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Eric Lyon organized this symposium around the
following two questions. Why has some computer
music software survived and developed a follow-
ing? Where is computer music software today, and
where might it be headed in the future? Acknowl-
edging that the term ’’computer music’’ is by now
redundant, since virtually all music involves the
use of computers in some form or another, he
posed these questions with respect to computer
music software that supports experimental music.
Experimental music is not limited to any speci� c
musical style or genre. An experimental musician
is one who approaches each act of musical creation
in a spirit of exploration and innovation, often with
the goal of inventing new kinds of music that have
never been heard before.

I would like to take Eric Lyon’s re� nement a step
further by observing that all of the software exam-
ples included in this symposium (along with some
others that are not represented here) belong to a
special category of computer music software called
computer music languages. Most software packages
can be classi� ed as utilities; they perform a well-
de� ned, familiar function that is needed by a large
number of people. A software package that emu-
lates all the functions of the traditional multi-track
recording studio would be one example of a utility.
But the pieces of software that Eric Lyon has cho-
sen to include in this symposium are different;
they are examples of computer music languages.

A language provides one with a � nite set of
’’words’’ and a ’’grammar’’ for combining these
words into phrases, sentences, and paragraphs to
express an in� nite variety of ideas. A language does
not do anything on its own; one uses a language to
express one’s own thoughts and ideas. This is what
makes these particular software packages so open,
extensible, and useable in ways unanticipated by
their authors. And that is why, although they may
never command the same market share as utilities,

they have had a longer-lasting and deeper in� uence
on the evolution of music.

This article is organized into three sections. The
� rst section is an identi� cation and discussion of
factors that can contribute to the success and lon-
gevity of a computer music language. In the middle
section, I try to illustrate some of those factors
(like extensibility) using speci� c examples from the
Kyma language. The last section is a speculation on
the role computer music languages could play in a
future world where art, the economy, and human
beings are very different from the way they are
today.

Factors Contributing to the Success
of a Language

Why have some computer music languages sur-
vived over the years and attracted a sizeable num-
ber of users? Although we would like to believe
that the only reasons for the success of these lan-
guages are their inherent attributes, many of the
factors contributing to success have little to do
with the language or technology itself. There are,
for example, the lucky accidents of geography,
economic/social class, and chromosomal makeup.
Given these ’’accidents’’ of birth and fortune, what
other necessary (but not suf� cient) factors can con-
tribute to the longevity and acceptance of a com-
puter music language?

Reasons Intrinsic to the Language

Several factors intrinsic to a language contribute to
its relative success. A language is successful if peo-
ple are using it successfully. It does not matter how
elegant or beautiful a language is in theory or on
paper if no one is using it. Any language that has
longevity and a following also has a corresponding
list of creative projects that have been successfully
completed using that language.

http://www.symbolicsound.com
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A language is successful if it answers a need that
is not otherwise satis�ed. How does a language
gain users in the � rst place? First it must ade-
quately address some basic needs, and then it must
also answer some need (tangible or otherwise) that
is not currently being satis� ed elsewhere.

A language is successful if it is able to express
the unanticipated. In a computer music language,
just as in a natural language, it should be possible
to say something new. For example, a highly re-
strictive data-� ow editor—while it may protect one
from mistakes—also prevents one from discovering
the sounds that its author could not imagine. A
successful music language does not impose a par-
ticular musical style upon its users; it must be � ex-
ible enough and abstract enough to generate
musical utterances in any style and in any genre.

A language is successful if its underlying data
structure can support extensions and multiple in-
terpretations without violating the original model.
This ability to express the unanticipated extends
beyond the users of the language to the developers
of the language. The underlying data structures of a
successful language should make it easily extensi-
ble, even in directions that the designer had not
originally anticipated. When a language has this
characteristic, it can evolve and adapt.

A language is successful if its author can strike a
balance between providing users with what they
say they need and what they do not yet know that
they need. It comes as no surprise that when the
author of a computer music language is willing to
make adjustments and additions to the language in
response to user feedback that those languages be-
come more successful and develop a loyal follow-
ing. But the feedback process is not quite as direct
as it might seem at � rst glance. If an author simply
went through the ’’wish lists,’’ item by item, add-
ing each feature that was asked for, the result
would be a bloated and jumbled mass of features
without the logic or framework necessary for the
user to make sense of it all.

