch and a scale.

Input
This is the source material to be filtered by the SideChain-controlled filters. This Sound is heard directly, through the
filters (whereas the SideChain is never heard directly). For example, if you want to make an animal talk, put a sample
of the animal sound here and put a sample of speech (or use a microphone) as the SideChain.

The best Inputs tend to be fairly broad band signals that have energy in each of the frequency bands covered by the
resynthesis filter bank. For example, Noise or an Oscillator on a waveform with lots of harmonics (such as Buzz128)
will work well because they generate energy over the full frequency range.

SideChain
Sometimes referred to as the "modulation", this Sound is never heard directly; it controls the amplitudes of the filters
in the bank.

TimeConstant
This determines how quickly the amplitude envelopes on the filters will respond to changes in the SideChain. For
precise, intelligible results, use values less than 0.1 s. For a more diffuse, reverberated result, use a longer
TimeConstant.

NbrBands
This is the number of band pass filters in the filter bank.

BankSize
This is the number of filters per processor. Type

default

to get the standard number of filters per processor. If you are running out of time, try reducing the default size, for
example

default * 0.75

Tonic
This is the tonic or first pitch in the scale.

Intervals
This is the interval pattern of the scale in half steps. For example, a major scale would be

0 2 4 5 7 9 11
Arithmetic expressions should be enclosed in curly braces, for example
{!SmallInterval1 rounded nn}

The scale can have any number of steps, and the steps are repeated in each octave for as many bands as you have
specified.

SideLevel

124

Controls the level of the SideChain Sound before it is fed into the analysis filters.

InputLevel
Controls the level on the input Sound before it goes through the filters.

InBandwidth
Control on the bandwidth of the filters on the Input Sound.

SideBandwidth
Control on the bandwidth of the filters on the Sidechain Sound.

Tone
A tone control where higher values emphasize higher frequencies, and lower values emphasize lower frequencies.
Rolloff determines the width of the tone control filter.

Rolloff
This controls the steepness of the edges of a weak tone control filter on the Input. Use 1 if the edges should rolloff
precipitously at LoCutoff and HiCutoff. Use smaller numbers if you would like the attenuation to start sooner and take
longer.

Gain
You can boost or cut the overall output level here.

125

Script

Scripts Category
A Script is a handy way to construct Sounds algorithmically (rather than piecing them together graphically in the
Sound editor). The constructed Sound will be a Mixer of several Inputs, each with its own start time (or TimeOffset).

A Script is like any other Sound in that it can be used as an Input to a more complex Sound; for example, a Script can
contain variables and can even be used as an Input to another Script.

Inputs
Use the script to schedule each of these Sounds at a specific time and to supply values for any variables in the
Sound’s parameters. (Script actually uses each of these Input Sounds as a template or model for creating new
instances of the Sounds with specific values at specific times. Multiple instances of a Sound can be scheduled from
the script by specifying simultaneous start times or overlapping durations.)

Script
The script supplies start times for the Sounds in the Inputs field and, optionally, sets the values of any variable
parameters. To specify an event in the script, type:

<name of an Input> start: <aTime in s or samp> {<variableParameterName>: <aValue>}.

In other words, type the name of an Input Sound, a space, the word "start" followed by a colon and then a space, a
start time followed by units of samp or s or beats, and then any number of <parameter: value> pairs followed by a
period. The <parameter: value> pairs consist of the name of a variable in the Input, a colon, a space, and then a
value for that variable. To specify the length of a beat, assign the desired metronome setting to the variable MM. If an
Input takes another Sound as an argument, you can supply it from the script as a parenthesized event with no start
time.

Any Smalltalk expression can appear in the script, including temporary variable declarations and control structures
like loops.

See the manual for more details and examples.

Left
This controls the level of the left output channel. The maximum value is 1 and the minimum is -1. The left channel of
the output is multiplied by the value of this parameter. Some example values for Left are:

1 (no attenuation)
0 (maximum attenuation)
!Fader1 (continuous controller sets level)
!KeyVelocity (MIDI key velocity controls the amplitude)

You can also paste another signal into this field, and the amplitude will vary with the output amplitude of the pasted
signal (something like an LFO controlling the attenuation). (See the manual for a complete description of hot
parameters, EventValues, EventSources, and Map files).

Right
This controls the level of the right output channel. The maximum value is 1 and the minimum is -1. The right channel
of the output is multiplied by the value of Right. Some example values for Right are:

1 (no attenuation)
0 (maximum attenuation)

126

!Fader1 (continuous controller sets level)
!KeyVelocity (MIDI key velocity controls the amplitude)

You can also paste another signal into this field, and the amplitude will vary with the output amplitude of the pasted
signal (something like an LFO controlling the attenuation). (See the manual for a complete description of hot
parameters, EventValues, EventSources, and Map files).

127

SetDuration

Time & Duration Category
Sets the duration and start time of its input. (It is the equivalent of dragging the input Sound into a timeline and
changing its duration and start time graphically). Without the SetDuration the Input Sound’s program would continue
running indefinitely; with the SetDuration you can specify that it should stop after a given amount of time.

Input
Duration sets the duration of this Sound and StartTime sets its start time relative to the SetDuration.

StartTime
Start time of the Sound in Input relative to the start time of the SetDuration. Must be a value greater than zero.
Examples of startTimes:

0
1 samp
440 hz

Duration
Duration of the Input. Can be specified in seconds, samples, or in terms of frequency (where the duration will be the
duration of one period at that frequency). Must be a value greater than zero. Examples of durations:

1 s
44100 samp

440 hz

128

SetRange

Math Category
This maps the output range of the Input to the specified range of newMin to newMax.

Input
The output of this Sound is scaled to a range of newMin to newMax. Set oldMin and oldMax to the current output
range of this Sound (typically -1.0 to 1.0 or 0 to 1.0). For example, a FunctionGenerator that steps through the
wavetable #ramp has a range of 0 to 1.0, but if the wavetable is #sine the range is -1.0 to 1.0.

OldMin
The current minimum value of the Input. This is typically -1.0 (for full range wavetables) or 0 (for wavetables like
#ramp that never go negative).

OldMax
The current maximum output of the Input. Typically, this is the full amplitude: 1.0.

NewMin
This is the new minimum output.

NewMax
This is the new maximum output.

129

SimplePitchShifter

Frequency & Time Scaling Category
Shift the pitch of the input up or down by an interval (given in half steps).

Input
The frequency of this input will be shifted up or down by the given interval. Works best on monophonic inputs with a
strong formant structure.

Interval
A positive or negative number of halfsteps by which to shift the input’s pitch up or down. This does not have to be an
integer but can include fractions of halfsteps.

MinInputPitch
This is the lowest frequency you expect in the input. It must include units: hz for a frequency or nn for a notenumber.

MaxInputPitch
This is the highest frequency you expect in the input. It must include units: hz for a frequency or nn for a notenumber.

130

SingleSideBandRM

Frequency & Time Scaling Category
Does nonharmonic frequency scaling of the input. Takes the input and does a 90 degree phase shift between the left
and right channels at the frequency specified in the Frequency parameter field. Multiplies this by a
QuadratureOscillator with sine in the left and cosine in the right. The resulting ring modulation gives you sum and
difference frequencies but, because they are 90 degrees out of phase, the difference frequency is mostly cancelled
out, leaving you with single side band modulation. Expand to see how this is put together.

Input
This signal will be ring modulated to scale its frequency by the specified FreqScale.

Frequency
This is the frequency at which there will be perfect cancellation of the difference frequency side-band. The further the
input is from this frequency, the less cancellation there will be and the more the result will be like regular ring
modulation.

FreqScale
Any part of the input that was at Frequency will be scaled by this ratio.

131

SOSOscillators

Xtra Sources Category
Generates the sum of several oscillators on the specified waveform, each with its own frequency and amplitude
envelope.

Spectrum
This should be either a SpectralShape or an SOSAnalysis. The Spectrum controls the amplitude and frequency
envelopes for each oscillator.

CascadeInput
The left channel of this input is mixed with the outputs of the oscillators.

NbrOscillators
This is the number of oscillators that will be added together. Each oscillator is associated with a partial from the Input
analysis, starting from the partial number associated with the firstOscillator.

FirstOscillator
This is the partial number to be resynthesized by the first oscillator in the bank. For example, set this to 1 if you want
the lowest frequency oscillator to correspond to the fundamental. If you want to skip the fundamental, set this to 2.

If you are mixing two or more OscillatorBanks, they can cover different portions of the spectrum. For instance, one
OscillatorBank might have 1 as its FirstPartial and 10 as the number of partials; the next OscillatorBank might have
11 as its FirstPartial and 10 as its number of partials; and a third might have 21 as its FirstPartial and 10 as its
number of partials.

Wavetable
This is the waveform used by all the oscillators.

132

SoundCollectionVariable

Variables Category
This represents a collection of Sounds. It can appear in any parameter field that takes more than one Sound. It is
typically used when creating new Sound classes that have an arbitrary number of inputs.

133

SoundToGlobalController

Tracking Live Input Category
Takes a number, a pasted Sound, or an Event expression as its input and generates a corresponding EventValue
(either a single event or a continuous controller stream) which, to all other Kyma Sounds, looks the same as
EventValues coming from the Virtual Control Surface or from an external MIDI source.

The GeneratedEvent’s value is displayed in the VCS, but you cannot control it there.

GeneratedEvent
Enter an EventValue name (including the exclamation point prefix) for the generated EventValue.

Value
Paste a Sound or enter a number or EventValue here. The constant or time-varying value here will be translated into
an EventValue named in GeneratedEvent.

The value specified here will have its range modified by the settings in the VCS. This means that if the range of
values specified here is (0, 1), the GeneratedEvent will take on values between the minimum and maximum (with
grid) specified in the VCS. Alternatively, if you leave the VCS settings at their default of minimum 0, maximum 1, and
grid 0, then the GeneratedEvent will have exactly the same value as the value specified here.

134

SpectralShape

Spectral Sources Category
A SpectralShape sets the frequencies and amplitudes of oscillators in an OscillatorBank according to the Spacing and
SpectralEnvelope parameters. This kind of Sound makes sense only when used as an Input to an OscillatorBank.
Frequencies are output on the right channel and their corresponding amplitudes are output on the left channel.

Frequency
The frequency can be specified in units of pitch or frequency. The following are all ways to specify the A above
middle C:

440 hz (in hertz or cycles per second)
4 a (as the 4th octave A)
69 nn (as a MIDI notenumber)
4 c + 9 nn (as 9 half steps above middle C)
1.0 / 0.00227273 s (inverse of a period at 44.1 kHz sample rate)

The following are examples of how to control the frequency using MIDI, the virtual control surface, or a third-party
program:

!Pitch (key number plus pitch bend)
!KeyNumber nn (MIDI notenumber)
4 c + (!Frequency * 9 nn) (continuous controller from 4 c to 4 a)

Spacing
This is the spacing between the partials and should be specified in units of frequency. To specify harmonic partials,
set the Spacing to be the same as the Frequency. For example, if you have set Frequency to !KeyNumber nn, then
setting Spacing to !KeyNumber nn will tell the OscillatorBank to generate harmonics of !KeyNumber nn.

NbrPartials
This is the number of (amplitude,frequency) pairs that the SpectralShape will supply to an OscillatorBank. For
example, if there are 20 partials, this Sound will output the amp1 and freq1 on the first sample, amp2 and freq2 on the
second sample, and on through amp20 and freq20 on the 20th sample. Then it will start over again with amp1 and
freq1.

