
Acknowledgments

Acknowledgments to Edition 4.5

Everyone who has used Kyma over the past year and provided us with feedback has contributed to the
improvements in this latest version of the software and the documentation. We would like to thank each
of you and to invite you to continue to use Kyma and to keep talking to us! Your feedback has had a
measurable impact!

Due to space limitations, this note must, of necessity, fall short of acknowledging everyone who has
helped us this year, so please refer to the web site for a more complete listing of Kyma users (and please
send us any news of your exploits): http://www.SymbolicSound.com.

A few individuals regularly contributed so much time and energy above and beyond the ordinary to-
wards the improvement of Kyma, we wanted to mention them by name:

♦ Barry O’Dell coordinated all the ordering of parts, and made everything come together at exactly the
right time in exactly the right way so that your Capybara could be manufactured and tested.

♦ Chip Leh is the friendly voice you hear on the telephone when you call Symbolic Sound, and he
stress-tested each of the tutorials and all of the examples for this book.

♦ Pete Johnston at the Tape Gallery spent many hours of transatlantic telephone time talking with us
about how we could improve the morphing features in Kyma. Thanks to you, Pete, morphing sounds
much better and is infinitely easier to do than it was a year ago. We hope you will continue to pres-
sure us to make it even better (and easier) next year!

♦ J. P. Jones was always the first to install and test each new beta version and the first to call in with
bug reports, suggestions, and appreciative enthusiasm for the new features, followed immediately by
an inquiry as to when the next revision would be coming out and whether we could send it by
something faster than ordinary air mail. Thanks for your cheerful enthusiasm, your nontrivial sense
of humor, your understanding and appreciation of what Kyma is about, your input and suggestions
on both hardware and software developments, and thanks for being sonically insatiable; it helps keep
us plummeting forward!

♦ Francois “resistance is futile” Blaignan used Kyma on the sound track of several films and TV shows
(including Star Trek), and we’ve spent many hours talking at length on the telephone in Champaign
and in his studio in Hollywood about different sound design, synthesis and processing techniques.
Thanks for your hospitality, thanks for your friendship and moral support, and thank you for hours
of stimulating discussions!

♦ Joel Chadabe, founder of the Electronic Music Foundation (www.emf.org) saw the potential of
Kyma from the earliest days and has been continuously supportive of our efforts at many different
levels. Thanks for making Symbolic Sound a part of history by including us in your book! (Electric
Sound: The Past and Promise of Electronic Music, Prentice Hall).

♦ Dennis Miller is another early supporter who has been unfailingly generous in sharing his knowledge
of and enthusiasm for Kyma in print, on-line, and in person. We know we can always trust you to tell
us we’ve done something great and to just as readily point out when some shareware program out
there does one thing or another a little better (thus shaming us into improving Kyma all the time).
Thanks for your enthusiasm and appreciation and thanks for never letting us get complacent about
anything.

♦ John Platt uses Kyma in both his teaching and in his research in psychoacoustics at McMaster Univer-
sity and it was his tenacious use of the early version of control panels that inspired us to come up
with the current (and vastly improved) version that we call Tools. Thanks for your easy-going bril-
liance and fiendishly clever kludges, and thanks for never letting us forget about all the scientific
applications of Kyma!

♦ Lippold Haken has been our friend and colleague since 1980. Thanks for continuing to use Kyma in
your research, and remember to never give up on sound!

2

♦ Bill Rust posted several (unsolicited) endorsements on the Internet that sounded as if they could have
come from our marketing department — actually they were even better and more enthusiastic than
the marketing copy we generate. Thanks, Bill!

♦ Thanks to a few weeks of low level, late night hacking, emailing, and phone calling between Mark
Gorlinsky and Kurt Hebel, all Power Mac users can now run Kyma with or without virtual memory
(so why can’t all your other music software run with virtual memory turned on like Kyma can?)

♦ Agostino Di Scipio has probably used Kyma in more live performances than any other individual.
Thanks for pushing this aspect of Kyma!

♦ Marcus Hobbs has pushed the development of the real-time evaluator and tools through his intensive
and creative application of these features to implement xenharmonic tunings with colleagues Stephen
Taylor and Erv Wilson.

♦ Fred Szymanski made suggestions for how to “fatten” the emulated analog sounds and engaged us
in stimulating discussions of nested control and controller feedback.

Thanks to all the Kyma 4.5 beta testers for living on the edge and providing essential feedback and sug-
gestions: Francois Blaignan, Robert DeFord, Agostino Di Scipio, Larry Fritts, Vance Galloway, Lippold
Haken, Marcus Hobbs, Pete Johnston, J. P. Jones, Chip Leh, Eric Lyon, John Mantegna, American McGee,
Kelvin Russell, Bill Rust, Fred Szymanski, Lance Massey, John Platt, Andy Todd, and Yasushi Yoshida.

Everyone who attended the summer immersion weekends interacted with us in a hot house atmosphere
where ideas were being exchanged so fast it was hard to tell who came up with what. The one thing that
was certain was that Kyma was always a little bit better after each of the workshops. Thanks to all those
who came through Champaign for workshops or consulting:

Dennis Miller, Chip Leh, Jeff Stolet, Karlheinz Essl, Bruno Liberda, Francois Blaignan, J. P. Jones, Agostino
DiScipio, Nadine Miner, John Platt, Antonio Barata, Brian Belet, David Mooney, Pete Johnston, Larry Fritts,
Mike Radentz, Bill Sequeira, Fred Szymanski, Will Chesser, Todd Watkins, Dragana Barac-Cikoja, Chris
Czopnik, Marcus Hobbs, Laura Tedeschini-Lalli, Roberto D’Autilia, Greg Hunter, and Eugenio Giordani.

Thanks to Kevin Jones, Godric Wilke, Jason Edge, Joran Rudi, Adelhard Roidinger, and Bruno Liberda for
inviting us to give workshops in Europe, thanks to Frank Serafine for letting us use his studios for a mini-
workshop in L.A., and, to Lloyd Billing, thanks for letting us use the studios at Tape Gallery for a mini-
workshop in London (and thanks for exploring those smaller, out-of-the-way booths at the AES show in
New York).

And to our parents, thank you for understanding why we care so much about Kyma and Symbolic
Sound, and thank you for always having believed in us, irrespective of the whims of fortune, politics, or
popular opinion.

Carla Scaletti and Kurt Hebel
August, 1997

Acknowledgments to Edition 4.1

Addendum 4.1 of the Reference Manual was written by Carla Scaletti and Kurt Hebel.

Thanks to Lippold Haken, Barry O’Dell, and Chip Leh for their contributions to Kyma 4.1 and the Capy-
bara-33.

Feedback from Kyma users was invaluable in shaping this new software release. We’d like to thank, in
particular, Pete Johnston, John Platt, Agostino Di Scipio, Jonathan MacKenzie, Ron Kuivila, Fred Szyman-
ski, John Dunn and Robert Austin, and all the others, too many to enumerate here, who had an influence
on the shape and content of this release.

We would like to dedicate our work on this software release to our friend and colleague — Salvatore
Martirano.† Whenever we had a new break-through we used to go over to Sal’s studio to show it to him,

† Salvatore Martirano, composer, teacher, and friend, died on the night of November 17, 1995 from complications due

to ALS (Lou Gehrig's disease). Throughout this difficult illness, he never lost his fantastic, unfettered musical
imagination, his generous spirit, or his ironic sense of humor.

3

knowing that he would understand and appreciate all of its implications (as well as how much work had
gone into it). It’s hard to get used to the idea that we can’t do that anymore. We miss you, Sal.

Acknowledgments to Edition 4.0

Version 4.0 of the Reference Manual was written by Jon D’Errico, Carla Scaletti wrote the Introduction,
Tutorials, and Prototype Reference, and Kurt J. Hebel brought it all together through many hours of
proofreading, rewriting, editing, and test-driving of the entire manual. We take full responsibility for any
errors, so please report them to us so that they can be corrected in version 4.1.

Special thanks to Lippold Haken, Mark Smart, and Bryan Holloway for their contributions to Kyma 4.0
and the Capybara-33.