Instead, the authors of the successful languages
have had to digest and analyze the feedback � rst
before making modi� cations to the language. They
have had to combine all the speci� c requests, gen-
eralize them, and produce meta-solutions that sat-

isfy several of the issues at once. Even more
important is the task of giving people what they do
not yet know that they need. People do not always
know that they want something if they have never
seen it before. But that is often exactly what they
want and need most of all: something new.

A successful software designer must maintain a
balance between responding to user feedback and
maintaining a consistent vision for the language.
At times, it is the users who are specifying the lan-
guage and at others, it is the author who forges
ahead into new territory. This is not so different
from a composer who gives the audience some fa-
miliar material while also nudging them along into
new musical territories.

Reasons Extrinsic to the Language

A language is successful if one can learn it and
learn from it. Whereas the success of a utility de-
pends in large part on its being completely obvious
and easy to use without having to refer to the man-
ual, computer music languages, by de� nition, re-
quire more of their users. Simply knowing the
syntax of a language does not automatically give
one something interesting to say. The most suc-
cessful users of computer music languages are
those who also take an interest in learning more
about sound, music, and structure. For a computer
music language to be successful, there must also be
opportunities for learning more about sound and
music creation in the context of that language:
workshops, courses, tutorials, extensive documen-
tation (via print and other media), books, lectures,
an online forum, technical support, etc.

One of the bene�cial side effects to learning a
computer music language is that the basic princi-
ples are completely transferable to other languages
and even to other utilities and hardware setups.
Learning a computer music language provides one
with a basic understanding of sound, logic, and
structure that one can apply no matter how tech-
nology evolves in the future. By contrast, the
knowledge of which buttons to press in a special-
purpose utility becomes obsolete as soon as that
utility is upgraded or replaced.
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A language is successful when it has a commu-
nity of users. Although an artist is almost by de� -
nition independent, there is also some stimulation
and practical assistance to be derived from interact-
ing with other people who use the same language.
Successful languages have groups of users who pro-
vide technical support, new developments, educa-
tion, and appreciation for each other.

A language is successful when it serves as a
nexus for interdisciplinary cross-fertilization. The
most powerful function of any language (whether it
is a programming language, a computer music lan-
guage, or a natural language) is to act as a nexus for
the cross-pollination of ideas among different
� elds. Each person who uses a language also has
some effect on its development. When a language is
general enough to satisfy the needs of users having
different backgrounds, different goals, and different
knowledge sets, it can also act as the vector for
transferring ideas and protocols from one discipline
into another. When the ideas and protocols are ap-
plied in the new � eld, they acquire additions and
alterations that in turn � nd their way back into the
language, and so on.

A language is successful when its author uses it
regularly. Using one’s own software gives one a dif-
ferent perspective than is possible from merely
writing it. There is no better way to fully identify
with the users of the software and get ideas for im-
provements than to compose with the language,
perform on stage with it, and otherwise use it in
the same way its users do. The more the author
can do this, the better the language becomes.

A language is successful when the people behind
it are committed to its success. In the end, the sin-
gle most important factor in the success of a lan-
guage is that its author, its users, a company, and/
or an institution are committed to its continued
existence. Behind every successful language, one
can � nd an individual or individuals dedicated to
the perpetuation and further development of that
language. Some very interesting and beautiful lan-
guages have had to be abandoned by authors who
felt compelled (economically, professionally, or
simply due to their own breadth of interests) to
pursue other projects.

A language cannot be successful unless it �rst
exists. Although this may seem obvious, the � rst

step towards creating a successful language is to
start writing music software in the � rst place. Cre-
ative environments where many people are writing
software can remove the barrier of ’’over-
reverence’’ that sometimes surrounds existing lan-
guages (which may appear as if they had sprung
fully formed out of nothing and to have existed for-
ever). A healthy environment for language develop-
ment is one in which there is a lot of software
experimentation and where the conversation is just
as likely to turn to software architecture as it is to
the weather or the news.

A language is successful when people are ready
for it. In technology, it seems that if an idea arrives
even a little bit too early, it has to struggle for sur-
vival, but once the time is right, there is an explo-
sion of development and growth. People have to be
conceptually prepared to receive and understand
what is presented to them, and the essential tech-
nological infrastructure must be in place in order to
reach potential users and achieve the basic func-
tionality.

A language is successful when people say that it
is successful. If you live in a village where every-
one believes in witchcraft and the local witch puts
a public hex on you, it won’t matter that you are a
cheerful person in the best of health; everyone will
start treating you as if you were already dead. What
is said becomes the truth. And when something is
in print, it carries even more authority. So having
some good things said about the language in the
media, on the web, in journals, and in the history
books lends the language an air of credibility and
permanence.