Wavetable
The shape stored in this wavetable is interpreted as the shape of the spectrum, from 0 hz up to half the sampling rate.
An OscillatorBank can use this table to set the amplitude of each of its oscillators according to that oscillator’s
frequency. For example, if the frequency falls in a region with a low amplitude in this table, it will be attenuated in the
OscillatorBank. To see the spectral envelope, open this file using File open with the file type set to Samples file. If
the OscillatorBank waveform is Sine, and you have chosen harmonic spacing, then this shape will be something like a
filter acting on a bandlimited pulse train (equal amplitude, harmonically spaced sine waves).

Scale
Used as an overall amplitude scale applied equally to all of the oscillators.

135

SpectrumAnalyzerDisplay

Tracking Live Input Category
A real-time spectrum analyzer. Displays the spectrum of the Input on the Virtual control surface. Use the buttons
below the display to zoom in or out in the frequency or magnitude dimensions. The value at the cursor point (where
the red cross hairs meet) is displayed in the upper left. Clicking on the display freezes it so you can hold down the
mouse over specific points to read their exact values.

A SpectrumAnalyzer can be placed anywhere along the signal flow path; it does not necessarily have to be the final
Sound in a signal flow path (it could, for example, be displaying the spectrum of the Input to the Sound that is actually
being heard). If a Sound has more than one SpectrumAnalyzer within it, all the spectra will be displayed side by side
in the Virtual control surface.

You can also view the real-time spectrum of any Sound by selecting the Sound and then choosing Spectrum analyzer
from the Info menu. (But the menu method only allows you to view one Sound at a time on the SpectrumAnalyzer and
does not allow you to adjust the windowing function or the length of the FFT, except by changing the Preferences).

Input
The spectrum of this Sound is continuously displayed on the Virtual control surface, as if by a real-time spectrum
analyzer.

Window
Window weighting function applied to the analysis window of the FFT used to compute the spectra.

Length
Length of the FFT. Ideally it should be the same as the number of samples in the period of the lowest frequency or
fundamental frequency.

136

SpectrumFrequencyScale

Spectral Modifiers Category
Takes a spectral source (which must be harmonic) as its input and scales the frequency envelopes without changing
the amplitude envelopes. This allows you to shift the pitch of the resynthesis, while leaving the formants at their
original frequencies. The SpectrumFrequencyScale should be fed to an OscillatorBank in order to resynthesize the
newly scaled spectrum.

Spectrum
Should be a Sound from the spectral sources category of the Prototypes (based on an harmonic analysis).

Scale
All frequencies in the spectrum will be multiplied by this scale factor. For example, use 2 to scale up by one octave, 1
for no change, 0.5 for down by one octave. You can get other intervals by using a ratio of two pitches that have been
converted to hertz. For example, to get a half step up, you could use

4 c sharp hz / 4 c hz
or to shift down by a perfect fifth, you could use
4 c hz / 4 g hz

To control the pitch from the MIDI keyboard, use the ratio of !Pitch to the original pitch of the recording. For example,
if the original recording is a 3rd octave b, you could use

!Pitch hz / 3 b

137

SpectrumFundamental

Spectral Modifiers Category
If you feed a harmonic spectrum into this Sound, the output (on both left and right channels) will be the fundamental
frequency envelope of the spectrum.

You can use this to control the frequency of another Sound by pasting this module into the Frequency parameter of
that Sound and multiplying it by SignalProcessor halfSampleRate. If the input spectrum is not linear, use a
SpectrumLogToLinear to convert it first. Set the NbrPartials to default + 4.

Spectrum
This should be a harmonic Spectrum with NbrPartials set to default + 4. See the Spectral Sources category of the
Prototypes for examples of modules that can be used as inputs to this module.

138

SpectrumInRAM

Spectral Sources Category
This Sound is used only as the Spectrum input to an OscillatorBank.

It reads an analysis file that contains a series of spectra indexed by TimeIndex. It outputs a spectrum as a sequence
of (amplitude,frequency) pairs on every sample tick for nbrPartials samples. After nbrPartials samples, it starts over
again from the fundamental and outputs the entire spectrum again.

Frequency
Use Default to leave the frequency unchanged from the original analysis. Otherwise, the frequency envelopes will be
altered to scale the base pitch of the analysis to the value listed in this parameter field.

The frequency can be specified in units of pitch or frequency. The following are all ways to specify the A above
middle C:

440 hz (in hertz or cycles per second)
4 a (as the 4th octave A)
69 nn (as a MIDI notenumber)
4 c + 9 nn (as 9 half steps above middle C)
1.0 / 0.00227273 s (inverse of a period at 44.1 kHz sample rate)

The following are examples of how to control the frequency using MIDI, the virtual control surface, or a third-party
program:

!Pitch (key number plus pitch bend)
!KeyNumber nn (MIDI notenumber)
4 c + (!Frequency * 9 nn) (continuous controller from 4 c to 4 a)

Level
This is a control on the overall amplitude of all the partials. Enter 1 to leave all amplitudes as they are; numbers larger
than one result in a gain, and numbers less than one result in attenuation.

TimeIndex
This selects where we are in the series of spectral snapshots. The first snapshot is at -1, the middle snapshot is at 0,
and the last snapshot is at 1. To go through the series in linear time, use a FunctionGenerator whose Duration
equals the duration of the original recording and whose Wavetable is FullRamp (which goes from -1 to 1). Change
the Duration of the FunctionGenerator to go through the spectra at different rates. Change the wavetable to go
through the spectra in a different order.

Analysis
Use a spectrum file from the Wavetables folder or directory. These files came from spectral analyses performed on
digital recordings by the Spectral Analysis Tool or by Lemur.

NbrPartials
This is the number of partials you want to output for the resynthesis. Use Default to output all of the partials in the file.

FirstPartial
This is the first analyzed partial that you want to output--usually it is partial number 1. If you want to skip over some of
the lower partials, enter a higher number here.

139

SpectrumLogToLinear

Spectral Modifiers Category
A spectrum can be in one of two forms: linear frequency or logarithmic frequency. This Sound converts a logarithmic
frequency spectrum input into a linear frequency spectrum output.

Generally, a spectrum that comes from a spectrum file has logarithmic frequencies, and a spectrum generated in real
time has linear frequencies.

Spectrum
This logarithmic frequency spectrum input is converted to linear frequency and then output.

140

SpectrumModifier

Spectral Modifiers Category
A SpectrumModifier takes one of the Sounds from the Spectral Sources category of the Prototype strip as its input
and modifies the spectrum. To resynthesize the modified spectrum, feed the SpectrumModifier into the spectrum
input of an OscillatorBank.

In order to modify the output of a spectral source, the SpectrumModifier selects or rejects tracks of the spectrum
according to some criteria, and then it optionally scales and offsets each frequency and/or amplitude value of the
selected tracks.

Decide whether to select or reject the tracks that meet the criteria.

Then decide whether the rejected tracks should have their amplitudes set to zero or whether they should simply pass
through unaffected by the scale and offset modifications.

Then set the selection (or rejection) criteria, including frequency range, track number range, or amplitude range. The
frequency and amplitude hysteresis values can prevent tracks that are close to the selected range from popping in
and out as they cross the threshold. Probability is the likelihood (ranging from 0 up to 1) that a track will be selected
(or rejected) on each frame.

Finally, you can choose to scale and/or offset either the frequency or amplitude (or both) on each frame of each
selected track.

Spectrum
This is the spectrum that will be modified; it should be one of the classes of Sound found in the Spectral Sources
category (e.g. LiveSpectralAnalysis, SpectrumInRAM). The SpectrumModifier assumes linear (rather than log)
frequencies, so you may see a dialog asking you to insert a SpectrumLogToLinear module inbetween the spectral
source and the SpectrumModifier.

Select
Check this to specify the criteria for *selection*. Otherwise, the tracks that meet the criteria will be *rejected*.
Unchecking this box is like placing a logical NOT after all of the selection criteria.

LoTrack
Enter an integer track number. Only this track and higher-numbered tracks will be selected.

HiTrack
Enter an integer track number. Only this track and lower-numbered tracks will be selected. To be certain of selecting
all tracks, enter a number much larger than the highest possible track number (e.g. 10000).

LoFreq
Enter a pitch or frequency with units. On each frame, a track will be selected if the value of the frequency envelope
on that frame is at this frequency or a higher frequency. Use FreqHysteresis to prevent tracks from popping in and
out on each frame if they are wavering around this frequency.

HiFreq
Enter a pitch or frequency with units. On each frame, a track will be selected if the value of the frequency envelope
on that frame is at this frequency or a lower frequency. Use FreqHysteresis to prevent tracks from popping in and out
on each frame if they are wavering around this frequency.

141

FreqHysteresis
Enter a frequency or pitch with units that is smaller than the value of LoFreq. If a track is currently selected, its
frequency will have to drop this much *lower* than LoFreq in order to be rejected. If a track is currently unselected, it
will have to be this much *higher* than LoFreq in order to become selected. (And similarly, the frequency of a
selected track must be this much *higher* than HiFreq in order to be deselected, and the frequency of a rejected track
would have to be this much lower than HiFreq in order to switch from being rejected to selected).

Adjust this value to keep tracks that are close to LoFreq or HiFreq from switching between on and off on every frame.

FreqScale
Multiply the frequency of each selected track by this number between 0 and 1.

FreqOffset
Add this number (between 0 and 1) to the frequency value of each selected track.

LoAmp
Enter an amplitude value between 0 and 1 (or from -1000 to 0 dB). On each frame, a track will be selected if the
value of the amplitude envelope on that frame is at this amplitude or a higher amplitude. Use AmpHysteresis to
prevent tracks from popping in and out on each frame if they are wavering around this amplitude.

HiAmp
Enter an amplitude value between 0 and 1 (or from -1000 to 0 dB). On each frame, a track will be selected if the
value of the amplitude envelope on that frame is at this amplitude or a lower amplitude. Use AmpHysteresis to
prevent tracks from popping in and out on each frame if they are wavering around this amplitude.

AmpHysteresis
Enter a number between 0 and 1 but smaller than the value of LoAmp. If a track is currently selected, its amplitude
will have to drop this much *lower* than LoAmp in order to be rejected. If a track is currently unselected, it will have to
be this much *higher* than lowAmp in order to become selected. (And similarly, the amplitude of a selected track
must be this much *higher* than HiAmp in order to be deselected, and the amplitude of a rejected track would have to
be this much lower than HiAmp in order to switch from being rejected to selected).

Adjust this value to keep tracks that are close to LoAmp or HiAmp from switching between on and off on every frame.

AmpScale
Multiply the amplitude of each selected track by this number between 0 and 1.

AmpOffset
Add this number (between 0 and 1) to the amplitude value of each selected track.

Probability
Enter a likelihood from 0 to 1. Numbers larger than 1 will be clipped to 1 (the maximum likelihood). On each frame
and for each track, this is the likelihood that the track will be selected on this frame. Use 1 to say that the track will be
selected 100% of the time, use 0.5 to give it a 50-50 chance of being selected, and use 0 to indicate that it will never
be selected. You can make the likelihood a function of the track number. For example,

TrackNumber / 128

would make the higher tracks more likely to be selected on each frame than the lower tracks, and:

(TrackNumber - 1) rem: 2

would make the even-numbered tracks 100% likely, and the odd-numbered tracks 0% likely (because an odd number
minus 1 is an even number, and an even number modulo 2 is zero, while an odd number modulo 2 is 1).