All of our encounters and experiences with Kyma users have contributed towards the improvements
found in Kyma 4.0. We invite you to continue to interact with us and with each other, so that future ver-
sions will be even closer to your ideal system. In particular, we would like to acknowledge the help of our
life-on-the-edge beta testers: Salvatore Martirano, Frank Tveor Nordensten, Jeff Stolet (and his students at
the University of Oregon), Joel Chadabe, and Nathaniel Reichman. There are others, too numerous to
name here, who have helped us get to the final release version of Kyma 4.0; to you we say, “Thanks!”,
and we hope to get your name in here for the next version!

Acknowledgments To Edition 2.05

Many thanks to Jon D’Errico for helping complete this edition of the manual. The first edition was written
by Carla Scaletti; Kurt Hebel joined her in revising the second edition.

Acknowledgments to the Second Edition

Dick Robinson provided valuable, detailed feedback on the first edition of the manual. Thanks to Frank
Nordensten, John Mantegna, Mark Smart, and Paul Christensen who tried out all of the new tutorials.
Thanks to all of the participants in the Intensive Workshop in Sound Computation who also contributed
many ideas for this second edition. And thanks to all of the Kyma users who have provided us with feed-
back, suggestions, and encouragement over the years.

Acknowledgments to the First Edition

Mark Lentczner provided a large number of insightful suggestions particularly with regard to the user
interface. His enthusiasm, positive outlook and quick grasp of the system made him a pleasure to work
with. Brian Belet and Antonio Barata read through the entire manual suggesting several clarifications and
penciling in some amusing comments. Bill Walker suffered through the very first version of this manu-
script and some of the earliest versions of the program. Kelly Fitz has been a consistent and intelligent
user of the more advanced features of Kyma and has contributed to their development. Jon Sigurjonsson,
Alec McLane, Insook Choi, Ben Cox, and Robin Bargar all took part in the first summer workshop on
Kyma and were among the first composers to complete compositions and studies using the system.

Lippold Haken developed the Platypus, the first signal processor that enabled Kyma to do software syn-
thesis in real time.

Introduction

What’s in a Manual

Question: What do you call someone who reads manuals from cover-to-cover?

Answer: Power user or Guru.

If you set aside a few minutes each day — over breakfast, at the end of the workday, on a long trip, as a
comforting bedtime story — and read the overview and work through the tutorials, you will become the
envy of your colleagues and an idol to your friends. And as an extra added side-benefit, you will also be
making more powerful and effective use of Kyma in your work.

You can think of this manual as three separate references:

Overview and Tutorials Everyone should read through the overview to see how all of the parts of the
system relate to each other, and work through the tutorials to get an idea of what examples came with the
system.

Quick Reference and Prototypes Reference Keep this manual next to your computer and opened to this
section to quickly refresh your memory on what you can do in each of the editors.

Reference Manual and Appendices Most people will probably prefer to look things up in this section as
needed, rather than reading straight through it.

Introduction and Overview
The overview is intended to give an overall sense of what Kyma is, what it contains, and how it all works
together. Hidden within it is Tutorial 0, a tutorial on the basics of getting around in Kyma’s graphic user
interface. Reading the introduction and overview will give you an outline of the extent of Kyma, so it will
give you an overall sense for what is available before you begin focusing on the details.

Tutorials: Kyma in 24 Hours!
The tutorials are intended as an orientation to Kyma and its user interface, and they give you a chance to
explore Kyma with a little tutor at your elbow explaining everything and giving you hints along the way.
The tutorials are intended as a starting point for your own creative work, so don’t feel that you have to
stick with them diligently to the end; ideally, they should be just enough to get you started on your own
explorations through the environment. On the other hand, if you systematically complete one tutorial per
day, you will be completely conversant in Kyma in just one month! (You can even take every seventh day
off to rest, putting aside the manual to play in Kyma).

Examples
When you first start to use Kyma in your own work and anytime you begin a new project using Kyma,
set aside some time to look through the example Sounds provided in the Examples folder; this has two
benefits: the first is that you can use many of these synthesis and processing Sounds exactly as is, with
minor tweaking, or as starting points for your own designs; the second benefit is that studying other peo-
ple’s Sounds is an excellent way to get new ideas and to learn new Kyma tricks that you can apply to
your own sound designs.

Reference
The Kyma Quick Reference (starting on page 206), the Prototypes Reference (starting on page 218) and
the main Reference (starting on page 417) are intended to serve, as their names imply, as reference books.
In other words, if a question comes up as you are working, you should be able to quickly locate the an-
swer on one of these references by using the Index or the Table of Contents.§

§ By the way, if you can’t find an answer to a simple question in the index, then please let us know about it so that we

can fix it in the next edition of this manual (symsound@SymbolicSound.com).

5

These sections tend to be graphical summaries, tables, and extremely concise descriptions, which is ex-
actly what you want out of a reference, though they don’t necessarily make for the most entertaining
straight-through reading. (However, if you do read through these sections, your reward is that you will
be a POWER USER, and we may have a job for you on our support staff. So if you sit down and read
through the entire book, let us know!)

Kyma Users’ Group
When you do have questions about Kyma, don’t overlook one of the best resources of all: the collective
experience and intelligence of your fellow Kyma-ites. When you write a note to
kyma@SymbolicSound.com, you can access the collective knowledge of not only the entire Symbolic
Sound staff, but an international network of Kyma users who have been using Kyma to make music and
sounds since 1990 (even earlier, if you include the developers).

Teaching Kyma to Others
If you are using Kyma in a one-semester beginning course in sound synthesis algorithms or electro-
acoustic music, you could use the tutorials as part of the homework assignments (about two per week, in
whatever ordering that makes sense with your lecture topics).

If it is an advanced course in which Kyma is to be used as the language, you could spend the first two to
four weeks of class lecturing on the material in the overview and assign one tutorial per day for the stu-
dents to complete during studio or lab time. After this intensive introduction to Kyma, the rest of the
semester could be devoted to higher-level topics and Kyma could be used for in-class demonstrations,
projects, labs, and assignments.

6

Peeling Back the Layers of Kyma

Kyma is a deep program that you can access in layers: at the highest level, immediately producing com-
plex and interesting sounds using the examples found in the Examples folder, and by using the Tools; at
the next level, by designing new sounds using the graphical Sound editor, wave editor, spectrum editor,
and file organizer.‡

Whether and when you decide to proceed from one level to the next is entirely up to you. You can make a
large variety of interesting and effective sounds simply by familiarizing yourself with the “factory pre-
sets” of Kyma — the processing and synthesis examples found in the Examples folder, and the Sounds
at the FTP site contributed by your colleagues. You may find that you need never even use the Sound
editor except to substitute your own source material.

Everyone who uses Kyma will use the top layer. For many, the top layer is all they will ever need. For
others, the top layer is the introduction to the programming layer. There is no better way to learn about
sound design than by studying the designs of others and tweaking them in small ways until you under-
stand the effect of each parameter. Once you start designing new sounds, you can add them to the
examples at the top layer, building and expanding your own personal sound library. You may even want
to take a few of your less-proprietary examples and put them up at the Symbolic Sound FTP site for your
Kyma colleagues to use (while saving the best sounds for yourself of course!)

Inevitably, though, you will find yourself tweaking a parameter here and there, even on the preset exam-
ples. This is the first step down the path to programming your own Sounds, a delightful addiction from
which you may never recover (if you’re not already hopelessly addicted due to earlier experiences with
modular synthesizers and software synthesis). This is the layer at which the real power of Kyma becomes
apparent. Kyma is extremely open-ended and modular. In this respect it is both liberating and at times
even slightly intimidating.

Kyma is definitely a program for consenting adults. Once you start getting into sound programming,
there are so many possibilities, so many decisions, so many choices to make, that it requires you to set
your own guidelines and your own constraints. In that respect it is like facing the empty page just before
starting to compose music, write a paper, or work on any creative project.

Before You Get Started
As you read through the introduction and tutorials, there are suggestions that you try out certain exam-
ples. Many of these examples assume that you have a microphone connected to the left audio input
channel of your Capybara and that you have some kind of MIDI input device or controller hooked up to
the MIDI input on the back of the Capybara. Some examples require a MIDI synthesizer to be connected
to the MIDI output.