A language is sometimes successful due in part
to pure luck. The successful languages are the ones
whose designers were prepared to recognize and
take advantage of being in the right place at the
right time.

A language is successful if it has contributed
ideas and stimulated new developments in the
�eld. Even the most successful of languages will
not stay around forever, but the ideas from those
languages will endure and in� uence the direction
of future developments. Human beings build lan-
guages (natural languages, computer languages, and
music) as a collective project, often with the same



72 Computer Music Journal

blind dedication displayed by termites building a
nest. Each individual works, almost by instinct, on
some small portion of the project without being
able to fully conceive of the part it plays in the
larger structure. The higher-level structure (in this
case ’’human knowledge’’ or ’’culture’’) is an emer-
gent property of the myriad of smaller structures
built by individuals.

The Kyma Language

Origins

Where did Kyma come from? Kyma comes in part
from a fusion of my childhood interests in both
music and science and from pencil-and-paper at-
tempts to algorithmically map patterns in nature to
patterns in music written for acoustic instruments.
In part it arose out of the atmosphere at the Uni-
versity of Illinois in the early 1980s, an environ-
ment rich in living examples of composers and
engineers who were creating their own computer
music languages and instruments or extending ex-
isting languages to suit their compositional require-
ments. (Consider, for example, Herbert Brün’s
elegant and algebraic SAWDUST language, Salva-
tore Martirano’s SalMar language/instrument for
real-time composition, John Melby’s extensive
score manipulation subroutines, Jim Beauchamp’s
voltage-controlled analog synthesizer and his later
forays into hybrid synthesizers and computer mu-
sic languages, Sever Tipei’s MP1 algorithmic com-
position language, and the CERL Sound Group’s
long line of digital synthesizers and music software
culminating in the Platypus user-microcodable
DSP designed by Lippold Haken and Kurt Hebel in
1983.) In part it arose out of my fascination with
tape music—with being able to literally hold bits of
sound in my hands and to manipulate time by rear-
ranging the pieces and taping them back together
like a � lmmaker. And in part it arose out of my
frustration with computer music languages of the
time, which felt almost like a step backward from
tape music, because they were de� ned in terms of
music notation played on ’’instruments’’ and could

provide no real-time interaction. To my mind,
though, these shortcomings were overshadowed by
the promise of the structural, organizational, and
algorithmic power of the computer, so Kyma was
also inspired by these earlier computer music lan-
guages.

Kyma also drew inspiration from a language
called Smalltalk and the paradigm of object-
oriented programming. To me, ’’object’’ suggested
something like the snippet of audiotape that I
could hold in my hands. But it also suggested a
more abstract conceptual grouping of atomic or
compound sound objects that could be manipulated
or viewed as a single entity and then ’’zoomed’’ to
reveal arbitrary levels of detail. Kyma was also in-
� uenced by the courses I took on data structures,
mathematical logic, automata theory, discrete
mathematics, and graph theory at the University of
Illinois. In a 1986 course on Programming Lan-
guage Principles, I wrote a term paper called
’’KYMA: A Computer Language for the Representa-
tion of Music’’ describing an object-oriented pro-
gramming language for analog circuit simulation,
score representation, rule-based composition, and
direct manipulation of waveforms.

I started writing code for the � rst version of
Kyma in Apple Smalltalk running on an Apple
Macintosh 512K in 1986. In 1987, I modi� ed Kyma
to make use of the Platypus signal processor as an
accelerator and demonstrated it at the 1987 Inter-
national Computer Music Conference in Cham-
paign (Scaletti 1987). In 1989, Kurt Hebel and I had
concluded that it was not in keeping with the man-
date of a university research laboratory to build,
distribute, and support hardware and software. So
we formed a company, running it for the � rst three
years from our third-� oor student apartment. We
assembled hardware in the kitchen, developed soft-
ware in the spare bedroom, used a closet stuffed
with sound-absorbing blankets as our recording stu-
dio, and used the living room for faxing, mailing,
packing, and shipping. That � rst summer, we could
not afford to run the apartment’s air conditioner,
but we continued programming and hardware-
designing into the fall and winter, � nally hearing
the � rst sounds from the Capybara at midnight on
New Years’s Eve (in the � rst few minutes of 1990).
Thanks to the extraordinary vision of our � rst cus-
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tomers, who understood what we were doing long
before anyone else took us seriously, we managed
to bootstrap Symbolic Sound Corporation and
move into our � rst real of� ce in 1992.