Seed

142

Enter a number from -1 to 1. This is the seed for the random number generator used in conjunction with the value of
Probability to determine whether a track should be selected on a given frame.

HearAll
Check this box to hear all the tracks, both the selected and the rejected. Uncheck it to set the rejected tracks’
amplitudes to zero.

(Only the selected tracks are affected by the FreqScale, FreqOffset, AmpScale, and AmpOffset, so check the HearAll
box to hear all tracks but modify only the selected tracks).

143

SpectrumOnDisk

Spectral Sources Category
This can be used in place of a SpectrumInRAM as the input to an OscillatorBank. The difference is that this reads the
analysis file directly off the disk, rather than first loading the analysis file into RAM. This is helpful for SOS analyses
that are too long to fit into sample RAM.

Unlike the SpectrumInRAM, this Sound can only go through the analysis envelopes in forward-time order. (The
SpectrumInRAM TimeIndex parameter lets you read the analysis at any point in time and in any time order with any
function). In this Sound, you can, however, control the Rate at which you go forward through the analysis file.

Frequency
Use Default to leave the frequency unchanged from the original analysis. Otherwise, the frequency envelopes will be
altered to scale the base pitch of the analysis to the value listed in this parameter field.

The frequency can be specified in units of pitch or frequency. The following are all ways to specify the A above
middle C:

440 hz (in hertz or cycles per second)
4 a (as the 4th octave A)
69 nn (as a MIDI notenumber)
4 c + 9 nn (as 9 half steps above middle C)
1.0 / 0.00227273 s (inverse of a period at 44.1 kHz sample rate)

The following are examples of how to control the frequency using MIDI, the virtual control surface, or a third-party
program:

!Pitch (key number plus pitch bend)
!KeyNumber nn (MIDI notenumber)
4 c + (!Frequency * 9 nn) (continuous controller from 4 c to 4 a)

Level
This is a control on the overall amplitude of all the partials.

Enter 1 to leave all amplitudes as they are; numbers larger than one result in a gain, and numbers less than one
result in attenuation.

RateScale
This controls the rate at which the analysis is read: use 1 to read it at the original rate, numbers greater than 1 to read
through it faster, and numbers less than 1 to read through it more slowly.

FileName
Click the Browse button to be able to select the file name from a list of names in the standard file dialog.

NbrPartials
This is the number of partials you want to output for the resynthesis. Use Default to output all of the partials in the file.

FirstPartial
This is the first analyzed partial that you want to output--usually it is partial number 1. If you want to skip over some of
the lower partials, enter a higher number here.

144

Trigger
When this number becomes positive, the Sound will start over again at the beginning of the analysis file.

145

SpectrumTrackSelector

Spectral Modifiers Category
Extracts a single amplitude envelope and frequency envelope from the Spectrum input. The amplitude envelope will
appear at the left output, and the frequency envelope will appear at the right. To extract the amplitude envelope
ONLY, check the Amp box and uncheck the Freq box. Typically the output of the SpectrumTrackSelector is used to
control a parameter of another Sound.

Spectrum
This should be a spectral source (like a SpectrumInRAM or a LiveSpectralAnalysis).

Track
This is the track number that you want to extract from the Spectrum. If Spectrum is harmonic, the track number is the
same as the harmonic number.

Amp
Check here if you want the amplitude envelope of the track. If Freq is also checked, you will get the amplitude
envelope in the left channel and the frequency envelope in the right channel. If you uncheck Freq, then you will get
the amplitude envelope in both the left and the right channels.

Freq
Check here if you want the frequency envelope of the track. If Amp is also checked, you will get the amplitude
envelope in the left channel and the frequency envelope in the right channel. If you uncheck Amp, then you will get
the frequency envelope in both the left and the right channels.

146

SpectrumVoicedUnvoiced

Spectral Modifiers Category
If you feed a harmonic spectrum into this Sound, the output (on both left and right channels) will be the
Voiced/Unvoiced envelope of the spectrum. When the spectrum is in an unvoiced or transient segment, the output is
zero. When the spectrum is in a voiced or harmonic segment, the output of this Sound is one. Transitions between
voiced and unvoiced are at 0.5 for one frame.

You can use this Sound as an envelope for controlling the parameters of other Sounds.

Spectrum
This should be a harmonic Spectrum. See the Spectral Sources category of the Prototypes for examples of modules
that can be used as inputs to this module.

147

SqrtMagnitude

Math Category
This is the square root of the sum of the left and right channels squared. If the square root of the sum of the squares
is greater than 1.0, this Sound saturates at 1.0. It can be useful in doing spectral analysis where the left channel is
defined to be the real part and the right channel as the imaginary part of a complex number. You could also use this
as a strange kind of measure of the instantaneous "distance" between two signals, one in the left and one in the right.

Input
The output is the square root of the sum of the squares of the left and right channels of this Sound.

148

StereoInOutput4

Spatializing Category
This Sound routes the two stereo input Sounds to the four output channels of the signal processor.

This Sound only works properly as the rightmost Sound in the signal flow diagram.

Out12
This Sound will be routed to channels 1 and 2.

Out34
This Sound will be routed to channels 3 and 4.

149

StereoInOutput8

Spatializing Category
This Sound routes the four stereo input Sounds to the eight output channels of the signal processor.

This Sound only works properly as the rightmost Sound in the signal flow diagram.

Out12
This Sound will be routed to channels 1 and 2.

Out34
This Sound will be routed to channels 3 and 4.

Out56
This Sound will be routed to channels 5 and 6.

Out78
This Sound will be routed to channels 7 and 8.

150

StereoMix2

Mixing & Panning Category
Adds the outputs of the Sounds in the In1 and In2 fields, each with the specified Pan and Scale (attenuation) value.
The overall output can also be panned and attenuated.

Left
This controls the level of the left outpu channel. The maximum value is 1 and the minimum is -1. The left channel of
the mix is multiplied by the value of this parameter. Some example values for Left are:

1 (no attenuation)
0 (maximum attenuation)
!Fader1 (continuous controller sets level)
!KeyVelocity (MIDI key velocity controls the amplitude)

You can also paste another signal into this field, and the amplitude will vary with the output amplitude of the pasted
signal (something like an LFO controlling the attenuation). (See the manual for a complete description of hot
parameters, EventValues, EventSources, and Map files).

Right
This controls the level of the right output channel. The maximum value is 1 and the minimum is -1. The right channel
of the mix is multiplied by the value of Right. Some example values for Right are:

1 (no attenuation)
0 (maximum attenuation)
!Fader1 (continuous controller sets level)
!KeyVelocity (MIDI key velocity controls the amplitude)

You can also paste another signal into this field, and the amplitude will vary with the output amplitude of the pasted
signal (something like an LFO controlling the attenuation). (See the manual for a complete description of hot
parameters, EventValues, EventSources, and Map files).

In1
The output of this Sound will be added to the output of the Sound in In2.

Pan1
The stereo position of In1. (0 is hard left and 1 is hard right).

Scale1
Attenuation on In1. 1 (or 0 dB) is no attenuation, and 0 is fully attenuated.

In2
This Sound is added to the Sound in the In1 field.

Pan2
The stereo position of In2. (0 is hard left and 1 is hard right).

Scale2
Attenuation on In2. 1 (or 0 dB) is no attenuation, and 0 is fully attenuated.

151

StereoMix4

Mixing & Panning Category
Adds the outputs of In1, In2, In3, and In4, each with its own Pan position and Scale (attenuation). Scale and Pan
control the attenuation and stereo position of the overall mix.

Left
This controls the level of the left output channel. The maximum value is 1 and the minimum is -1. The left channel of
the mix is multiplied by the value of this parameter. Some example values for Left are:

1 (no attenuation)
0 (maximum attenuation)
!Fader1 (continuous controller sets level)
!KeyVelocity (MIDI key velocity controls the amplitude)

You can also paste another signal into this field, and the amplitude will vary with the output amplitude of the pasted
signal (something like an LFO controlling the attenuation). (See the manual for a complete description of hot
parameters, EventValues, EventSources, and Map files).

Right
This controls the level of the right output channel. The maximum value is 1 and the minimum is -1. The right channel
of the mix is multiplied by the value of Right. Some example values for Right are:

1 (no attenuation)
0 (maximum attenuation)
!Fader1 (continuous controller sets level)
!KeyVelocity (MIDI key velocity controls the amplitude)

You can also paste another signal into this field, and the amplitude will vary with the output amplitude of the pasted
signal (something like an LFO controlling the attenuation). (See the manual for a complete description of hot
parameters, EventValues, EventSources, and Map files).

In1
The output of this Sound will be added to the output of the Sounds in In2, In3, and In4.

Pan1
The stereo position of In1. (0 is hard left and 1 is hard right).

Scale1
Attenuation on In1. 1 (or 0 dB) is no attenuation, and 0 is fully attenuated.

In2
The output of this Sound will be added to the output of the Sounds in In1, In3, and In4.

Pan2
The stereo position of In2. (0 is hard left and 1 is hard right).

Scale2
Attenuation on In2. 1 (or 0 dB) is no attenuation, and 0 is fully attenuated.

152

In3
The output of this Sound will be added to the output of the Sounds in In1, In2, and In4.

Pan3
The stereo position of In3. (0 is hard left and 1 is hard right).

Scale3
Attenuation on In3. 1 (or 0 dB) is no attenuation, and 0 is fully attenuated.

In4
The output of this Sound will be added to the output of the Sounds in In1, In2, and In3.

Pan4
The stereo position of In4. (0 is hard left and 1 is hard right).

Scale4
Attenuation on In4. 1 (or 0 dB) is no attenuation, and 0 is fully attenuated.

153

SumOfSines

Xtra Sources Category
Resynthesizes sounds from the spectral analyses stored in Analysis0 and Analysis1. The dbMorph parameter
interpolates between the amplitudes of Analysis0 and Analysis1, and the pchMorph parameter interpolates between
the pitches in Analysis0 and Analysis1.

OnDuration
This is the duration of each triggered event. It should be the same length or shorter than the Duration which is the
total length of time that this program is available to be triggered. Think of Duration as analogous to the total lifetime of
a piano string, and OnDuration as the duration of each individual note that you play on that piano string. The
OnDuration must be greater than zero, and you must specify the units of time, for example:

2 s (for 2 seconds)
2 ms (for 2 milliseconds)
200 usec (for 200 microseconds)
2 m (for 2 minutes)
2 h (for 2 hours)
2 days
2 samp (for 2 samples)
1 / 2 hz (for the duration of one period of a 2 hz signal)

Frequency0
Frequency of of the resynthesis based on Analysis0. Use 0 hz to default to the base frequency as stored in the
samples file.

Frequency1
Frequency of resynthesis based on Analysis1. Use 0 hz to default to the base frequency as stored in the samples
file.

Analysis0
Select a spectrum file from the dialog that you get when you click on the disk button next to this field.

The spectrum file contains frequency and amplitude information for resynthesizing an analyzed sound using banks of
sine wave oscillators.

Analysis1
Select a spectrum file from the dialog that you get when you click on the disk button next to this field.

The spectrum file contains frequency and amplitude information for resynthesizing an analyzed sound using banks of
sine wave oscillators.

DBMorph
Specifies how much of the amplitude envelopes of each of the envelopes is present in the resynthesized sound. A
value of zero specifies that the amplitude envelopes come from Analysis0 only, a value of one specifies Analysis1
only, and values between specify mixtures of the two analyses.