‡ There is an even lower level to Kyma, and that is the third-party development level. By creating sound libraries and

placing them at the FTP site, you are already acting as a third party developer in the community of Kyma users. It
is also possible to program new Tools and to write new assembly language modules for Kyma. To do this, you will
need the developers’ kit. In order to get the developers’ kit you must apply to become a third party developer at
either the Tool level (Smalltalk programming) or the DSP assembly language level. Of necessity, we have to limit
the number of people in the developers program, because Smalltalk and DSP programming require intensive sup-
port and training. One of the requirements for being accepted is experience programming in Smalltalk (for Tools)
or in 56002 assembly language (for new modules). If you have this kind of experience and are interested in devel-
oping for Kyma and the Capybara, send us electronic mail at info-kyma@SymbolicSound.com describing your
experience and plans.

7

Go ahead and set this up now, so that you will be ready to try the examples as they come up.

Pre-amp

Amplifier
Capybara audioMIDI

MIDI Faders

Keyboard

Synthesizer

Computer

Your studio may have audio and MIDI patchbays to make it more easily reconfigured. If you connect the
Capybara up to the patchbays, you can make this configuration by moving patch cords at the patchbay,
rather than moving cables at the back of your equipment. If your patchbay is computer controlled, use the
software for the patchbay to make sure it is configured correctly.

8

Kyma: a Language for Creating and Manipulating Sound

A language is a set of words and a set of rules for combining those words into expressions. Despite the
fact that both the set of words and the set of rules are finite, the number of expressions you can generate
by combining the words is infinite. In English, for example, the set of words can be enumerated in a book
called a dictionary (which, while it is a very large book, is not infinitely large), and the set of rules for
combining those words can be found in a smaller book on English grammar. In actual practice, we rarely
need refer to these books, using an even smaller working set of words and rules in our heads, to produce
a seemingly endless stream of written and spoken expression.

Kyma, too, is a language — a language for creating and manipulating sound. It provides a vocabulary (a
set of basic modules or Sounds)

and a means for combining those elementary modules into an infinite number of arbitrarily complex
Sounds

Languages vs. Devices
Of the many programs you use daily on your computer, some function more as “devices” and some
function more as “languages”.

A software “device” is typically a complex, high-level program that does a specific and limited set of
tasks for you (and if it’s a good program, it does these tasks quickly, easily, and repetitively, and probably
throws in a flashy color interface for your aesthetic edification). It does not let you get inside the device,
modify it, and use it to do some other set of tasks.

A language, on the other hand, is a set of elementary modules and some means for combining the mod-
ules. Unlike a device, a language doesn’t do anything by itself. It waits, only hinting at its mysterious
promise and potential; it waits for you.§

A language doesn’t do anything by itself. But what you say in a language is your own.

§ One of the many myths surrounding technology is the idea that, using a computer, anyone can be a composer or

sound designer or audio researcher, without having to invest any time or energy in their own education. If you
buy into this myth, then Kyma is not for you. We assume that our users are serious about sound, that it is either
their profession or their intense avocation, and that they are voracious auto-didacts.

9

First, Kyma asks you to invest some time in learning the language. Your reward will be a fluency for cre-
ating an infinite variety of new sounds that no one has ever heard before! Once you learn the basic
vocabulary of Sounds and the few simple rules for combining them, you will achieve a kind of critical
mass when your knowledge and facility in the language will start increasing at an exponential rate.

At some point, you will find yourself thinking in Kyma, dreaming in Kyma, designing all of your sounds
in Kyma, wondering how you ever got along without it, wondering why your friends are agonizing over
how to do things that you would find simple to whip up in Kyma.

Sound on the Computer
What is the domain of this language? What exactly are we synthesizing and manipulating in Kyma?

Analog-to-Digital
Converter .

01001100
11101111
10001010

.

Digital-to-Analog
Converter

Sample Storage
and/or

Signal Processing

.
01001100
11101111
10001010

.

Digital audio can be thought of as a symmetric process of turning acoustic air pressure variations into a
voltage signal, into a stream of numbers, and then reversing the process to get from the stream of num-
bers, to a voltage signal, and back into a changing air pressure.

♦ Physical sound is a variation in air pressure. You can detect these changes in air pressure using a
transducer like a microphone which has a diaphragm inside that moves back and forth in response to
changes in air pressure and translates this variation in air pressure into a continuously varying volt-
age.

♦ You can use an analog-to-digital converter to measure (or “sample”) the value of this continuously
varying voltage at evenly spaced time intervals to produce a stream of numbers corresponding to the
instantaneous amplitudes of that sound at those points in time.

♦ As you convert the continuous voltage into a stream of discrete numbers, you can save them onto a
hard disk or a CD.

♦ Later, you can read those numbers off the CD in the same order, feed them to a digital-to-analog con-
verter which filters or interpolates between the discrete values, turning them back into a continuously
varying voltage.

♦ You can feed this voltage to a speaker which translates the voltage changes into movements of a dia-
phragm which pushes the air around, thus recreating the air pressure variations.

This entire process is, by now, ubiquitous and familiar to everyone as the process of digital recording.

However, once you have converted the acoustic sound into a stream of numbers, you open up all kinds of
possibilities for manipulating that stream of numbers on the computer.

10

You can do arithmetic on the numbers before sending them to the digital-to-analog converter to be turned
back into sound again. This is what is meant by digital signal processing or digital effects processing.

From there, it is only a small leap of faith to just drop the entire top half of our diagram, and generate the
stream of numbers ourselves. This is what is meant by software sound synthesis.

For that matter, we could take the stream of numbers from some other sources, say, the result of a scien-
tific experiment or the position of someone’s head in a virtual environment, and use that stream of
numbers to generate sound or to control other parameters of the sound. This is the idea behind an
emerging application of computer-generated sound called data-driven sound .

Kyma seeks to provide a single, uniform framework for dealing with all of these aspects of sound on the
computer: sampling, processing, and synthesis, together with composition and performance.

Kyma’s Sound Object
Kyma is based on elements called Sound objects. You see evidence of these Sounds everywhere in the
Kyma user interface in the form of graphic icons.

A Sound represents a stream of numbers like the streams of instantaneous amplitude values we talked
about in the previous section. That stream of numbers could come from a digital recording read from the
disk, or it might be purely synthesized, or it could be the result of modifying another stream of numbers.

Another way to think of a Sound is that it represents an algorithm or a program. The algorithm might
describe a procedure for synthesizing the stream of numbers, or it might describe the process for reading
the stream off of the disk, or it might describe some arithmetic to perform on an input stream.

Yet another way to think of a Sound is as a virtual module, analogous to the modules like oscillators, de-
lay lines, or filters that you might find in a synthesizer or effects processor, but implemented entirely in
software, rather than hardware.

The Words
Take a quick look through the Prototypes Reference in this manual beginning on page 218. This is the
“dictionary” of “words” (that is, the Sounds) in the Kyma language. They are arranged in alphabetical
order and list the name of the Sound followed by a definition. All of these Sounds are also found in the
palette called Prototypes that appears across the top of the screen in Kyma:

The Sounds are categorized in order to make them easier to find. Select one of the category names from
the list on the left, and all the Sounds in that category appear as icons on the right. To get at the definition
of a Sound on-line, select the Sound icon in the prototypes window, and choose Describe sound from the
Info menu. To search for a Sound by name, use Find prototype from the Action menu, and enter part of
the name of the Sound when prompted.

There is nothing special about the Sounds in the prototypes window, by the way. The prototypes window
is just a collection of Sounds: one example of each type of Sound in Kyma. It is convenient to have one of
each Sound type available in a palette like this, but wherever the manual talks about dragging a Sound
from the prototypes, you should know that any other Sound (from the Sound file window or even from
another open Sound editor) would serve as well.

11

Grammar
Kyma “sentences” are constructed in the Sound editor window:

The basic rule for creating complex Sounds out of simpler ones is contained in the definition for the Kyma
Sound Object.

A Sound is:

♦ a source of sound, or

♦ a modifier or processor of sound, or

♦ a combiner of several sounds

A Sound with no inputs is a source of sound. Noise, Oscillator, GenericSource, FormantBankOscillator,
SumOfSines, DiskPlayer, and Sample are all examples of synthetic or sampled sound sources in Kyma.