Since that � rst version of Kyma in 1986, there
have been � ve major software revisions, a port
from the MacOS to Windows in 1992, and ports to
� ve different hardware accelerators. The user base
has expanded from a single composer/software de-
veloper working in a university research lab to an
international community of musicians, sound de-
signers, and researchers. Symbolic Sound has been,
for us, an alternative means to the end of continu-
ing our research and teaching. Our research and
ideas are embodied in software, hardware, and
sound, and we have been privileged to teach (and
learn from) heterogeneous groups of individuals of
every age and background, many of whom have
also become our colleagues and friends.

In presenting this concise personal history, I
hope to highlight the fact that no computer lan-
guage ever springs fully formed out of nothing.
Each language has a distinctive � avor to it im-
parted by the primordial ’’soup’’ in which it was
spawned—a history, a personality, and a reason for
being. Each language is the complex embodiment
of a theory of sound, music making, and structure.
The basic assumptions of each language show the
imprint of the designer’s personality, experiences,
theories, and training.

De�nition and Rami�cations of the Sound Object

Kyma is a language for specifying, manipulating
and combining sounds (Scaletti 1997), and it is
based on the following de� nition:

A Sound is de� ned to be a Sound S, a unary
function of another Sound f(S), or an n-ary func-
tion of two or more Sounds f(s1, s2, . . ., sn).

For example, a Sound might be a source of sound
(like the audio input, a sample, or a noise genera-
tor). It could be a unary function of another Sound
(like a LowPassFilter of another Sound). It could
also be an n-ary combination of several Sounds
(like a Mixer with twelve input Sounds).

The de� nition is recursive, so one can build arbi-
trarily long chains of functions of other functions
(for example a LowPassFilter of a HighPassFilter of
a Mixer of three mixers and the microphone input).
Some of the functions are temporal functions
called TimeOffsets and SetDurations. Using these
temporal functions within a structure, one can cre-
ate sequences of Sounds, mixes of overlapping
Sounds, and other time-varying structures.

One of the rami� cations of this abstract, recur-
sive de� nition is that Kyma makes no distinction
between ’’samples,’’ ’’live audio input,’’ and syn-
thetically generated signals. They are all Sounds
that act as sources, and they can be manipulated
and composed using the same sets of unary and
n-ary functions. Another rami� cation of the Sound
object de� nition is that Kyma does not draw a
distinction between ’’instrument’’ and ’’score.’’
Instead, it provides an abstract way to build hierar-
chical structures that might or might not corre-
spond to traditional musical organization.

This recursive de� nition forms the basis of
Kyma. Kyma would still be Kyma even if it had no
graphical user interface and no hardware accelera-
tor (and in fact the � rst version of Kyma was com-
pletely text-based and ran on a single processor).

Multiple Viewpoints on the Same Abstract
Data Structure

Rather than calling Kyma a ’’graphical language,’’
it would be more accurate to call it a language that
provides multiple ways of viewing and manipulat-
ing data. The current graphical representation of
Kyma Sounds has evolved over several years as I
have tried to discover the most direct and appropri-
ate representation for understanding and manipu-
lating the Sound structures. The abstract structure
came � rst, and the graphics evolved (and continue
to evolve) in order to elucidate the structure.

Evolution of the Graphic Sound Editor

Initially, a Sound was speci� ed symbolically as
Smalltalk code. This quickly evolved into a kind of
’’selection-from-lists’’ interface (shown in Figure 1)
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in which one could select a class and its creation
method from lists, and they would then be auto-
matically typed into a window. Previously created
Sounds appeared in lists on either side of the code
window, so they could be used as arguments to
new Sounds. Its indentation level represented the
position of a Sound in the hierarchical structure,
and one could select any level and listen to it at
that point.

In an attempt to further reduce the need for typ-
ing, I changed the interface to the ’’Russian doll’’
style interface shown in Figure 2, where Sounds are
represented as ’’containers’’ of other Sounds.
Double-clicking on a Sound opened a window
showing the Sound’s input(s) and parameter values,
double clicking on those inputs revealed their in-
puts, and so on.

This succeeded in revealing the recursive nature
of the structure but was not very good at showing
the overall structure and the connections between
the Sounds. Finally, I realized something that had

been right at my � ngertips (literally) all along.
Every time I tried to describe the structure of a
Kyma Sound, I always drew a picture like the one
in Figure 3.