Use a continuous controller or a control signal here to morph continuously between the two sets of amplitude
envelopes.

154

PchMorph
Specifies how much of the frequency envelopes of each of the envelopes is present in the resynthesized sound. A
value of zero specifies that the frequency envelopes come from Analysis0 only, a value of one specifies Analysis1
only, and values between specify mixtures of the two analyses.

Use a continuous controller or a control signal here to morph continuously between the two sets of frequency
envelopes.

NbrPartials
This is the total number of sine wave oscillators used to resynthesize the analyzed sound. Try increasing the number
of partials to hear the effect on the sound. There will be some maximum number above which there is no longer any
improvement in the perceived quality of the sound. The more partials you request, the more computation this
algorithm requires, so choose the minimum number of partials that still gives you acceptable sound quality.

BankSize
This specifies the number of oscillators per bank. If you get a message that you are running out of real time, try larger
or smaller bank sizes.

TimeIndex
The analyzed sounds are like sequences of spectral snapshots. This value describes which snapshot to
resynthesize. A FunctionGenerator with Fullramp as its Wavetable is a straight line from - 1 to 1, and this moves
forward through the spectra in linear time. Try different functions (or use a continuous controller) to go backwards
through the sequence of spectra or to vary the rate at which you are stepping through the spectra.

This parameter is only active if CtrlTime is checked.

Gate
Enter a 1 in this field to play the Sound exactly once for the duration you have specified in the Duration field.

If you use an EventValue (for example, !KeyDown) in this field, the Sound can be retriggered as often as you like
within the duration specified in the Duration field.

When Gate becomes positive, the Sound is heard; when Gate becomes zero, the Sound is released.

This parameter is ignored if CtrlTime is checked.

Loop
Check this box if you would like to set the loop points using the LoopStart and LoopEnd parameter fields.

This parameter is ignored if CtrlTime is checked.

LoopStart
When Loop is checked, this is the start point of the loop (otherwise it is ignored). Enter a value in the range from 0 to
1, where 0 is the beginning of the sample and 1 is the end of the sample. In other words, this is the proportion of the
total sample duration when the start point should occur. (To compute the exact time within the sample where the start
point occurs, multiply LoopStart’s value by the total duration of the sample. For example, if your sample is 5 seconds
long and LoopStart is set to 0.2, then the beginning of the loop is 1 second into the sample.)

LoopEnd
When Loop is checked, this is the end point of the loop (otherwise it is ignored). Enter a value in the range from 0 to
1, where 0 is the beginning of the sample and 1 is the end of the sample. In other words, this is the proportion of the
total sample duration when the end point should occur. (To compute the exact time within the sample where the end
point of the loop occurs, multiply LoopEnd’s value by the total duration of the sample. For example, if your sample is
5 seconds long and LoopEnd is set to 0.4, then the end of the loop occurs at 2 seconds into the sample.)

CtrlTime
The analyzed sounds are like sequences of spectral snapshots. This sound provides two ways to move through these
spectral snapshots.

155

If CtrlTime is not checked, then the snapshots will be played back in forward order over the duration given in the
OnDuration field. The playback will start whenever Gate becomes positive. If Loop is checked, the playback will loop
between the StartLoop and EndLoop points within the analysis for as long as Gate is positive.

If CtrlTime is checked, then the snapshot played back is controlled directly by the value in the TimeIndex field.

Envelope
This is an attenuator on the output of the Oscillator. Enter 1 (or 0 dB) for the full amplitude. For a time-varying
amplitude, paste in a Sound (such as AR, ADSR, or FunctionGenerator) or an Event Value (such as !Volume) in this
field.

156

SyntheticSpectrumFromArray

Spectral Sources Category
Creates a synthetic spectrum from two arrays: an array of amplitude values for each track in the frame, and an array
of frequency values for each track in the frame (and, if SendBandwidths is checked, a corresponding array of
bandwidths for each of the tracks as well). A SyntheticSpectrumFromArray should be fed to an OscillatorBank,
FormantBankOscillator, or VocoderChannelBank in order to synthesize the partials, formants, or bank of vocoder
filters. The SyntheticSpectrumFromArray produces a set of envelopes for controlling the parameters of an
OscillatorBank, FormantBankOscillator, or VocoderChannelBank.

NbrPartials
This is the number of partials (or filters) to synthesize. In most cases, it should be the same as the size of the
Frequencies array; however, you can specify a slower update rate for the envelopes by using a larger number here.
The time between updates of the control envelopes is equal to the number you specify here but in units of samples. If
you enter 128 here, for example, the envelopes will be updated every 128 samples (that is about every 3 milliseconds
if your sampling rate is 44.1 kHz).

LogScale
Check this box to output the Frequencies (and, optional Bandwidths) in log rather than linear frequency. In most
cases, this box should be unchecked; the only time it should be checked is if you want to manipulate the frequency
envelopes in pitch space rather than in hertz.

SendBandwidths
Check this box to send bandwidth information. Bandwidths are required for controlling the filters of a
FormantBankOscillator or a VocoderChannelBank, but they are not required for controlling the oscillators in an
OscillatorBank.

Envelope
This is an overall amplitude envelope.

Amplitudes
Enter an array of amplitude values separated by spaces. Enclose any arithmetic expressions or units within curly
braces, for example:

!Amp1 {!Amp2 * 0.5} {-6 db} !KeyVelocity {!KeyDown ramp: 5 s} {0.1 s random}

The number of amplitude values should be the same as the number of frequency values (and optional bandwidth
values). If the frequency, amplitude (and bandwidth if used) arrays are different sizes, the smallest array will be used,
and any extra values in the other two arrays are thrown away.

Frequencies
Enter an array of frequency values separated by spaces. If you leave off the units, the values will be interpreted as
frequencies in hertz. Enclose any arithmetic expressions or frequencies with units within curly braces, for example:

609 {!Freq1 * 1000} {2048 hz} {60 nn} {5 c}

The number of frequency values should be the same as the number of amplitude values (and optional bandwidth
values). If the frequency, amplitude (and bandwidth if used) arrays are different sizes, the smallest array will be used,
and any extra values in the other two arrays are thrown away.

157

Bandwidths
This is array is optional and need only be set if the SendBandwidths box is checked. Bandwidths are required by the
FormantBankOscillator and VocoderChannelBank, but they are not required by the OscillatorBank.

Enter an array of bandwidth values separated by spaces. If you leave off the units, the values will be interpreted as
frequencies in hertz. Enclose any arithmetic expressions or frequencies with units within curly braces, for example:

609 {!Freq1 * 1000} {2048 hz} {60 nn} {5 c}

The number of bandwidth values should be the same as the number of amplitude and frequency values. If the
frequency, amplitude and bandwidth arrays are different sizes, the smallest array will be used and any extra values in
the other two arrays are thrown away.

158

SyntheticSpectrumFromSounds

Spectral Sources Category
Generates a synthetic spectrum whose amplitudes, frequencies (and optionally, bandwidths) are controlled by two
input Sounds. One input supplies the amplitudes and the other supplies the frequencies (optionally alternating with
bandwidths). You can think of each cycle of the input Sounds as defining one frame of the spectrum. If the input
Sounds change from cycle to cycle, then the spectrum will also change from frame to frame.

A SyntheticSpectrumFromSounds (like other Sounds in the Spectral Sources category) outputs spectral envelopes in
the following format:

Left Channel: Amp1 Amp2 ... AmpN

Right Channel: Freq1 Freq2 ... FreqN

For each frame, Amp1 is the amplitude of the first partial (and Freq1 is the frequency or pitch of the first partial),
Amp2 is the amplitude of the second partial (corresponding with Freq2), and AmpN is the amplitude of the highest
numbered partial (specified in NbrPartials). Then the whole sequence repeats for the next frame of the spectrum.
Because of this repetition rate, the output of the SyntheticSpectrumFromSound has a kind of periodicity to it, where
the period is the equal to the same number of samples as there are partials in each frame.

Amplitudes
If the period of this Sound in samples is equal to NbrPartials, then one cycle of this Sound defines one frame’s worth
of amplitudes for the synthesized spectrum. (For example, to synthesize 80 partials, set the Frequency of this Sound
to 80 samp inverse if you want the cycles to line up with frames). If the repetition rate of this Sound is lined up with
the number of partials in each frame of the spectrum, then the waveform of each cycle of this Sound will correspond
to a kind of spectral envelope for each frame of the spectrum. For example, if you select ExponRev as the waveform
of an oscillator whose period is 80 samples and set NbrPartials to 80, then each frame of the spectrum will have high
amplitudes on its lower-numbered partials and lower amplitudes on the upper partials. Even more interesting is to
make this Sound’s frequency adjustable within a narrow range so you can create spectral envelopes that "drift"
because their repetition rates are slightly out of phase with the number of partials being generated on each frame.

FrequenciesAndBandwidths
If the period of this Sound in samples is equal to NbrPartials, then one cycle of this Sound defines one frame’s worth
of frequencies (or pitches i f you have LogScale checked) for the synthesized spectrum. (For example, to synthesize
80 partials, set the Frequency of this Sound to 80 samp inverse if you want the cycles to line up with frames). If the
repetition rate of this Sound is lined up with the number of partials in each frame of the spectrum, then the waveform
of each cycle of this Sound will provide the frequencies for each partial in one frame of the spectrum. For example, if
you select Ramp as the waveform of an oscillator whose period is 80 samples and set NbrPartials to 80, then, in each
frame of the spectrum, the lower-numbered partials will have low frequencies, and the higher-numbered partials will
have high frequencies. Even more interesting is to make this Sound’s frequency adjustable within a narrow range so
you can create spectra that "drift" because their repetition rates are slightly out of phase with the number of partials
being generated on each frame.

If the SyntheticSpectrumFromSounds is controlling something that requires bandwidth (like FormantBankOscillator or
VocoderChannelBank), and you have checked the SendBandwidths box, then every other value of this Sound will be
interpreted as a bandwidth, rather than a frequency.

NbrPartials
This is the number of partials in the synthetic spectrum. It should be greater than or equal to the number of oscillators
or filters in the Sound being controlled by the SyntheticSpectrumFromSounds.

159

LogScale
Check this box to output log-frequency (pitch) envelopes rather than frequency envelopes.

IncludesBandwidths
Check here if the synthetic spectrum is feeding into a Sound that can use bandwidth information (e.g.
FormantBankOscillators and VocoderChannelBanks).

160

Threshold

Tracking Live Input Category
The output of a Threshold is 1 when its Input amplitude exceeds the specified threshold; otherwise it is 0. The
smaller the value of hysteresis, the more sensitive the Threshold is to momentary changes in the Input amplitude.

When trying to detect when an amplitude is exceeded, it is usually a good idea to put your input through an
AmplitudeFollower or PeakDetector first so you are detecting when the amplitude *envelope* exceeds the threshold
rather than when individual sample points might cross the threshold.

Input
When this Sound’s amplitude exceeds the threshold, the output of the Threshold will be a 1 (i.e. the maximum
deviation).

Threshold
When the amplitude of the Input is less than the threshold (plus or minus half the hysteresis), the output of this sound
is zero. Otherwise the output is 1.

Hysteresis
The larger the hysteresis, the less sensitive the Sound will be to small changes in the Input amplitude. Hysteresis
comes from the Greek husteros, come later or behind. This is the tendency of this Sound to stay in its previous state
(either 1 or 0).