12

A Sound with a single input is a modifier or processor of the sound that comes from its input. In the
Sound editor, the input is always shown to the left of the Sound that modifies it. You can think of the sig-
nal as flowing from the left to the right.

This is by far the largest category of Sounds in Kyma, and includes Sounds like Filter, Vocoder, Delay-
WithFeedback, DiskRecorder , TimeFrequencyScaler, and others.

A Sound with several inputs is a combiner. Two special examples of combiners are the Mixer (which
causes all of its Inputs to occur simultaneously) and the Concatenation (which causes its Inputs to
occur one after another in a sequence).

A combiner can also have more complex specifications for how its inputs come together; in a Script, for
example, you write a script specifying when and how all the inputs are to occur with respect to one an-
other.

If the Sound objects are the words, then, in some sense, the Kyma language contains only nouns. The
sound sources are like objects (oscillator, noise generator), the sound modifiers are also objects (filter, de-
lay line), and even the combiners function as objects (mixer, concatenation).

 A Sound is a Sound is a Sound…

So why do we insist on calling everything a Sound (even things like filters and delay lines)? We do it in
order to underscore the idea that Sounds are completely interchangeable and infinitely chainable.

13

A Sound, no matter how complex, can always serve as the input to another Sound. Think of Sounds as
something like highly abstracted audio Tinker Toys. Once you have constructed one hub and spoke

you can plug that construction into another hub, and that one, in turn, into yet another, ad infinitum:

At any point you could also fan out and connect several spokes

No matter how complex a sub-construction of Tinker Toys you have made, you can always plug it in at
the end of a spoke, just the same as if it were a single hub.

The same is true for Sounds. Anywhere you can use a sound source, you could also use a modifier of a
source or a combiner of a source; Sounds are uniform and interchangeable. Even a Sound that contains a
complex script that functions as a score or reads a standard MIDI file can be used as the input to another
chain of modifiers and combiners. This is one of the things that makes Kyma different from most other
music software: a “score” or an algorithm for generating events is part of the Sound object and is not nec-
essarily at the “top level” of the hierarchy; there can be several “scores” distributed throughout a complex
signal flow diagram. (And by the way, the entire signal flow diagram is itself a Sound).

We call all of these objects Sounds in order to emphasize the uniformity and interchangeability of Sound
objects. But having said all that, we can now relax a bit and sometimes use the word module to describe
Sounds.

 Sound Parameters

All Sounds, whether they are sources, modifiers, or combiners, also have parameters or settings. These
have nothing to do with the signal flow, but are local adjustments made to that Sound alone and affecting
the way that Sound does its generating or processing or combining of other Sounds.

Sound parameters can be:

♦ Constants (for example, numbers, strings, or sample names)

♦ Functions of time (for example, ramp functions or triggers from a metronome)

♦ Hot controls (supplied externally from a MIDI controller or internally from Kyma)

♦ Sounds (for example, using an Oscillator to control the parameter of another Sound)

♦ Arithmetic expressions involving any combination of the above

14

Structure
To restate the definition of Sound in a slightly different way, a Sound is

♦ a Sound, or

♦ a collection of Sounds that functions as a single entity

This is a familiar idea in the multitrack recording studio where you might have one or more microphones
on each performer, each recorded on a separate track.

Sometimes you want to treat the tracks independently, giving each its own processing or position in the
stereo field. At other points, you might want to take a “submix” (say, all of the backing vocals) and treat it
as a single entity, routing it through its own effects chain and EQ. And other times, you might want to
treat the entire mix as one object, putting it through an effects processor to simulate room ambiance.

Rhythm Harmony Vocals

Percussion

VoiceBacking VocalsBass GuitarKick Tom Snare Cymbals

Mix

To use traditional musical terminology, you could think of a composition as a sequence of notes, but in
reality, the notes are grouped into meaningful motives, the motives into phrases, etc. Sometimes you may
want to treat a note as an independent entity, sometimes you treat a phrase as one entity (subjecting the
entire phrase to transposition or augmentation), and sometimes you want to go even deeper than the note
level, modifying the attack and decay time or the timbre of an individual note.

Movement1 …

Composition

Section1 …

Phrase1 …

Motive1 …

Note1 …

Attack1 Decay1

15

Whether you are composing or designing sound, you are constantly popping up and down to these dif-
ferent organizational levels, without even having to be consciously aware that you are organizing sound
on several different time scales and submixes almost simultaneously.

Kyma’s Sound object is meant to facilitate this kind of work — to make time-scale-switching and sub-
grouping natural and visually apparent.

In a Kyma Sound structure you might have a mix of

♦ a noise generator feeding through some highly tuned filters, the resonance of which you are control-
ling from a MIDI keyboard,

♦ some oscillators resynthesizing vocal sounds from an analysis and repeating an algorithmically gen-
erated harmonic pattern in an alternate tuning (the algorithm for generating the pattern being part of
the MIDIVoice module),

♦ and a sequence of different filters, processing, and modulation on a GenericSource, so that you can
speak or sing into the microphone and the processing will be different at different times.

Synthesis/Processing Techniques
Despite the fact that Kyma provides modules covering a wide range of synthesis and processing tech-
niques, that in itself is not half as exciting as the fact that you can combine these algorithms in entirely
new ways in order to create your own synthesis and processing algorithms. In Kyma you will be using a
direct manipulation iconic interface to do, almost as a matter of routine, what others labor over for
months: come up with new, never-before-heard synthesis and processing algorithms!

Synthesis algorithms in Kyma range from sample and disk recording/playback to oscillators and enve-
lope generators, to nonlinear distortion like waveshaping, ring modulation and frequency modulation, to
wavetable synthesis, to full-blown additive synthesis, to noise generators and a variety of filters for sub-
tractive synthesis, cross synthesis using either RE filters or the vocoder, resynthesis and spectral warping
using the SumOfSines or the GA oscillators, plus combinations of any of the above. Processing, while dif-
ficult to truly separate from synthesis, includes delay, modulation, reverberation elements, distortion,
filtering, compression/expansion, vocoding, manipulations to the spectrum (in the spectrum editor), and
whatever brilliantly twisted new combinations of all of the above that you can dream up!

Current Implementation
Kyma is a language, and there have been several implementations of that language in software and in
software-augmented-by-hardware-accelerators.

In the current implementation, the graphic interface, structural manipulations, and reading from/writing
to disk are handled by the host computer — at this point, either a Macintosh or a Windows PC. Sound
synthesis and processing takes place on the Capybara, a multiprocessor sound computation engine de-
signed and built by Symbolic Sound. The Capybara is a general-purpose computing engine, so in reality
“the software is the synthesizer”. You program the Capybara to behave as a synthesizer, sampler, effects
processor, or combination of all, but the programming is all done graphically, by connecting modules to
each other on the screen of your Macintosh or PC.

Brief History
The first version of Kyma was a software-only version designed and written by Carla Scaletti in the fall of
1986. It was written in Apple Smalltalk and ran on a Macintosh 512 K. In 1987, she extended Kyma to
make use of the CERL Sound Group’s Platypus (a discrete-component DSP developed by Lippold Haken
and Kurt Hebel in 1983) for real-time sound synthesis.

The real time version of Kyma was shown at the International Computer Music Conference in the sum-
mer of 1987, and Kyma (along with the Motorola DSP56000, granular synthesis, and physical modeling)
was identified by Bob Moog as one of the technologies-to-watch in an article he wrote on that conference
for Keyboard magazine (December 1987 issue).

By 1990, the sound-generation and processing part of Kyma had been ported to the multiprocessor Capy-
bara, then to the Capybara-33 in 1995, and to the Capybara-66 in 1996.

16

In 1992, the graphic interface was ported to Windows computers. In 1996, Kyma and the Capybara hard-
ware was extended to include the PCI-bus Macintoshes and PCs. Similarly, PC-Card (also called
PCMCIA card) support was added in 1997.

The software has been rewritten several times in order to increase the speed and add new features, tools
and algorithms. In 1995, version 4.0 was twice the speed of the previous version and provided hot pa-
rameters for the first time. Version 4.1 in 1996 added MIDI scripts, GA synthesis, and RE synthesis. In
1997, Version 4.5 added the spectrum editor, the file organizer, the tools, the vocoder, and several new
sound synthesis/processing algorithms.