All this time, I had been describing Sounds in
one way but representing them on the computer
screen in a different way. It � nally occurred to me
that a drawing of the Sound structure could be
more than just a tool for describing and under-
standing the Sounds: it might also be the most di-
rect way for people to create and manipulate the
Sounds. In other words, the same representation
could be used for both analysis (i.e., a description
after the fact) and synthesis (i.e., creating and modi-
fying the structures). For me, at least, this was an
important conceptual breakthrough. It was the � rst
time I realized that synthesis is just one speci� c
case of analysis.

I changed the graphical representation of Sounds
from boxes-within-boxes to something that looked
like the screen shot in Figure 4, a graphical repre-

Figure 1. Kyma screenshot
from 1987. After selecting
a Sound class from the list
in the upper left and a
creation method from the
list at the upper right, the
creation code would be

automatically pasted into
the center pane. The hier-
archical structure of the
Sound was represented us-
ing indentation levels
(lower right), and the cur-
rently selected subSound

was displayed in the lower
left pane. The panes to the
left and right of the center
pane are lists of previously
created Sounds that could
be used as inputs to the
Sound in the center pane.
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sentation of the functions, clearly in� uenced by
the representation of trees and Directed Acyclic
Graphs (DAGs) in computer science. The default
signal � ow direction was from bottom to top (an
in� uence of the textbook illustrations of Music N
unit generators).

The direction of signal � ow was user-selectable,
so one could reverse the signal � ow direction or
rotate it 90 degrees. In� uenced by DSP textbooks
and papers, I eventually decided to standardize
the Sound representation to one showing the sig-
nal � owing from left to right (as shown later in
Figure 6).

Note that through all of these changes in graphi-
cal representation, nothing about the underlying
Sound structure changed. However, even some-
thing as simple as changing the direction of signal

Figure 2. Hierarchical
Sound structure repre-
sented as boxes within
boxes (Scaletti and
Johnson 1988).

Figure 3. Drawing of a
Kyma Sound structure
(Scaletti 1989).
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� ow had a noticeable effect on the way people un-
derstood and manipulated that underlying structure.

Evolution of the Graphical Timeline

Kyma’s Timeline editor is yet another view of that
same underlying data structure. Kyma Sounds have
always been able to represent time-varying signal
� ow architectures through the use of the Time-
Offset and SetDuration modules. These represent
changes to the structure of the signal � ow itself,
not ’’events’’ in the sense of parameter updates. I
noticed that whenever I wanted to explain the ef-
fects of the TimeOffset and SetDuration in a Sound
(see Figure 5a), I would illustrate it using bars and
vertical time markers (see Figure 5b).

Similarly, whenever I wanted to create a time-
varying synthesis architecture, I would always start
by sketching it out as a timeline on paper � rst. It
was another case of � nally realizing that the best
representation for specifying and manipulating a
structure was the one that I, along with everyone
else, had already been using on paper.

I also noticed that whenever I wanted to create a
parameter control function, I would � rst draw the
desired control function on paper and then work
out the arithmetic combination of functions to
generate that shape. That is why the Kyma.5 time-
line (shown in Figure 6) allows one to draw the
control functions.

The Timeline was not so much a change to
Kyma as it was the addition of an alternate view on
the original underlying Sound structure. (And, judg-
ing from the number of complex, multi-layered
sounds and performances that have been created
using the Timeline, it must have been a closer
match to the way people conceive of time varying
structures).

Evaluating the Appropriateness
of a Representation

At the risk of belaboring the point, all of these ex-
amples illustrate that there can be multiple ways of
viewing and manipulating a single abstract struc-
ture. Each alternative can reveal or emphasize dif-

Figure 4. Early GUI
version of the Kyma Sound
structure (Scaletti and
Hebel 1991).
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ferent aspects of the structure and in� uence the
kinds of things people choose to create using that
structure.

Sometimes symbols are the clearest and most
direct representation, and sometimes a graphical
representation can be clearer and more compact.
Kyma provides both graphical and symbolic inter-
face elements, depending on the context. Arriving
at the most appropriate representation nearly al-
ways requires some experimentation and a few in-
spired realizations. In the Kyma language, that
evolution is still in progress and is part of the fun
of participating in a living language.