161

TimeControl

Time & Duration Category
Slows down or speeds up the rate that time is progressing in its Input by controlling how the time counter is
incremented on the signal processor. This affects only the start time of events within the Input (e.g. if Input is a Script
or Concatenation or contains TimeOffsets), not the sample rate.

Input
The duration of this Sound can be shortened or lengthened depending on the value of Rate.

Rate
This is the rate that time progresses. For example, use 1 to increment time at the normal rate, 0.5 for half speed, 2
for twice as fast, etc.

162

TimeFrequencyScale

Frequency & Time Scaling Category
Simultaneously time stretches and/or frequency scales a disk recording or a sample stored in wavetable memory.

FrequencyScale
The frequency of the input will be multiplied by this value.

For example, to shift up by an octave, the FrequencyScale should be 2, and to shift down and octave, the scale
should be 0.5. To shift up by 3 halfsteps, you would use:

2 raisedTo: (3/12)

To shift down by 7 half steps, you would use:

2 raisedTo: (-7/12)

Rate
This is the rate of playback. The value should be less than or equal to 1, because the Sound can only do time
stretching, not time compression. For example, use 1 to play back at the original rate, 0.5 for half speed, 0.25 for one
quarter of the speed, etc.

Gate
Enter a 1 in this field to play the Sound exactly once at the specified Rate. If you use an EventValue (for example,
!KeyDown) in this field, the Sound can be retriggered as often as you like. When Gate becomes positive, the Sound is
heard; when Gate becomes zero, the Sound is released.

MinInputFreq
This is the minimum frequency you expect to hear at the input. Follow the usual conventions for specifying
frequencies.

MaxInputFreq
This is the maximum frequency you expect to hear at the input. Follow the usual conventions for specifying
frequencies.

MaxFreqScale
This is the largest scale that will be applied to the frequency (the maximum allowable is 4).

Detectors
This determines the sensitivity of the frequency tracking. Try starting with a value of 10, and then experiment with
more or fewer if you want to try fine tuning the frequency tracking. (More is not necessarily better; there is some
optimal number of detectors for each circumstance.)

FromDisk
When the box is checked, read the recording directly from the disk. Otherwise, look for it in wavetable memory.

Sample

163

If FromDisk is checked, this is the name of the disk file. Otherwise, this should be the name of a sample in the
Wavetables list or the name of a segment of wavetable memory being recorded into by a MemoryWriter prior to or in
parallel with this Sound.

FromMemoryWriter
Check FromMemoryWriter when the wavetable does not come from a disk file but is recorded by a MemoryWriter in
real time.

164

TimeOffset

Time & Duration Category
Offsets the start time of its Input by the specified SilentTime. If Retrograde or Reverse is set, a Constant zero is
concatenated to the end of Input; this can be useful for adding some silence to the end of an input to a reverberator or
echo in order to give the reverberation time to die away.

Input
This Sound’s start time is delayed by the amount of time specified in SilentTime. If retrograde or reverse (but not
both) is true, the silence will follow this Sound.

SilentTime
Amount of time to delay the start time of the Input. It can be any amount of time from 0 to the maximum possible
duration. If retrograde or reverse (but not both) is true, this silence follows the Input.

165

TimeStopper

Time & Duration Category
Allows Input to be loaded into the signal processor and start playing but then stops any further progress of time on the
signal processor. Time resumes only when the value in the Resume field becomes nonzero. For example, even if
Input had a duration of 1 samp, it would last until Resume became nonzero. If the input has multiple events in it that
occur sequentially, only the first one will take place immediately; the others will occur only after Resume becomes
nonzero.

Input
This Sound is loaded and started but it will not terminate unless Resume becomes nonzero.

Resume
Time is stopped until this value becomes something other than 0. You could use an EventValue (such as !KeyDown)
in this field to control when time should progress. By putting a Threshold Sound here, you can make the progress of
time depend on the amplitude of another Sound (such as the ADInput). Use an Equality prototype to make time
depend on an Event Value or Sound reaching an exact value.

ResumeOnZero
Click here if you would like time to resume when Resume equals 0 (rather than resuming whenever the value in
Resume becomes nonzero).

166

TriggeredSampleAndHold

Sampling Category
When triggered, reads a value from Input and holds onto it until triggered again. This is like SampleAndHold except
that the sampling only occurs on triggers, not periodically.

Input
A sample of this Sound is read each time the Trigger becomes positive.

Trigger
When the Trigger becomes positive, one event is triggered. You can trigger several events over the course of the
total Duration of this program as long as the value of Trigger returns to zero before the next trigger. Some example
values for Trigger are:

1 (plays once with no retriggering)
0 (the sound is silent, never triggered)
!KeyDown (trigger on MIDI key down)
!F1 (trigger when MIDI switch > 0)

You can also paste another signal into this field, and events will be triggered every time that signal changes from zero
to a nonzero value. (See the manual for a complete description of hot parameters, EventValues, EventSources, and
Map files).

167

TriggeredTableRead

Sampling Category
As long as the Trigger is greater than zero, the TriggeredTableRead will read samples from the Wavetable; if the
Trigger is less than or equal to zero, the last sample read will be output. Gate resets the pointer to the beginning of
the Wavetable.

Trigger
As long as the Trigger is greater than zero, the TriggeredTableRead will read samples from the Wavetable; if the
Trigger is less than or equal to zero, the last sample read will be output. PulseTrain is a good Sound to use as a
source of periodic triggers, and by putting an Event Value in the PulseTrain’s Period field, you can control the rate at
which the triggers occur.

Wavetable
Select a wavetable or a sample. A single sample point is read from this table each time Trigger becomes positive.

Gate
Each time this value becomes positive, the Sound will start over again from the beginning of the Wavetable. Enter a
1 in this field to play the Sound exactly once. If you use an EventValue (for example, !KeyDown) in this field, you can
restart the sound multiple times.

IgnoreLoops
Click here if the Wavetable (or sample) has loop points specified in the header and you want to ignore the loop points.

FromMemoryWriter
Check FromMemoryWriter when the wavetable does not come from a disk file but is recorded by a MemoryWriter in
real time.

168

TunableVocoder

Filters Category
Tune the base frequency of the vocoder and control the spacing of the center frequencies of the filters.

Input
The sound source that you hear going through the filter bank.

SideChain
The spectrum of this Sound controls the amplitudes of each filter in the filter bank.

TimeConstant
The smaller the time constant, the more quickly the amplitude envelopes respond to changes in the side chain
spectrum. Longer time constants result in a less precise sound (and give a reverberated effect).

NbrBands
This is the number of filters desired.

BankSize
This is the number of filters that should be scheduled on each processor. Ordinarily you should leave this set to
default. If you run out of realtime processing, you can try reducing the bankSize, as for example

0.75 * default

LogSpacing
Check this box to specify the spacing between center frequencies as an interval in pitch space. Uncheck the box if
you prefer to specify the spacing as a frequency in hertz.

AnalysisFreq
This is the lowest center frequency in the filter bank operating on the SideChain.

SynthesisFreq
This is the lowest center frequency in the filter bank operating on the Input.

AnalysisLevel
This is an attenuator on the amplitude of the SideChain before it goes through the filters.

SynthesisLevel
This is an attenuator on the amplitude of the Input before it goes through the filters.

AnalysisSpacing
This is the spacing between the center frequencies of the filters on the SideChain. Use nn as the units if
LogFrequency is checked. Use hz as the units if LogFrequency is unchecked.

SynthesisSpacing

169

This is the spacing between the center frequencies of the filters on the Input. Use nn as the units if LogFrequency is
checked. Use hz as the units if LogFrequency is unchecked.

AnalysisBW
This is a control on the bandwidth of the filters on the SideChain.

SynthesisBW
This is a control on the bandwidth of the filters on the Input.

Tone
This is a tone control. Higher values emphasize the filters with higher center frequencies. Lower values emphasize
the filters with lower center frequencies. (Rolloff determines the narrowness of this filter).

Rolloff
This is a control on the bandwidth of the Tone filter. Set this to 0 if all filters should have equal weight. The bigger the
value of Rolloff, the sharper the cutoff on the effect of the Tone filter.

Gain
You can boost or cut the final output amplitude here.

170

TwoFormantElement

Filters Category
A TwoFormantElement is realized as a DualParallelTwoPoleFilter; however, rather than specifying the filter in terms
of pole locations, you specify the desired center frequency and bandwidth of the two formants.

Input
This is the Sound to be filtered.

Formant1
This is the center frequency of the first formant.

Bandwidth1
This is the bandwidth of the lower formant region. The narrower the bandwidth, the more "pitched" the formant will
sound--also the more likely the the filter is to overflow.

Scale1
This controls the amplitude of the first formant. For the full amplitude use +1.0 or -1.0; any factor whose absolute
value is less than 1 will attenuate the output.

Formant2
This is the center frequency of the second formant.

Bandwidth2
This is the bandwidth of the upper formant region. The narrower the bandwidth, the more "pitched" the formant will
sound--also the more likely the the filter is to overflow.

Scale2
This controls the amplitude of the second formant. For the full amplitude use +1.0 or -1.0; any factor whose absolute
value is less than 1 will attenuate the output.

171

TwoFormantVoiceElement

Xtra Sources Category
An excitation signal similar to a glottal pulse (with a randomly chosen rate of vibrato) is used as the input to a pair of
parallel second-order filter sections that simulate two of the formants of the vocal cavity.

Frequency
The frequency can be specified in units of pitch or frequency. The following are all ways to specify the A above
middle C:

440 hz (in hertz or cycles per second)
4 a (as the 4th octave A)
69 nn (as a MIDI notenumber)
4 c + 9 nn (as 9 half steps above middle C)
1.0 / 0.00227273 s (inverse of a period at 44.1 kHz sample rate)

The following are examples of how to control the frequency using MIDI, the virtual control surface, or a third-party
program:

!Pitch (key number plus pitch bend)
!KeyNumber nn (MIDI notenumber)
4 c + (!Frequency * 9 nn) (continuous controller from 4 c to 4 a)

Formant1
For an [IY] sound, try a center frequency of 238 hz. This will be the center frequency of the first formant. This is not
the fundamental frequency of the TwoFormantVoiceElement but the center of an emphasized region of the spectrum.

Bandwidth1
For an [IY] sound, try a a bandwidth of 70 hz. This is the bandwidth of the lower formant region. The narrower the
bandwidth, the more "pitched" the formant will sound--also the more likely the the filter is to overflow.

Scale1
For an [IY] sound, scale this formant to 0.3. This controls the amplitude of the first formant. For the full amplitude use
+1.0 or -1.0; any factor whose absolute value is less than 1 will attenuate the output.

Formant2
For an [IY] sound, try a center frequency of 1741 hz. This will be the center frequency of the second formant. This is
not the fundamental frequency of the TwoFormantVoiceElement but the center of an emphasized region of the
spectrum.

Bandwidth2
For an [IY] sound, try a a bandwidth of 100 hz. This is the bandwidth of the upper formant region. The narrower the
bandwidth, the more "pitched" the formant will sound--also the more likely the the filter is to overflow.

Scale2
For an [IY] sound, scale this formant to 1.0. This controls the amplitude of the second formant. For the full amplitude
use +1.0 or -1.0; any factor whose absolute value is less than 1 will attenuate the output.

172

Seed
Supply an integer less than 2**30 as a seed for the random number generator that controls the vibrato rate.