The point of all this is to give you an idea of the rate at which Kyma is evolving, so you can see that you
have invested in something that will continue to evolve and improve with time.

Kyma Evolves
Why and how does Kyma evolve over time? In our minds, we have an ideal Kyma, and we try to realize
this ideal with the technology available to us at the time. In the process of implementing the ideas and
using the language, we learn more about the ideas and we refine our ideal.

By putting Kyma into the hands of others and listening to what they have to say about it, we further re-
fine and expand upon the ideal, and this feeds back into the next implementation. So, it is important for
you, as a Kyma user, to interact with us; we rely on your feedback in this continual process of imple-
mentation and refinement.

How is Kyma Being Used?

As a Kyma user, you are part of an international community of progressive musicians, sound designers,
and researchers. You can read about some of their activities in the Eighth Nerve, the on-line Kyma news-
letter that you can access from our web site (http://www.SymbolicSound.com). Incidentally, if you
haven’t sent us your biography yet, please avail yourself of this opportunity to have a presence on the
world wide web (or a link from our site to your own).

Music
Kyma is being used in all kinds of music, from live performances to the sound tracks for music videos, to
tape music and musique concrete, and including installations and performance art. See the web site for
up to date news on specific artists, upcoming events, and references to books, CDs, and videos.

Teaching
Kyma’s graphical representation of the signal flow and its highly interactive interface lend themselves to
classroom demonstrations and the real time exploration of what-if scenarios. So it is not surprising that
Kyma is used extensively in teaching about sound in universities all over the world and in courses rang-
ing from psychoacoustics to music composition.

Sound Design
Kyma was created as a language for sound design, and it is being used by sound designers for film, tele-
vision, advertising, radio, and music as part of the international entertainment industry including
Hollywood, New York, St. Louis, London, Toronto, Tokyo, and elsewhere.

Research
Electrical engineers, computer scientists, and psychoacoustics and speech researchers are using Kyma for
algorithm development, for generating stimuli for perception experiments, and for other research proj-
ects.

17

Data-driven Sound
Patterns in experimental data or in data generated by models and simulations can often be made imme-
diately apparent when you map that data into sound. Engineers and researchers are exploring the idea of
using sound to help uncover patterns in data that might otherwise go unnoticed if represented visually.

Related to this idea of data-driven sound is the idea of complete virtual environments, both in research
and in the entertainment industry. Game developers and virtual environment creators are beginning to
realize that simply triggering samples is not enough. Immersive environments require sound-generating
models that are more interactive and parameterized so that they can respond to the actions of the
viewer/player.

18

Overview of the Interface

Kyma Sounds are abstract objects in the memory of the computer, but you interact with these objects in a
fairly concrete way by manipulating graphics on the computer screen using the computer keyboard and
mouse. The graphic interface of Kyma has several components:

Production and Performance
During live performance or when working under a production deadline, you can draw upon the previ-
ously-designed library of Sounds — including Sounds you have designed yourself, Sounds provided by
Symbolic Sound, and Sounds contributed to the FTP site by your fellow users.

Editors and windows in support of performance and production include:

♦ The virtual control surface that pops up automatically whenever you have specified hot parameters
in one of your Sounds (we will talk more about hot parameters later in this introduction). This serves
two purposes: one is to let you know the names and values of any hot parameters in your Sound, and
the other is to provide graphical controls like faders and buttons so you can adjust the values of the
hot parameters while the Sound is playing. Alternatively, you can control these hot parameters from
a MIDI sequencer or using MIDI controllers.

♦ The compiled Sound grid provides a way to quickly download precompiled Sounds in response to a
MIDI program change message, a mouse click, or by tabbing into one of the squares of the grid. This
can be useful in live performances or other presentations of Sounds that you have designed earlier
and precompiled for the performance.

19

The items in the Tools menu provide support for sound design and development. A Tool could be de-
scribed as a cross between a virtual-device front panel, a plug-in, and a “wizard”, the step-by-step guides
provided in Microsoft programs. Any item in the Tools folder shows up as a choice in the Tools menu,
so the tools can be updated by visiting the FTP site and downloading the latest set.

The Tape Recorder tool, for example, provides a quick means for sampling the Capybara input and stor-
ing the results in a sample file on the disk of your host processor.

Preproduction
In pre-production exploratory phases, or whenever you are between projects, you can be developing your
own Kyma Sounds, organizing them into Sound files, setting up precompiled Sound grids, trying out
new synthesis and processing ideas, creating the sounds that no one has heard before. The purpose of
Kyma is to provide tools for creative sound design, so quite a few of the tools and editors support of this
activity:

♦ The Sound file window serves as a workspace when you are using Kyma, and provides a way to
group Sounds from the same project or Sounds of a similar nature in a single disk file.

20

♦ The Sound editor is where you design the signal flow and edit the parameters of individual modules.

♦ The system prototypes (“the prototype strip”) serves as a convenient source of template Sounds
when you are constructing a complex signal flow diagram in the Sound editor. It contains one exam-
ple of each type of Sound that comes with the system.

In addition to the Sound editor, there are four specialized editors, the file organizer, and two status win-
dows:

♦ The sample editor is a standard waveform editor, offering cut/copy/paste editing for digital record-
ings or “samples” as well as templates for generating your own wavetables algorithmically.

21

♦ The spectrum editor is a two-dimensional editor for the amplitude and frequency envelopes of each
sinusoidal partial of a sound that has been analyzed using Kyma’s Spectral Analysis tool or the
shareware Lemur program.‡

♦ The global map editor is a text editor for specifying the mapping between the names of hot parame-
ters and MIDI controller numbers.

♦ The text editor is a simple editor for entering or modifying text. For example, you could use this to
create text files to be read and interpreted by Kyma Sounds or to test out a Smalltalk expression by
typing the expression, selecting it, and choosing Evaluate from the Edit menu.

‡ Available from the CERL Sound Group web site at http://datura.cerl.uiuc.edu.

22

♦ The file organizer provides a color-coded list of all files that Kyma can work with, including samples,
spectra, GA analyses, RE analyses, and MIDI files. You can select a file name and use Ctrl+Space
Bar to hear the file, press Enter to open an editor on the file, or drag the file name into a Sound file
window, Sound editor, or parameter field.

♦ There are two status windows: one for monitoring or changing the status of the Capybara, and the
other for monitoring the MIDI input and for monitoring and recycling memory on your computer.

A particularly important Sound for design and development is the Annotation. This is actually a Sound
rather than an editor (found in the system prototypes under Variables and Annotations). The purpose of
an Annotation is to provide a brief explanation or reminder of what its input does. If you take some time
to write a brief explanation of your Sound as you develop it, you will be able to remind yourself, six
months in the future, just exactly what it was that you were doing.

23

24

Sound, Sound File, and Sound Editor

Now let’s go back and revisit the concepts of Sound, signal flow, and parameter setting, this time in the
context of how to actually manipulate these things using the graphic interface. (If you are near your com-
puter, you might want to try out some of these things as we go along.)

This is an example of a Sound file window, your workspace or “desk” while inside Kyma. Each icon in
the workspace represents a Sound.

One way to think of a Sound is that it is a program for the Capybara. To run the program, select the icon,
go to the Action menu, and choose Compile, load, start. True to its name, this menu selection compiles
the program for the Capybara, loads it into the Capybara, and then runs the program. Technically, this is
what occurs each time you select Compile, load, start from the Action menu.

The result, though, is that you hear the sound, so from now on, we will refer to this as playing the Sound
and give you a shortcut method for doing it: holding down the Control or Command key§ and pressing
the Space Bar. Another essential shortcut, perhaps even more urgently required than the shortcut to
play a Sound, is the shortcut for stopping the sound. Memorize this one so you can instinctively hit it by
reflex alone, even if your forebrain activity is being jammed by a full amplitude 8 khz sine wave; remem-
ber Ctrl+K for “Kill that sound!”.

To edit a Sound, double-click on its icon. This opens a Sound editor and shows the signal flow for this
Sound. In this example, there isn’t much signal flow to see: the GenericSource is feeding into the D/A
output. Below the signal flow path, you can see the parameter settings for the Sound.