Extending the Data Structure

Sound objects have also proven to be extensible in
ways I had not originally anticipated. In the � rst
version of Kyma, for example, although the struc-
tures could be time-varying, the parameter values
were all constants. As we and other users worked
with the language, we came to realize that by mak-
ing the parameters event-driven, we would not
only be making the language more interactive, we
would also be opening it up to external control

from event sources like MIDI controllers and
MIDI-generating software. So in Kyma version 4.5,
we added an event language, including internal and
external sources of asynchronous events and real-
time expression evaluation, on the Capybara. The
improvement in the quality of the sounds people
made in the new version demonstrated the power
of event-driven live interaction. And we were
pleasantly surprised that the original data structure
had been robust enough to accommodate this kind
of major shift.

Expanding the Algorithm Set

One of the ideas behind the Kyma framework (and
indeed behind any ’’modular’’ software or hard-
ware) is that one can easily plug new sound synthe-
sis and processing algorithms into the existing
structure and immediately use them in conjunction
with existing ones. Kyma has proven itself open
enough to accommodate several new synthesis and
processing algorithms that we have developed over
the years. The most recent example is the addition
in 2001 of a new family of synthesis and processing
algorithms called Aggregate Synthesis.

Aggregate Synthesis is an extension to the classic
’’additive synthesis’’ algorithm in which complex
timbres are created by adding together the outputs
of hundreds of sine wave oscillators. Aggregate
Synthesis extends this idea by using elements other
than oscillators as the basic generators. Besides the
classic ’’oscillator bank,’’ one can also use a bank
of band-pass � lters, a bank of impulse response
generators, or a bank of grain cloud generators.
These alternative generator banks are controlled by
the same analysis � le (or live spectral analysis) as
the classic oscillator bank, so Aggregate Synthesis

Figure 5a. Using Time-
Offsets (D1 and D2) to cre-
ate a time varying Sound
structure (Scaletti 1992).

Figure 5b. Describing the
results of a time-varying
Sound structure on paper
(Scaletti 1992).
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can be used for live analysis/resynthesis with addi-
tional control parameters like grain duration, grain
envelope, grain waveform, etc.

The Role of the Capybara

Every computer music language uses hardware (be-
cause every computer music language runs on a
computer). In its current implementation, Kyma
runs in a distributed manner on two general-
purpose computers: a Macintosh or PC and the
Capybara. The Capybara is a general-purpose mul-

tiprocessor computer designed by Kurt Hebel to
have a scalable architecture that, in its current in-
carnation, can support from 4 to as many as 28 par-
allel processors (with 4 or 8 analog and digital
24-bit 100 kHz audio inputs and outputs). It is not
special-purpose hardware: it is not a collection of
oscillator and � lter circuits hardwired into a cen-
tral mixer. Its function is completely determined
by software. In our ’’vision-centric’’ society, people
routinely dedicate hardware towards the accelera-
tion and improved quality of real-time video and
graphics. Audio artists deserve the same considera-
tion (and dedicated computing cycles!).

Figure 6. Screenshot of
Kyma.5 user interface
(Scaletti 2000).
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Language as Nexus

Kyma serves as a nexus connecting sound design-
ers, musicians, artists, programmers, and research-
ers who work in different geographical locations
and who bring with them different sets of goals and
different ways of thinking about sound and
problem-solving. They use Kyma to create sounds
for feature � lms, advertisements, and computer
games; they are using Kyma on albums, in stage
shows, for live theatre, in installations, in clubs, in
classrooms, at parties, in laboratories, in ware-
houses, and at home.

I learn a great deal by talking with Kyma users,
and, by inference, from watching them work,
studying the sounds they create, and analyzing the
questions they ask or new features they request.
That knowledge becomes incorporated into Kyma
and subsequently transferred, via Kyma, to all the
other Kyma users who then further transform that
knowledge according to their own approaches and
ways of thinking about sound. Thus, Kyma is serv-
ing as a conduit for information and knowledge
transfer between disciplines, resulting in some ex-
citing cross-pollinated hybrid art forms and new ap-
proaches to processing and synthesizing sound.

Future Directions for Computer Music Software

What form will computer music languages take in
a future world populated by prosthetically and ge-
netically enhanced humans having a broader con-
cept of art and an economy based more on services
than on physical objects?

I foresee computer music languages that are per-
fectly scaleable, modular, dynamic networks of dis-
tributed computational elements. They will be
customized aggregations of independent computa-
tional elements (some of which will be virally de-
livered directly into our brains) that can operate in
isolation or in cooperation with additional ele-
ments accessed, only as needed, via the Internet.