173

Variable

Variables & Annotation Category
A Variable is a placeholder that represents a single Sound. You can assign a value to the Variable in a Script or
related Sound by typing the name of the Variable followed by a colon, a space, and then the name of the Sound that
you want to assign to the variable.

174

VCA

Envelopes & Control Signals Category
Multiplies its Inputs together. To apply an amplitude envelope to a Sound, use the Sound and the envelope generator
as inputs to this Sound.

Inputs
These Sounds are multiplied together. Typically the inputs are a Sound and the amplitude envelope that you want to
apply to the Sound.

175

VCF

Filters Category
Analog voltage-controlled-filter emulation.

Input
This is the Sound to be filtered.

Amplitude
Controls attenuation of the Input’s amplitude. This field accepts numbers, expressions, or Sounds. To use an
audio-rate control, paste a Sound in the field and remove the ’L’ after the Sound name.

Cutoff
The cutoff frequency for the filter can be specified in units of pitch or frequency. When Resonance is close to 1, the
filter will tend "ring" at the cutoff frequency. The value in this field is frequency modulated as: Cutoff +
(CutoffModulator * CutoffModRange).

Frequencies can be specified in the following manner:

440 hz (in hertz or cycles per second)
4 a (as the 4th octave A)
69 nn (as a MIDI notenumber)
4 c + 9 nn (as 9 half steps above middle C)
1.0 / 0.00227273 s (inverse of a period at 44.1 kHz sample rate)

The following are examples of how to control the frequency using MIDI, the virtual control surface, or a third-party
program:

!Pitch (key number plus pitch bend)
!KeyNumber nn (MIDI notenumber)
4 c + (!Frequency * 9 nn) (continuous controller from 4 c to 4 a)

CutoffModulator
This input modulates the filter cutoff frequency. A full scale signal will modulate the cutoff frequency by the amount
shown in CutoffModRange. When this value is 0 there is no modulation, when it is positive the Cutoff frequency goes
higher, when it is negative the Cutoff frequency goes lower.

CutoffModRange
The CutoffModRange specifies the range in frequency or pitch that the CutoffModulator input will have on the filter
cutoff. When CutoffModulator is a full scale signal will modulate the cutoff frequency by the amount shown in
CutoffModRange. Since the actual cutoff frequency is Cutoff + (CutoffModulator * CutoffModRange), a CutoffRange
that is larger than the Cutoff can result in negative frequencies.

Resonance
The higher the Resonance, the longer the filter will ring in response to an input. A Resonance of 1 will cause the filter
to ring at the cutoff frequency. To control this parameter at the audio rate, paste a Sound in the field and delete the
’L’ after the Sound name.

176

Vocoder

Filters Category
The Vocoder applies the spectral character of the SideChain Sound onto the Input Sound. What you hear is the Input
Sound filtered by the SideChain Sound. For example, you can use this module to apply the spectral characteristics of
human speech (the SideChain) onto any other sample or synthetic sound (the Input). On some analog vocoders, the
SideChain input is called the "modulation" input.

The Vocoder is implemented as two filter banks--an analysis bank and a resynthesis bank. The analysis bank is used
to measure the amount of energy in each frequency band of the SideChain Sound. The resynthesis bank is used to
filter the Input Sound. There is an amplitude follower on the output of each of the filters in the analysis bank. The
resulting amplitude envelopes are then applied to the corresponding filters in the resynthesis bank. In this way, the
SideChain controls the amplitude envelopes on the resynthesis filters.

Input
This is the source material to be filtered by the SideChain-controlled filters. This Sound is heard directly, through the
filters (whereas the SideChain is never heard directly). For example, if you want to make an animal talk, put a sample
of the animal sound here and put a sample of speech (or use a microphone) as the SideChain.

The best Inputs tend to be fairly broad band signals that have energy in each of the frequency bands covered by the
resynthesis filter bank. For example, Noise or an Oscillator on a waveform with lots of harmonics (such as Buzz128)
will work well because they generate energy over the full frequency range.

SideChain
Sometimes referred to as the "modulation", this Sound is never heard directly; it controls the amplitudes of the filters
in the bank.

TimeConstant
This determines how quickly the amplitude envelopes on the filters will respond to changes in the SideChain. For
precise, intelligible results, use values less than 0.1 s. For a more diffuse, reverberated result, use a longer
TimeConstant.

NbrBands
This is the number of band pass filters in the filter bank. In other words, this is the number of equally-spaced
frequency bands between LowCF and HighCF, inclusive.

BankSize
This is the number of filters per expansion card. In general, you should be able to get about 10 to 11 filters per card.
Experiment with fewer or more filters per card to optimize the efficiency of your particular Sound.

InputLevel
Controls the level on the input Sound before it goes through the filters.

SideLevel
Controls the level of the SideChain Sound before it is fed into the analysis filters.

LowCF
This is the center frequency of the lowest bandpass filter in the bank.

177

HighCF
This is the center frequency of the highest bandpass filter in the bank.

InFreq
This is a scale factor on all of the center frequencies in the "resynthesis" bank.

SideFreq
A scale factor on all of the center frequencies in the "analysis" filter bank.

Bw
A control on the bandwidth of all the bandpass filters in both the analysis and the resynthesis filter banks.

Pitch
Check here if you would like the bandpass filters to be spaced equally in pitch space from the LowCF to the HighCF.
If you uncheck this box, the filters will be spaced equally in frequency space.

LoCutoff
Everything below this frequency should drop off in amplitude according to the slope specified in Rolloff. This is a
weak tone-control-style filter applied to the Input Sound before it is fed to the resynthesis filter bank. Use it to
attenuate the low end if the output is too boomy (or set it to 0 hz if you want to give your subwoofers something to do).

HiCutoff
Everything above this frequency should drop off in amplitude according to the slope specified in Rolloff. This is a
weak tone-control-style filter applied to the Input Sound before it is fed to the resynthesis filter bank. Use it to
attenuate the high end if the output is too piercing or trebly. Set it to an even higher frequency if the output sounds
muffled or low pass and you would like to boost the high end.

Rolloff
This controls the steepness of the edges of a weak tone control filter on the Input. Use 1 if the edges should rolloff
precipitously at LoCutoff and HiCutoff. Use smaller numbers if you would like the attenuation to start sooner and take
longer.

178

VocoderChannelBank

Filters Category
For most situations, you should use a Vocoder rather than the VocoderChannelBank, because the Vocoderis a
higher-level Sound with higher-level parameters and controls. Use a VocoderChannelBank only in those situations
requiring independent control over the center frequency, amplitude, and bandwidth of each filter in both the analysis
and the resynthesis filter banks.

The VocoderChannelBank works by feeding the sidechain input through a bank of bandpass filters (the analysis
filters), extracting an amplitude envelope from the output of each of those filters, applying the extracted amplitude
envelopes to a second bank of filters (the synthesis filters), and feeding the input through that bank of filters.

To see an example of how the VocoderChannelBank can be used, drag a Vocoder into a Sound file window and
expand it; it expands into cascaded VocoderChannelBanks.

CascadeInput
The cascaded input is added to whatever output is produced by this VocoderChannelBank. Use it to cascade several
VocoderChannelBanks when you need more filter banks than can fit on a single expansion card (usually around 11).

Input
This is the Sound that is actually heard through the filter bank. The output of the VocoderChannelBank is the sound
of the Input but filtered through formants of the SideChain.

The kinds of Inputs that work best are those that are broadband and continuous enough to excite all of the filters in
the bank at all times.

SideChain
This is the Sound that controls the amplitude envelopes on each of the filters in the filter bank. The formants of the
SideChain will be imposed on the basic sound characteristics of the Input.

The kinds of SideChains that work best are those with strong formants that change noticeably over time (e.g. human
speech, tablas, mouth harps).

InputParameters
This should be a Sound from the spectral sources category (most typically the SyntheticSpectrumFromArray). Use
the spectral source Sound to specify the center frequencies, amplitudes, and bandwidths for all the filters in the
synthesis bank.

To use the same settings on both the analysis filters and the synthesis filters (as it is in the classic channel vocoder),
hold down the option key and drag this Sound into the SideChainParameters field.

SideChainParameters
This should be one of the Sounds from the spectral sources category (most typically the
SyntheticSpectrumFromArray). Use the spectral source Sound to specify the center frequencies, amplitudes, and
bandwidths for all the filters in the analysis bank.

To use the same settings on both the analysis filters and the synthesis filters (as it is in the classic channel vocoder),
hold down the option key and drag this Sound into the InputParameters field.

179

TimeConstant
Controls the reaction time of the envelope follower on each of filters in the side chain bank. Smaller numbers should
be used for better intelligibility, larger numbers for a more diffuse, reverberated result.

First
This is the number of the first filter in this bank. If this is the first VocoderChannelBank in a cascade, this number will
be 1, but the next VocoderChannelBank in the cascade should start at (1 + Count). The total number of filters in the
entire cascade should be equal to the NbrPartials specified in the InputParameters and the SideChainParameters.

Count
This is the total number of filters in this bank. You can get about 11 filters per card on a Capybara-66. To get more
filters, feed this Sound into the cascade input of another VocoderChannelBank.

180

WaitUntil

Time & Duration Category
Don’t start the Input Sound until the Resume condition is true. This is like TimeStopper except that a WaitUntil won’t
even let its Input start until the Resume value becomes nonzero (and a TimeStopper lets its Input get started but
won’t let it end until Resume becomes nonzero).

Input
Input will not start until Resume becomes nonzero.

Resume
Input will not start playing until this value becomes positive.

If this field contains a Sound, the Input will not resume until the Sound in this field ends.

ResumeOnZero
Click here if you want the Input to start whenever Resume becomes zero (rather than whenever it is no longer zero).

181

WarpedTimeIndex

Time & Duration Category
Can be used as the input to any Sound that requires a time index (e.g. GAOscillators, REResonator, SampleCloud,
SpectrumInRAM). Generates a time index with a variable slope so that it can move more quickly through some parts
of sound and more slowly through others. You provide a set of current time points that should be adjusted forward or
backward in time to match a set of ideal time points, and it generates a time index function that moves from -1 up to 1
but with a varying slope.

IdealTimePoints0
Enter a chronological sequence of time points with units, enclosed within curly braces and separated by spaces.
These are the new time points. Time will be sped up or slowed down to make the CurrentTimePoints line up with
these ideal time points when Morph is zero.

In this field, you must enclose expressions within curly braces, for example: {!Val1 * !KeyVelocity}

IdealTimePoints1
Enter a chronological sequence of time points with units, enclosed within curly braces and separated by spaces.
These are the new time points. Time will be sped up or slowed down to make the CurrentTimePoints line up with
these ideal time points when Morph is one.

In this field, you must enclose expressions within curly braces, for example: {!Val1 * !KeyVelocity}

CurrentTimePoints
Enter a chronological sequence of time points with units, enclosed within curly braces and separated by spaces.
These are the time points that should be moved forward or backward in time in order until they line up with the
IdealTimePoints.

In this field, you must enclose expressions within curly braces, for example: {!Val1 * !KeyVelocity}

Trigger
Each time this value changes from a zero to a number greater than zero, the time function starts over again from the
beginning.

Rate
This is the rate of the time index. For example, use 1 to play back at the original rate, 0.5 for half speed, 2 for twice
as fast, etc.

Morph
This controls which set of ideal time points should be used. Intermediate settings interpolate between the sets of ideal
time points.