§ On the Macintosh, you can use either the Control or Command key; however, Windows computers do not have a

Command key, so you must use the Control key. To avoid sounding repetitious, we will abbreviate “hold down
the Control or Command key while pressing the R key” as “use Ctrl+R”.

25

For example, in a GenericSource, you can choose whether the source of sound is the Live input from the
A/D or digital input, whether it is to be read from the RAM of the Capybara, or whether it is to be read
from the host computer’s Disk. If you put a check in the Ask box, Kyma will ask for the source each time
you play this Sound, making it ideal for developing processing algorithms using a sample or disk re-
cording typical of what you want to process and then switching to the live inputs once you are happy
with the sound of the sampled input.

Notice that, in addition to the other parameters, you have to supply this Sound with a duration. In this
example, the duration is set to ON, so it will run forever,‡ or until you kill it (Ctrl+K) or load a different
Sound.

As we said before, to play a Sound in the Sound editor (actually to play any Sound anywhere in Kyma),
select it and press Ctrl+Space Bar.

The Prototype Strip
The prototype strip is the window across the top of the screen. It contains an example of each of the dif-
ferent kinds of Sound modules in Kyma.

Since each Sound in the prototype strip is an example of how to use that particular kind of Sound, you
can study a Sound in the prototype strip to get some idea of how to use it.

A Sound in the prototype strip can’t be edited (unless you drag a copy of it into a Sound file window and
edit that copy), but you can listen to it directly in the prototype strip. Press Ctrl+Space Bar to play the
selected Sound in the prototype strip.

Some of the Sounds in the prototype strip may not make sound when you try them out. This could be
because:

♦ the Sound is triggered by MIDI note events (and will make sound if you play the MIDI keyboard)

♦ the Sound is subaudio and intended to be used as an envelope (view it with Full waveform from the
Info menu)

♦ the Sound outputs a spectral control envelope (use it in the Spectrum field of an OscillatorBank)

♦ the Sound outputs MIDI (connect the Capybara MIDI output to a synthesizer to hear it)

You can use the Sounds in the prototype strip, along with the examples provided with Kyma, as a source
of modules to insert or add to the signal flow diagram in the Sound editor.

Finding Sounds in the Prototype Strip
To quickly locate a Sound in the prototype strip, scroll down through the list of categories on the left until
you find the category containing the Sound (the categories are in alphabetical order), click on it to select
it, and then use the scroll bar across the bottom to browse through the Sound icons (also arranged in al-
phabetical order by name) in that category until you find the one you are looking for.

Alternatively, you can go up to the Action menu and choose Find prototype… (or simply use Ctrl+B for
“befuddled”) and type in part of the name of the Sound you are looking for, and then click OK or press
Enter. This will come up with a list of Sounds whose names contain the partial name you entered. To
select one of these Sounds, hold down the mouse in the downward arrow button, move the mouse down
to the name of the Sound you want, and release the mouse button. Then click OK or press Enter. This
will take you immediately to the right place in the prototypes with the desired icon selected.

‡ Well, actually, ON is about two years, but in computer years that’s virtually forever.

26

Help and Information
For on-line help on a class of Sound modules, select a module of that type, and choose Describe sound
from the Info menu. This gives you a description of how a module of this type behaves and provides a
description of each of the module’s parameters. These are the characteristics shared by all Sounds of this
type.

Get info (Ctrl+I) from the Info menu provides information on one particular instances of that type of
module. It lists the values assigned to each of the Sound’s parameters, the names of any inputs, the mem-
ory and computational resources it requires, and its duration. These are the parameters of one particular
Sound.

Both Describe sound and Get info work on any Sound, not just on the Sounds in the prototypes palette.

Editing the Signal Flow Diagram
You use the signal flow diagram in the upper half of the Sound editor to connect the different synthesis
and processing modules in your sound design.

The signal flow diagram lets you:

♦ insert a module between two other modules

♦ replace a module with a different module

♦ delete a module from the middle of a chain of modules

♦ add or remove modules to Sounds that can use multiple inputs

♦ listen to the audio signal at any point in the signal flow

♦ change the name of a module

Insert
To insert a new module B between two other modules C and A, drag B into the Sound editor, and drop it
onto the line between the two modules C and A

27

Before After

or between the module A and the speaker icon.

Before After

For example, say you wanted to feed the GenericSource through the HarmonicResonator filter before
sending it to the output. First, find the HarmonicResonator filter in the prototypes. Select the Filters cate-
gory in the list on the left and then scroll the icons until HarmonicResonator becomes visible (both the
categories and the Sounds are arranged in alphabetical order).

Drag the HarmonicResonator from the prototypes into the Sound editor and drop it on the line between
the GenericSource and the output speaker icon (touch the cursor arrow tip to the line connecting the Gen-
ericSource and the speaker icon).

After the insertion, you should see the HarmonicResonator with a little tab attached to its left side.
Whenever you see a tab, it indicates that there are more Sounds to the left but that they may not being
showing. Click on the tab hide the input. Click it again to show the hidden input. This ability to show or
hide inputs becomes especially useful when you have a complex signal flow diagram and would like to
concentrate on one section of it at a time.

While constructing new Sounds, you can typically drag all the modules you need from the prototypes
palette into the Sound editor since the prototypes include one of each kind of Sound available in the sys-

28

tem. However, you can drag a Sound module from anywhere in the user interface (the Sound file window,
another open Sound editor, a MIDI grid, etc.) and place it into the signal flow path.

Probing, Prisms, and History
You can listen to the sound at any point along the signal flow path by selecting an icon and using
Ctrl+Space Bar . For example, if you select and play the GenericSource in the example we’re construct-
ing, you will hear the unprocessed A/D input. If you select the HarmonicResonator, you will hear the
GenericSource as processed through the resonator. In a sense, when you select and play an icon, you hear
that Sound and everything to the left of that Sound. You are listening to the chain of processing up to the
point that you have selected.

In other words, the modifiers in Kyma are nondestructive. You can always go back and listen to the un-
modified sound just prior to where the signal enters a modifier. A modifier is like a sonic analogy to a
prism or a lens: when you look at an object through a lens, you observe a systematic distortion of the ob-
ject that tells you something about the structure of the lens, but the lens does not change the object itself
— just the way you see the object when looking through the lens.

One side-effect of nondestructive modification is that each signal flow diagram becomes a history of the
steps you took in order to create it. As you work on a sound, you are leaving a trace of all the operations
you applied in order to reach the end result. This means you can apply the same process to another
sound source later, simply by substituting the new sound source for the old in the signal flow diagram.

Replace
To replace Sound A with Sound B, drag B into the Sound editor, and drop it on top of Sound A. Alterna-
tively, you can select and copy Sound B, select Sound A, and then paste.

Before After

For example, say we wanted to replace the GenericSource with a recording read from the disk. Find the
DiskPlayer module in the Disk category of the prototypes, drag it from the prototypes into the Sound
editor, and drop it on top of the GenericSource icon. (If you are in front of your computer, try this out.)

 Advisory Dialogs

If you are replacing one Sound source with another, a dialog asks you to confirm that you want to com-
plete the action:

29

But what if the Sound you are about to replace and the Sound you are about to replace it with both have
inputs? In that case, you have a choice of replacing the old Sound but retaining its inputs or of replacing
both the old Sound and its old inputs.

For example, say you have a HarmonicResonator filtering a GenericSource, and you decide that you
would like to try a low-pass filter instead. You would drag the Filter module from the prototypes and
drop it on the HarmonicResonator. The dialog gives you the choice of replacing the HarmonicResonator
only (Replace) or of replacing both the HarmonicResonator and the GenericSource (Replace all).

The result of Replace would be the same GenericSource, but feeding into a Filter rather than the Har-
monicResonator:

The result of Replace all would be a Filter with its default input (the Granulation). The original Generic-
Source would be lost:

Try these things out on your computer to see more clearly the difference between Replace and Replace
all.

30

Delete
To remove Sound A from the signal path (where Sound C is its input), select Sound A and press the De-
lete or Backspace key. Sound C will then replace Sound A in the signal flow path.

Before After

For example, say we have the GenericSource feeding through the HarmonicResonator and we want to get
rid of the HarmonicResonator. Select HarmonicResonator, and press the Delete or Backspace key.
Kyma will ask you to verify that you want to replace the HarmonicResonator with the GenericSource
(since this is how the delete operation is actually accomplished — by replacing a Sound with its input).