I see computer music languages evolving toward
more general ’’virtual space’’ languages in which a
single database or model world drives the genera-

tion of sound, visuals, tactile feedback, physical
motion, and direct neural stimulation. In these lan-
guages, it will become even clearer that the map-
ping is the message: given identical model worlds,
the art lies in selecting or directing the observer’s
path through that world and in mapping the num-
bers into perceptual stimuli (or electrical signals
suitable for directly stimulating neurons).

On the hardware side, I see an ever more urgent
need for multiple, broad-band interfaces—wide
channels for pumping data into and out of the vir-
tual spaces to create a fully ’’immersive’’ experi-
ence.

New Humans

Hybrid Vigor

Populations are shifting and, in accordance with
the principle of ’’hybrid vigor,’’ all this stirring up
of nationalities and cultures and genes is resulting
in stronger, smarter, and healthier human beings.
Future computer music languages written by these
future humans will embody new ways of thinking
about time, space, quantity, physical movement,
music, and sound.

Self-Modi� cation

We are living through the early part of a century
when life will rede� ne itself through genetic engi-
neering and implant technology. There is no ques-
tion that the agricultural and industrial revolutions
had a big impact on human development, but the
genetic revolution is more than that. It is a rede� -
nition of what it means to be human, of what it
means to be alive. We are witnesses to the moment
when the DNA molecule is just � guring out how it
can modify itself.

Body modi� cations that are now practiced as a
matter of style are just rehearsals for future self-
modi� cations that will include intelligent implants
controlled by the same neural circuits as ’’natural’’
biological parts. The distinctions we now draw be-
tween ourselves and our machines will be blurred
and ultimately erased.



80 Computer Music Journal

New Art

Traditional distinctions between music, � lm, ani-
mation, and games will also become blurred. Art of
the future will consist of a multi-dimensional space
(literal or abstract) and a set of (deterministic or
non-deterministic) ’’paths’’ through that space.
This model is equally serviceable in describing a
piece of tape music, a computer-generated anima-
tion, a live-action � lm, a theme-park ride, a live
improvisation with computer partners, a painting, a
novel, a computer game, a traditional piano sonata,
a virtual environment, a live DJ mix, or an installa-
tion. ’’Audiences’’ of the future will consider all of
these experiences to be art works and will � nd the
old distinctions as foreign as the idea of sitting qui-
etly in their seats during a performance.

The Space

The space of an artwork can be anything from a
physical, three-dimensional space (where the
dimensions would be time-stamped x, y, and z
coordinates) to a completely abstract higher-
dimensional space (where the dimensions might be
the allowed pitch classes or timbral characteris-
tics).

The Paths

A path through the space can be a predetermined
or recorded path chosen by the artist (as in an
acousmatic tape piece, a � lm, or a theme-park ride
where the participants sit in cars pulled along
tracks). Alternatively, it can be a ’’live’’ path (or
paths) where the ’’audience’’ and/or improvising
performers explore the space interactively.

New Economics

Software and music have much in common: both
are complex abstract structures manifested as
ephemeral modulations of an invisible medium.
And unlike many commodities, one cannot buy
music or software; one can license it for personal
use, but the ownership remains with the author.

Under the old model, a musician or programmer
was expected to produce a physical object (a com-
pact disc) that could be distributed via trucks and
airplanes to local storage centers (stores) where
consumers could purchase them. Because consum-
ers exchanged cash for the physical object and
owned the storage medium, they were led to be-
lieve that they also owned the music or software
and could therefore freely give it away or reuse any
portion of it. Improvements in digital recording
quality and network speeds have begun to make it
more obvious that software and music are not
physical objects that can be purchased and owned.
Music creation, like software creation, is a pro-
cess—an evolutionary, ongoing, iterative project.
As such, it is ill-suited to the object distribution
model that worked so well for refrigerators and ba-
nanas, for example, in the last century.

Renting the World

What if the market for music and software were
based on subscriptions rather than on one-time
purchases? For example, one would subscribe to a
software provider, a favorite composer or author, or
to a consortium of like-minded artists or
programmers. In exchange for a yearly subscription
fee, one would receive unlimited access to the lat-
est software updates, the latest pieces by one’s fa-
vorite composer, or even the latest
work-in-progress by one’s favorite artist. In the case
of an artists’ or a source-code cooperative, one
might even be able to earn rebates on the subscrip-
tion fee by contributing artwork or code to a proj-
ect. (This is a variation on the open-source idea in
which the most creative and productive members
can contribute code and the vast majority of people
who are more interested in using the product than
in creating it can contribute money.)