182

Waveshaper

Distortion & Waveshaping Category
The Input is used as an index into the table specified in ShapingFunction (if ShapeFrom is set to Wavetable) or as the
input to a polynomial whose coefficients are those listed in the Coefficients parameter field (if ShapeFrom is set to
Polynomial).

Unless the ShapingFunction or polynomial is a straight line, the Input will be nonlinearly distorted. The distortion adds
harmonics to the synthesized or sampled Input. Since polynomials tend to be close to linear around zero and less
linear the further they are from zero, low amplitude Inputs will be less distorted than high amplitude Inputs. This tends
to match the behavior of physical instruments (which sound "brighter" when played louder) and also of electronic
components like amplifiers which produce harmonic distortions of their inputs at high amplitudes.

A Waveshaper can also be used to map non-signal Inputs to new values according to the ShapingFunction or
polynomial. For example, if the Input were a Constant whose Value were !Pitch, the full range of MIDI notenumbers
could be remapped by a Waveshaper to frequencies of an alternate tuning system as stored in a table (the
ShapingFunction).

Input
This Sound is used as an index into the ShapingFunction (or as the input into the polynomial described the list of
Coefficients).

Interpolation
Choose whether to use only integer values to index into the ShapingFunction or whether to use the fractional part of
the Input value to interpolate between the values actually stored in the table to values that would fall "inbetween" the
table entries if the actual values were connected by a straight line.

ShapeFrom
Choose whether to use a function stored in a table (Wavetable) or a polynomial computed on the fly using the
Coefficients (Polynomial).

ShapingFunction
Select the wavetable that will be used to map the Input to the output.

Coefficients
Enter a list of coefficients A0 A1 A2 ... An (separated by spaces) for a polynomial of the form:

A0 + A1x + A2x^2 + A3x^3 + ... + Anx^n

where Input is x.

In this field, you must enclose expressions within curly braces, for example:

0 {!Val1 * !KeyVelocity} 0.25 1

FromMemoryWriter
Check FromMemoryWriter when the shaping function does not come from a disk file but is recorded by a
MemoryWriter in real time.