 No Dangling Cables…

What if you had decided to delete the GenericSource? Sorry, but you can’t delete the first Sound in the
signal flow chain, because it would leave the HarmonicResonator without an input and thus unable to
produce sound. You can substitute a new Sound source for the old one, but you cannot leave a Sound only
partially defined.

31

Add
To add an additional input called E to a multi-input Sound called D, drag Sound E into the Inputs pa-
rameter field of Sound D.

Before After

Let’s say that we wanted to mix the output of a DiskPlayer with the output of a Sample. Drag a Mixer
from the Mixers & Attenuators category of the prototypes into the Sound editor, and drop it on the line
between the DiskPlayer and the output icon.

Kyma gives you a list of Sounds and a choice of whether you would like to add the DiskPlayer to this list
of Sounds or use the DiskPlayer to replace one of the two Sounds already in the Mixer.

Why does the Mixer already have inputs? These are the default inputs. Keep in mind that every proto-
type is an example Sound, ready to play. In the case of the prototype Mixer, it already has two input
Sounds. So when you say that you want to use the DiskPlayer as an input to the Mixer, you also have to
decide whether you want to add it to the Sounds that are already there or whether you would like to re-
place one of the existing inputs.

Click the Add button to add the DiskPlayer to the collection of Mixer inputs. Double-click on the Mixer
in the Sound editor in order to see its parameters. One of the Mixer’s parameters is called Inputs. The
same Sounds that are feeding into the Mixer in the signal flow diagram are also shown in the Inputs
parameter. (If the Mixer’s inputs are not visible in the signal flow diagram, click the tab on the left side of
the Mixer icon to show its inputs). Drag the Sample from the Sampling category of the prototypes and
drop it into the Inputs field of the Mixer.

To update the signal flow diagram, double-click in a white area. Once you do this, you should see the
Sample as one of the inputs to the Mixer.

32

Whenever you want to make sure that a signal flow diagram reflects the most recent changes, double-
click in a white area in the diagram and it will display with the latest changes.

At this point, we have the DiskPlayer and the Sample as inputs to the Mixer, but we also have some other
Sounds in there that we don’t want… which leads us into the next topic, how to remove inputs from a
multi-input Sound.

Remove
To remove an input C from a multi-input Sound called D, select the Sound called C in the Inputs pa-
rameter field of Sound D, and press Delete or Backspace.

Before After

33

In our example case, draw a selection box around Crossfade and Concatenation (or simply select one and
shift-select the other to add it to the selection), and press Delete or Backspace. Kyma will verify that
you really want to get rid of these Sounds. You can click Yes to remove one of them at a time with verifi-
cation on each removal, or click Remove all to delete all of the selected Sounds at once.

Remember to double-click in the white space to update the signal flow diagram!

Name
As you make changes to the signal flow and the Sound parameters, it can be helpful to rename some of
the Sounds from their default names to something more memorable that indicates how this Sound differs
from others of the same type.

To rename, select the icon, press Enter or Return, and type in a new name for the Sound.

Copies and Identities
You have probably noticed by now that when you drag a Sound from the prototypes, a number is ap-
pended to the end of its name. This indicates that the Sound is a copy of the prototype and not the same
Sound.

Whenever you drag a Sound icon from one window to another, Kyma gives you a copy of the old Sound
to drag to the new location. This means that you can freely change the parameters of the dragged Sound
without having to worry about altering the old Sound.

34

Suppose you wanted to drag the same Sound into two different input fields. For instance, say you wanted
to route one disk recording through three different processing modules, and you didn’t want use up disk
bandwidth reading the same disk file three times.

Within the Sound editor, you can drag the same Sound (not a copy), by holding down the Control or Op-
tion key when you start dragging. Alternatively, you can copy the Sound, and use Paste special… from
the Edit menu in order to paste the Sound rather than a copy of the Sound.

Notice that you need a Mixer as the last module in the signal flow diagram in order to mix the three dif-
ferent processing paths.

Save
When you click in the close box of the Sound editor, Kyma will ask whether you want to keep all the
changes you’ve just made to the Sound. If you choose Yes, the changes will be retained. But you have not
yet saved the Sound to the disk! This does not happen until you save the entire Sound file window.

There are two ways to save the changes you are making to a Sound in the Sound editor:

♦ The simplest way is to choose Save (Ctrl+S) from the File menu when in the Sound editor. This will
cause the Sound to be saved to the Sound file window, and then the Sound file window to be saved
to the disk.

♦ Alternatively, you can close the Sound editor, confirm that you want to save the changes, then choose
Save (Ctrl+S) or Save as… from the File menu of the Sound file window.

Parameters
The parameters of a Sound can be constants, hot parameters, functions of time, Sounds, or arithmetic
combinations of these things. On-line help on any of the parameters of a specific Sound is available by
clicking on the name of the parameter in the Sound editor.

To illustrate each of these parameter types, let’s look again at our concrete example Sound: a Generic-
Source feeding into a HarmonicResonator.

35

To see the parameters of the GenericSource, double-click on its icon in the signal flow diagram. Play this
Sound to hear what it sounds like before we start modifying its parameters.

To edit a parameter, first place the cursor in that parameter field, then select the current contents of the
field, and type in a new value for that field.

To get the cursor into a parameter field, click in that field or use the Tab key to cycle through each of the
parameter fields one by one until you reach the one you want.

By default, the contents of the field should already be selected when you Tab into it or click in it. If not,
then position the cursor to the right or left of the current contents and click twice in order to select all (or
choose Select all from the Edit menu).

Once the cursor is positioned in a parameter field and the current contents are selected, any new numbers
or text that you type will replace the current contents of the field.

Whenever you change a parameter, you have to use Ctrl+Space Bar if you want to hear the results of
the change. To put it in terms of Sounds as programs for the Capybara, when you make a change to a
program, you have to recompile it before you can hear the results of that change.

Constants
A constant parameter is, true to its name, one that does not change while the Sound is playing. Some pa-
rameters must be constant over the course of the Sound (these are indicated by parameter fields with
white backgrounds) while others can be either constant or dynamic (indicated by parameter fields that
have cyan-colored backgrounds).

To enter a new constant parameter value, select the contents of a parameter field, and type in the new
value.

For example, to change the file read by this GenericSource, tab into the Sample field and type

nothing2

Use Ctrl+Space Bar to compile and hear the results of this change.

If you don’t remember the name of the file, you can click the disk button to the right of the Sample field
to choose from a file list. Try clicking on the disk button and find one of the Celtic harp samples like
Celthrp2a in the Musical Instruments folder of the Samples folder of the Wavetables folder.

Next, try changing the value of Scale by tabbing into the Scale field and typing the value

0.1

36

to replace the old value.§

Then use Ctrl+Space Bar to hear the results of your change.

 Frequency & Duration Fields

Frequency, Duration or Time parameter fields require that you specify the units of frequency or time.
Frequency can be specified in units of hz (for hertz), or nn (for note number) or specified as an octave
number followed by the lettername of the pitch class (for example 4 c is middle C or MIDI note number
60). Time and duration can be specified in units of s (seconds), ms (milliseconds), usec (microseconds),
or longer durations like days. You can also type the word on (with no units) into a Duration field if you
want the Sound to stay on forever (actually, just 2 years). See Specifying Units in Parameter Fields on
page 210 for a complete list of units.

Any Sound that reads a file from disk (for example, a GenericSource, DiskPlayer, SumOfSines) can also
read the “natural” or original duration of that file from the file header, so you can use some shortcuts in
the Duration or Frequency fields.

In these Sounds, you can use the word Default in either the Frequency or Duration fields (no units
are required because Default is automatically in units of seconds for times or durations and units of
hertz for frequencies).‡ This specifies that the originally recorded frequency or duration should be used.

§ It is one of the quirks of Smalltalk that you must include the leading zero whenever you type a fractional number. Try

getting rid of the leading zero and recompiling the Sound. Kyma will put the error message Nothing more ex-
pected-> into the parameter field. This is because Smalltalk interprets the decimal point as the period at the end
of a statement, and it does not expect to see anything beyond the end of the statement.