For one thing, this would be an acknowledge-
ment that in both music and software creation, the
process is more valuable than a single snapshot or
progress-report (now known as a ’’release’’). It is al-
ready the case that when one buys a piece of soft-
ware, one does so with the implicit understanding
that one will be frequently downloading or pur-
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chasing updates to that software. It would be inter-
esting to extend this concept to music as well.
Instead of buying a single recording of a � nished
composition, one could subscribe to the composer
and access updates to that composition, alternative
performances of the same work, additional sec-
tions, remixes, and new variations. The best sub-
scriptions would also include opportunities to
interact with the creator in online master classes,
interviews, or group discussions.

For the artists and programmers, subscription
fees would provide a steadier source of income to
replace the current ’’feast-or-famine’’ bursts of cash
� ow provided by the one-time purchase model.
Subscribers would be like ’’investors’’ in a particu-
lar artist. As such, they would � nd it in their own
best interest to help promote that artist to a wider
audience and protect the artist against piracy
(which, under this new model, would hardly be
worth the effort in any case).

For the subscribers, it would mean better cus-
tomer support, simply because an unhappy sub-
scriber is unlikely to renew the subscription next
year. Software developers already interact closely
with their users and bene� t from immediate feed-
back. Would the subscription model foster more in-
telligent dialogs on music as well? It could turn out
that musically literate subscribers might be able to
offer composers some genuinely useful observa-
tions and stimulating responses to their work (in
addition to applause).

The subscription model makes it more obvious
that the creator is even more valuable than that
which is created. Under the old model, musicians
would effectively give themselves away for free on
concert tours, in interviews, bootleg recordings,
and on the web in the hopes of selling physical re-
cordings (that were owned by a record label, not
the musician). That made it seem as if the compact
disc were more valuable than the people who cre-
ated its content (and who hold the potential for pro-
ducing even more content in the future). Under the
subscription model, a group of subscribers could in
effect hire the musicians/programmers, investing
in their future output, collectively paying the mu-
sicians’s salary in exchange for wireless network

access to recorded music, ’’tele-performances,’’ and
whatever ’’extras’’ the artists choose to provide.
(The corollary is that the subscribers could also � re
the composer/programmers who were not satisfy-
ing their appetites for music and software.)

If digital content were available to subscribers
wherever and whenever they wanted, then it might
no longer be worth the effort to ’’pirate’’ or even to
store music and software. If subscribers could ac-
cess the content just as quickly as reading a local
hard disk, and if the content might actually im-
prove each time they access it because the musi-
cians or programmers continue to work on it, then
few people would � nd it desirable to steal the con-
tent.

In game theory, optimizing bene� ts in a one-off
interaction tends to involve maximizing one’s own
gain at the expense of the other person. However,
maintaining a longer-term relationship consisting
of multiple transactions over some period of time
requires some evidence of mutual bene� t if both
parties are to continue to cooperate. For creators
and subscribers both, this new model would favor
long-term, mutually bene�cial relationships.

Even hardware could be sold by subscription
rather than purchased outright. This would be an
acknowledgment that there is more value in the
design of a piece of hardware than in the actual ma-
terials used. It is also an acknowledgment of the re-
ality that computer hardware is inevitably
upgraded every few years. What if, instead of buy-
ing a computer, you subscribed to a computer hard-
ware service? Every few years, the company would
upgrade your computer to the newer model, giving
the hardware companies a strong incentive to reuse
existing materials as much as possible. This could
provide a steadier � ow of cash to hardware compa-
nies while at the same time making them more re-
sponsive to their customers, because their
customers will be subscribing to a continuing ser-
vice, not making a onetime purchase. It also makes
explicit something that is not always so obvious in
the current economy: the cost of reusing or recy-
cling a product at the end of its useful life should
be factored into the initial (or in this case, ongoing)
cost of the product.
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It might take some small adjustments in think-
ing, but in fact we are already familiar with this
subscriber model in other aspects of daily com-
merce. It is the way we pay for news services like
magazines and newspapers; it is the way we pay for
communications services like telephone and Inter-
net access; it is the way people pay for some forms
of entertainment on cable television channels. In
some sense, even paying taxes is subscribing to the
services of the local and national government.
(However, if one becomes dissatis� ed with the ser-
vice, canceling that particular subscription could be
a bit tricky.)
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