183

184

Sound Classes by Category

 Sources & Generators FormantBank 44

 Sources & Generators CloudBank 17

 Sources & Generators DiskPlayer 29

 Sources & Generators DynamicRangeController 32

 Sources & Generators FilterBank 40

 Sources & Generators TwoFormantElement 171

 Sources & Generators Oscillator 95

 Sources & Generators GenericSource 53

 Sources & Generators GrainCloud 54

 Sources & Generators AudioInput 11

 Sources & Generators SumOfSines 154

 Sources & Generators ChannelJoin 14

 Sources & Generators Noise 94

 Sources & Generators OscillatorBank 97

 Sources & Generators PulseGenerator 108

 Sources & Generators Sample 117

 Sources & Generators Mixer 86

 Sources & Generators SampleCloud 120

 Sources & Generators TimeFrequencyScale 163

 Sources & Generators MultiplyingWaveshaper 89

 Sources & Generators KBD Ctrl OscillatorBank 97

 Sources & Generators KBD Ctrl ScaleVocoder 124

 Sources & Generators KBD Ctrl Mixer 86

 Sources & Generators KBD Ctrl FormantBankOscillator 46

 Sources & Generators KBD Ctrl FormantBank 44

 Sources & Generators KBD Ctrl GAOscillators 51

 Sources & Generators KBD Ctrl GrainCloud 54

 Sources & Generators KBD Ctrl HarmonicResonator 58

 Sources & Generators KBD Ctrl KeyMappedMultisample 64

 Sources & Generators KBD Ctrl SumOfSines 154

 Sources & Generators KBD Ctrl Filter 38

 Sources & Generators KBD Ctrl IteratedWaveshaper 63

Additive synthesis OscillatorBank 97

Additive synthesis DynamicRangeController 32

Additive synthesis SumOfSines 154

Additive synthesis ChannelJoin 14

Additive synthesis SOSOscillators 132

185

Aggregate Synthesis CloudBank 17

Aggregate Synthesis FilterBank 40

Aggregate Synthesis FormantBank 44

Aggregate Synthesis ChannelJoin 14

Aggregate Synthesis OscillatorBank 97

Compression/Expansion DynamicRangeController 32

Compression/Expansion Mixer 86

Compression/Expansion Level 66

Cross synthesis DynamicRangeController 32

Cross synthesis REResonator 111

Cross synthesis Vocoder 177

Delays-Mono DelayWithFeedback 25

Delays-Mono Mixer 86

Disk DiskCache 28

Disk DiskPlayer 29

Disk DiskRecorder 30

Disk GenericSource 53

Disk SamplesFromDiskSingleStep 122

Distortion & Waveshaping Mixer 86

Distortion & Waveshaping InputOutputCharacteristic 60

Distortion & Waveshaping MultiplyingWaveshaper 89

Drum machines StereoMix4 152

Envelopes & Control Signals ADSR 2

Envelopes & Control Signals Product 107

Envelopes & Control Signals Level 66

Envelopes & Control Signals AR 9

Envelopes & Control Signals Constant 21

Envelopes & Control Signals FunctionGenerator 50

Envelopes & Control Signals GraphicalEnvelope 56

Envelopes & Control Signals Oscillator 95

Envelopes & Control Signals MultisegmentEnvelope 92

Envelopes & Control Signals MultislopeFunctionGenerator 93

Envelopes & Control Signals PeakDetector 104

Envelopes & Control Signals PulseTrain 109

Envelopes & Control Signals SampleAndHold 119

Envelopes & Control Signals Difference 27

Envelopes & Control Signals TriggeredSampleAndHold 167

Envelopes & Control Signals TriggeredTableRead 168

EQ StereoMix2 151

EQ Vocoder 177

186

EQ Level 66

EQ GraphicEQ 57

EQ PresenceFilter 106

EQ HighShelvingFilter 59

EQ LowShelvingFilter 70

Filters AnalysisFilter 7

Filters DualParallelTwoPoleFilter 31

Filters FIRFilter 42

Filters GraphicEQ 57

Filters HighShelvingFilter 59

Filters LowShelvingFilter 70

Filters PresenceFilter 106

Filters TunableVocoder 169

Filters TwoFormantElement 171

Filters VCF 176

Filters Vocoder 177

Filters VocoderChannelBank 179

Filters-Mono Filter 38

Filters-Mono AnalysisFilter 7

Filters-Mono AveragingLowPassFilter 12

Filters-Mono ScaleVocoder 124

Filters-Mono HarmonicResonator 58

Filters-Mono Mixer 86

Filters-Stereo ChannelJoin 14

Flanging & Chorusing-Mono Mixer 86

Frequency & Time Scaling OscillatorBank 97

Frequency & Time Scaling Annotation 8

Frequency & Time Scaling FrequencyScale 47

Frequency & Time Scaling Monotonizer 87

Frequency & Time Scaling QuadOscillator 110

Frequency & Time Scaling SimplePitchShifter 130

Frequency & Time Scaling Level 66

Frequency & Time Scaling SpectrumFrequencyScale 137

Frequency & Time Scaling Mixer 86

Gain & Level Level 66

Global controllers Level 66

Global controllers SoundToGlobalController 134

Granulating & Chopping-Mono Chopper 16

Granulating & Chopping-Mono Mixer 86

187

Granulating & Chopping-Mono Product 107

Inputs AudioInput 11

Inputs GenericSource 53

Looping Sample 117

Looping AnalogSequencer 4

Math AbsoluteValue 1

Math ArcTan 10

Math Difference 27

Math Equality 34

Math Interpolate 62

Math Constant 21

Math PhaseShiftBy90 105

Math Product 107

Math DelayWithFeedback 25

Math RunningMax 115

Math RunningMin 116

Math SampleAndHold 119

Math ScaleAndOffset 123

Math SetRange 129

Math SqrtMagnitude 148

Math TriggeredSampleAndHold 167

Math VCA 175

MIDI In MIDIMapper 77

MIDI In MIDIVoice 83

MIDI Out MIDIFileEcho 76

MIDI Out MIDIOutputController 80

MIDI Out MIDIOutputEvent 81

MIDI Out MIDIOutputEventInBytes 82

Mixing & Panning ChannelJoin 14

Mixing & Panning Channeller 15

Mixing & Panning Crossfade 24

Mixing & Panning Difference 27

Mixing & Panning Matrix4 71

Mixing & Panning Matrix8 72

Mixing & Panning Mixer 86

Mixing & Panning Output8 100

Mixing & Panning Output4 99

Mixing & Panning OverlappingMixer 101

Mixing & Panning Pan 102

Mixing & Panning StereoInOutput4 149

188

Mixing & Panning StereoInOutput8 150

Mixing & Panning StereoMix2 151

Mixing & Panning StereoMix4 152

Modulation Oscillator 95

Modulation Product 107

Modulation Level 66

Outputs Matrix4 71

Outputs Matrix8 72

Outputs Output8 100

Outputs Output4 99

Outputs StereoInOutput4 149

Outputs StereoInOutput8 150

Processing analyzed spectra OscillatorBank 97

Processing analyzed spectra SumOfSines 154

Reverb-Mono ReverbSection 112

Reverb-Spatializing Mixer 86

Reverb-Spatializing StereoInOutput4 149

Reverb-Stereo Mixer 86

Sampling Sample 117

Sampling DiskCache 28

Sampling DiskPlayer 29

Sampling DiskRecorder 30

Sampling ForcedProcessorAssignment 43

Sampling GenericSource 53

Sampling MemoryWriter 74

Sampling Filter 38

Sampling SampleAndHold 119

Sampling Mixer 86

Sampling TriggeredSampleAndHold 167

Sampling TriggeredTableRead 168

Scripts ContextFreeGrammar 22

Scripts StereoMix4 152

Scripts LimeInterpreter 67

Scripts ParameterTransformer 103

Scripts Script 126

Scripts MIDIVoice 83

Sequencers AnalogSequencer 4

Spatializing ChannelCrosser 13

Spatializing Channeller 15

189

Spatializing StereoMix4 152

Spatializing Difference 27

Spatializing Matrix4 71

Spatializing Matrix8 72

Spatializing Output8 100

Spatializing Output4 99

Spatializing StereoInOutput4 149

Spatializing StereoInOutput8 150

Spatializing StereoMix2 151

Spatializing Mixer 86

Spectral Analysis-FFT ChannelJoin 14

Spectral Analysis-FFT Mixer 86

Spectral Modifiers SpectrumFrequencyScale 137

Spectral Modifiers SpectrumFundamental 138

Spectral Modifiers SpectrumLogToLinear 140

Spectral Modifiers SpectrumModifier 141

Spectral Modifiers SpectrumTrackSelector 146

Spectral Modifiers SpectrumVoicedUnvoiced 147

Spectral Processing-Live Level 66

Spectral Processing-Live OscillatorBank 97

Spectral Sources Interpolate 62

Spectral Sources LiveSpectralAnalysis 68

Spectral Sources SyntheticSpectrumFromSounds 159

Spectral Sources SpectralShape 135

Spectral Sources SpectrumInRAM 139

Spectral Sources SpectrumOnDisk 144

Spectral Sources SyntheticSpectrumFromArray 157

Time & Duration SetDuration 128

Time & Duration TimeControl 162

Time & Duration TimeOffset 165

Time & Duration TimeStopper 166

Time & Duration WaitUntil 181

Time & Duration WarpedTimeIndex 182

Tracking Live Input Level 66

Tracking Live Input Threshold 161

Tracking Live Input FrequencyTracker 48

Tracking Live Input OscilloscopeDisplay 98

Tracking Live Input PeakDetector 104

Tracking Live Input SpectrumAnalyzerDisplay 136

190

Variables & Annotation Annotation 8

Variables & Annotation SoundCollectionVariable 133

Variables & Annotation Variable 174

Visual Displays SoundToGlobalController 134

Visual Displays OscilloscopeDisplay 98

Visual Displays SpectrumAnalyzerDisplay 136

Vocoders ScaleVocoder 124

Vocoders TunableVocoder 169

Xtra FeedbackLoopInput 35

Xtra FeedbackLoopOutput 36

Xtra Sources CloudBank-Element 19

Xtra Sources FilterBank-Element 41

Xtra Sources FormantBankOscillator 46

Xtra Sources GAOscillators 51

Xtra Sources MultifileDiskPlayer 88

Xtra Sources Multisample 90

Xtra Sources TimeFrequencyScale 163

Xtra Sources Mixer 86

191

192

Sound Classes by Name

AbsoluteValue Math 1

ADSR Envelopes & Control Signals 2

AnalogSequencer Sequencers 4

AnalogSequencer Looping 4

AnalysisFilter Filters-Mono 7

AnalysisFilter Filters 7

Annotation Variables & Annotation 8

Annotation Frequency & Time Scaling 8

AR Envelopes & Control Signals 9

ArcTan Math 10

AudioInput Inputs 11

AudioInput Sources & Generators 11

AveragingLowPassFilter Filters-Mono 12

ChannelCrosser Spatializing 13

ChannelJoin Spectral Analysis-FFT 14

ChannelJoin Mixing & Panning 14

ChannelJoin Filters-Stereo 14

ChannelJoin Aggregate Synthesis 14

ChannelJoin Additive synthesis 14

ChannelJoin Sources & Generators 14

Channeller Spatializing 15

Channeller Mixing & Panning 15

Chopper Granulating & Chopping-Mono 16

CloudBank Aggregate Synthesis 17

CloudBank Sources & Generators 17

CloudBank-Element Xtra Sources 19

Constant Math 21

Constant Envelopes & Control Signals 21

ContextFreeGrammar Scripts 22

Crossfade Mixing & Panning 24

DelayWithFeedback Math 25

DelayWithFeedback Delays-Mono 25

Difference Spatializing 27

Difference Mixing & Panning 27

Difference Math 27

Difference Envelopes & Control Signals 27

DiskCache Sampling 28

193

DiskCache Disk 28

DiskPlayer Sampling 29

DiskPlayer Disk 29

DiskPlayer Sources & Generators 29

DiskRecorder Sampling 30

DiskRecorder Disk 30

DualParallelTwoPoleFilter Filters 31

DynamicRangeController Cross synthesis 32

DynamicRangeController Compression/Expansion 32

DynamicRangeController Additive synthesis 32

DynamicRangeController Sources & Generators 32

Equality Math 34

FeedbackLoopInput Xtra 35

FeedbackLoopOutput Xtra 36

Filter Sampling 38

Filter Filters-Mono 38

Filter Sources & Generators KBD Ctrl 38

FilterBank Aggregate Synthesis 40

FilterBank Sources & Generators 40

FilterBank-Element Xtra Sources 41

FIRFilter Filters 42

ForcedProcessorAssignment Sampling 43

FormantBank Aggregate Synthesis 44

FormantBank Sources & Generators KBD Ctrl 44

FormantBank Sources & Generators 44

FormantBankOscillator Xtra Sources 46

FormantBankOscillator Sources & Generators KBD Ctrl 46

FrequencyScale Frequency & Time Scaling 47

FrequencyTracker Tracking Live Input 48

FunctionGenerator Envelopes & Control Signals 50

GAOscillators Xtra Sources 51

GAOscillators Sources & Generators KBD Ctrl 51

GenericSource Sampling 53

GenericSource Inputs 53

GenericSource Disk 53

GenericSource Sources & Generators 53

GrainCloud Sources & Generators KBD Ctrl 54

GrainCloud Sources & Generators 54

GraphicalEnvelope Envelopes & Control Signals 56

GraphicEQ Filters 57

194

GraphicEQ EQ 57

HarmonicResonator Filters-Mono 58

HarmonicResonator Sources & Generators KBD Ctrl 58

HighShelvingFilter Filters 59

HighShelvingFilter EQ 59

InputOutputCharacteristic Distortion & Waveshaping 60

Interpolate Spectral Sources 62

Interpolate Math 62

IteratedWaveshaper Sources & Generators KBD Ctrl 63

KeyMappedMultisample Sources & Generators KBD Ctrl 64

Level Tracking Live Input 66

Level Spectral Processing-Live 66

Level Modulation 66

Level Global controllers 66

Level Gain & Level 66

Level Frequency & Time Scaling 66

Level EQ 66

Level Envelopes & Control Signals 66

Level Compression/Expansion 66

LimeInterpreter Scripts 67

LiveSpectralAnalysis Spectral Sources 68

LowShelvingFilter Filters 70

LowShelvingFilter EQ 70

Matrix4 Spatializing 71

Matrix4 Outputs 71

Matrix4 Mixing & Panning 71

Matrix8 Spatializing 72

Matrix8 Outputs 72

Matrix8 Mixing & Panning 72

MemoryWriter Sampling 74

MIDIFileEcho MIDI Out 76

MIDIMapper MIDI In 77

MIDIOutputController MIDI Out 80

MIDIOutputEvent MIDI Out 81

MIDIOutputEventInBytes MIDI Out 82

MIDIVoice Scripts 83

MIDIVoice MIDI In 83

Mixer Xtra Sources 86

Mixer Spectral Analysis-FFT 86

195

Mixer Spatializing 86

Mixer Sampling 86

Mixer Reverb-Stereo 86

Mixer Reverb-Spatializing 86

Mixer Mixing & Panning 86

Mixer Granulating & Chopping-Mono 86

Mixer Frequency & Time Scaling 86

Mixer Flanging & Chorusing-Mono 86

Mixer Filters-Mono 86

Mixer Distortion & Waveshaping 86

Mixer Delays-Mono 86

Mixer Compression/Expansion 86

Mixer Sources & Generators KBD Ctrl 86

Mixer Sources & Generators 86

Monotonizer Frequency & Time Scaling 87

MultifileDiskPlayer Xtra Sources 88

MultiplyingWaveshaper Distortion & Waveshaping 89

MultiplyingWaveshaper Sources & Generators 89

Multisample Xtra Sources 90

MultisegmentEnvelope Envelopes & Control Signals 92

MultislopeFunctionGenerator Envelopes & Control Signals 93

Noise Sources & Generators 94

Oscillator Modulation 95

Oscillator Envelopes & Control Signals 95

Oscillator Sources & Generators 95

OscillatorBank Spectral Processing-Live 97

OscillatorBank Processing analyzed spectra 97

OscillatorBank Frequency & Time Scaling 97

OscillatorBank Aggregate Synthesis 97

OscillatorBank Additive synthesis 97

OscillatorBank Sources & Generators KBD Ctrl 97

OscillatorBank Sources & Generators 97

OscilloscopeDisplay Visual Displays 98

OscilloscopeDisplay Tracking Live Input 98

Output4 Spatializing 99

Output4 Outputs 99

Output4 Mixing & Panning 99

Output8 Spatializing 100

Output8 Outputs 100

Output8 Mixing & Panning 100

196

OverlappingMixer Mixing & Panning 101

Pan Mixing & Panning 102

ParameterTransformer Scripts 103

PeakDetector Tracking Live Input 104

PeakDetector Envelopes & Control Signals 104

PhaseShiftBy90 Math 105

PresenceFilter Filters 106

PresenceFilter EQ 106

Product Modulation 107

Product Math 107

Product Granulating & Chopping-Mono 107

Product Envelopes & Control Signals 107

PulseGenerator Sources & Generators 108

PulseTrain Envelopes & Control Signals 109

QuadOscillator Frequency & Time Scaling 110

REResonator Cross synthesis 111

ReverbSection Reverb-Mono 112

RunningMax Math 115

RunningMin Math 116

Sample Sampling 117

Sample Looping 117

Sample Sources & Generators 117

SampleAndHold Sampling 119

SampleAndHold Math 119

SampleAndHold Envelopes & Control Signals 119

SampleCloud Sources & Generators 120

SamplesFromDiskSingleStep Disk 122

ScaleAndOffset Math 123

ScaleVocoder Vocoders 124

ScaleVocoder Filters-Mono 124

ScaleVocoder Sources & Generators KBD Ctrl 124

Script Scripts 126

SetDuration Time & Duration 128

SetRange Math 129

SimplePitchShifter Frequency & Time Scaling 130

SOSOscillators Additive synthesis 132

SoundCollectionVariable Variables & Annotation 133

SoundToGlobalController Visual Displays 134

SoundToGlobalController Global controllers 134

197

SpectralShape Spectral Sources 135

SpectrumAnalyzerDisplay Visual Displays 136

SpectrumAnalyzerDisplay Tracking Live Input 136

SpectrumFrequencyScale Spectral Modifiers 137

SpectrumFrequencyScale Frequency & Time Scaling 137

SpectrumFundamental Spectral Modifiers 138

SpectrumInRAM Spectral Sources 139

SpectrumLogToLinear Spectral Modifiers 140

SpectrumModifier Spectral Modifiers 141

SpectrumOnDisk Spectral Sources 144

SpectrumTrackSelector Spectral Modifiers 146

SpectrumVoicedUnvoiced Spectral Modifiers 147

SqrtMagnitude Math 148

StereoInOutput4 Spatializing 149

StereoInOutput4 Reverb-Spatializing 149

StereoInOutput4 Outputs 149

StereoInOutput4 Mixing & Panning 149

StereoInOutput8 Spatializing 150

StereoInOutput8 Outputs 150

StereoInOutput8 Mixing & Panning 150

StereoMix2 Spatializing 151

StereoMix2 Mixing & Panning 151

StereoMix2 EQ 151

StereoMix4 Spatializing 152

StereoMix4 Scripts 152

StereoMix4 Mixing & Panning 152

StereoMix4 Drum machines 152

SumOfSines Processing analyzed spectra 154

SumOfSines Additive synthesis 154

SumOfSines Sources & Generators KBD Ctrl 154

SumOfSines Sources & Generators 154

SyntheticSpectrumFromArray Spectral Sources 157

SyntheticSpectrumFromSounds Spectral Sources 159

Threshold Tracking Live Input 161

TimeControl Time & Duration 162

TimeFrequencyScale Xtra Sources 163

TimeFrequencyScale Sources & Generators 163

TimeOffset Time & Duration 165

TimeStopper Time & Duration 166

TriggeredSampleAndHold Sampling 167

198

TriggeredSampleAndHold Math 167

TriggeredSampleAndHold Envelopes & Control Signals 167

TriggeredTableRead Sampling 168

TriggeredTableRead Envelopes & Control Signals 168

TunableVocoder Vocoders 169

TunableVocoder Filters 169

TwoFormantElement Filters 171

TwoFormantElement Sources & Generators 171

Variable Variables & Annotation 174

VCA Math 175

VCF Filters 176

Vocoder Filters 177

Vocoder EQ 177

Vocoder Cross synthesis 177

VocoderChannelBank Filters 179

WaitUntil Time & Duration 181

WarpedTimeIndex Time & Duration 182

199

200