‡ Alternatively, you can use 0 s instead of Default in Duration fields, and 0 hz instead of Default in Fre-
quency fields.

37

In GenericSource, for instance, you can get the original duration of the sample file by typing Default
and the GenericSource will play the sample at its original, recorded frequency if you type Default into
the Frequency field.

The advantage of using the word Default is that you can do arithmetic on the duration or frequency
without having to know or care exactly what it is. For example, if you know you want to lower the fre-
quency by an octave, you can simply use

Default * 0.5

for the Frequency.

Default is in units of hz for the Frequency, so if you want to add to it (to transpose it), you must first
convert the frequency to note numbers and then add a value in units of note numbers. For example, to
raise the pitch by a perfect fifth (7 half steps), you would type

Default nn + 7 nn

As it stands now, our example will play through the GenericSource once and then it will go out of exis-
tence. Let’s modify it such that the GenericSource stays permanently loaded in the Capybara (until we
load a different Sound). To do this, type the word on in the Duration field, and play the Sound.

38

Event Values
Even though the GenericSource program is permanently running on the Capybara, we still only hear the
sample once because the Trigger is an unchanging constant.§ How can we control the value of Trig-
ger? One way would be for Kyma to watch for incoming MIDI keyboard events, setting the value of
Trigger to 1 when the key is down and 0 when the key goes up.‡

To specify that the Trigger should come from MIDI key down:

1. Click or Tab into the Trigger field

2. Press the Escape key on your computer keyboard (the cursor changes to a little fader)

3. Play two keys at once on your MIDI keyboard

Play the GenericSource and try triggering it with the MIDI keyboard. Try changing the ReleaseTime to
50 ms, play the GenericSource, and play the keyboard again. AttackTime and ReleaseTime provide a
simple amplitude envelope on the GenericSource to avoid on/off clicks.

A red name that starts with an exclamation point (like !KeyDown, above) is called an Event Value. An
Event Value is not a constant, like an ordinary number. Instead, it relies on external events for its value.
These external events include: pressing a MIDI keyboard key, moving a MIDI fader, sending out MIDI
events from a software sequencer, moving a fader in Kyma’s virtual control surface, generating events
algorithmically using the MIDIVoice or AnalogSequencer Sounds, or even writing your own C programs
to set these Event Values as if they were variables in your program.

An Event Value can change while the Sound is playing, unlike a constant value which is set once when
the Sound first starts up.

Playing this monotone harp GenericSource begs the question, how can you control Frequency from the
keyboard? The steps are almost the same:

1. Click or tab into the Frequency field

2. Press Escape once (do not hold it down)

3. Play a single key on the MIDI keyboard

§ Sounds that have Trigger fields are triggered whenever the Trigger becomes positive. To trigger the Sound

again, the Trigger has to become zero or negative, then positive again.
‡ If you haven’t already done so, now is the time to connect the output of your MIDI keyboard and/or other control-

lers directly to the MIDI in jack on the back of the Capybara. To make sure that you are receiving MIDI, use
Configure MIDI… (found under the DSP menu); it has an option to display all incoming MIDI events.

39

While we are at it, we might as well Tab into the Scale field, hit Escape and play three keys simultane-
ously in order to control the amplitude of the GenericSource with key velocity. Play the GenericSource
again and play the MIDI keyboard.

At this point, the Gate field has the word !KeyDown, the Frequency field says !Pitch, and the Scale
field contains the word !KeyVelocity.

You could also have typed these names directly into parameter fields. Actually any word preceded by an
exclamation mark will turn red in the user interface and be interpreted as an Event Value, that is, a pa-
rameter that can be changed while the Sound is running on the Capybara. If the name that you enter
happens to be in your global map, then you can control it from a MIDI device, but even if it is not in the
map, you can still control it from the virtual control surface — more about that in the upcoming section
on MIDI continuous controllers.

You could, alternatively, have pasted these Event Values into the fields using the Paste hot… option in
the Edit menu (Ctrl+H). Ctrl+H opens a list of all the Event Value names in your global map (more on
global maps coming up on page 47). Scroll down the list, or simply begin typing the first few letters of the
desired name to jump to proper position in the list. Then hit Enter to paste the name into the field. At the
top of the list are some commonly used expressions that you can paste directly into the parameter field in
order to save yourself some typing.

40

Status
Whenever you play a Sound that requires some kind of real time input (such as hitting a MIDI key,
moving a virtual fader, or singing into the microphone) the Status window will display a list of the ex-
pected sources of input. This is especially helpful information when you play a Sound and don’t hear
anything because the Sound is waiting for input from the A/D or waiting for a !KeyDown trigger.

The Status also displays the current global map (the mapping from memorable names in Kyma to actual
MIDI controller numbers), the MIDI channel or channels on which it is expecting MIDI input events, the
word Keyboard (if it expects MIDI key events), and a list of all continuous controller names.

Across the top is a horizontal thermometer display giving an indication of how much memory is avail-
able on your host computer (not to be confused with the memory on the Capybara). As memory is
dynamically used up and then recycled,§ you will notice the thermometer growing redder or bluer and
also growing further towards the right and shrinking towards the left. Smalltalk does periodic recycling,
but you can force it to recycle memory immediately by clicking the Recycle button. You should leave this
Status window open at all times, because it monitors the available memory and does automatic recycling
for you.

Polyphony
Controlling parameters from a MIDI keyboard immediately suggests the idea of polyphony. To make a
Kyma Sound polyphonic, make it the input to a MIDIVoice module; this defines the Sound as a MIDI
voice, assigns it a channel, gives it a polyphony value, and specifies a range of MIDI pitches that it should
pay attention to.

For example, to increase the polyphony on the MIDI-controlled GenericSource from the previous section,
drag a MIDIVoice from the MIDI In category of the prototypes, and drop it on the line between the Gen-
ericSource and the HarmonicResonator. Double-click on the MIDIVoice to take a look at its default
parameter settings.

§ Kyma is written in Smalltalk, a programming language that dynamically allocates memory; whenever an object in

Kyma is no longer in use, Smalltalk can recycle the memory previously needed by that object.

41

The MIDI channel is set to 0, so it will default to the MIDI channel specified in Configure MIDI… under
the DSP menu. Change the Polyphony to 4, select the MIDIVoice, and play it. Now you should be able
to hold down four notes at a time on the MIDI keyboard.

To specify that there should be several different timbres, each on its own MIDI channel, feed each of the
Sound’s (timbres) into its own MIDIVoice, assign it its own channel, and then feed all of those MIDI-
Voices into a Mixer.

To implement a “keyboard split”, where one range of note numbers triggers one timbre and another
range of note numbers triggers another, create a Mixer of two or more MIDIVoices. Set the LowPitch
and HighPitch of each MIDIVoice to the range of note numbers that should trigger the timbre associ-
ated with that particular voice.

If your timbres are all samples or disk files, take a look at MultiFileDiskPlayer, and KeyMappedMulti-
sample. These provide convenient ways to quickly map samples or disk files to MIDI note numbers or
other events.

MIDI Continuous Controllers and the Virtual Control Surface
Let’s extend this example so that we can control the attack time of the envelope as well.

1. Tab into the AttackTime field

2. Press Escape once (do not hold down the key) and move a MIDI fader

3. Press the Space Bar and the letter s (to add units of seconds to the value from the MIDI fader)

42

Kyma will make an association between the fader you just moved and this parameter. When you play the
GenericSource, the virtual control surface will pop to the front, showing the name of the continuous con-
troller that now controls the attack time. You can adjust the attack time using either the MIDI fader or the
virtual fader on the screen.

You can also enter values by typing into the small field at the top of the fader. When the virtual control
surface is in front, you can hit the Tab key to select the number in the numeric field at the top of the
fader. Type a new number between 0 and 1‡ (remember to include a leading zero before the decimal
point), and press Enter or Return. The fader will jump to the new setting.

‡ Inside Kyma, the value of a continuous controller is in the range of 0 to 1. If the controller is a MIDI controller, you

are probably accustomed to thinking of its range as 0 to 127, but inside Kyma this range is scaled to lie between 0
and 1. This makes it easy to do arithmetic with controllers and to predict the results of multiplying a controller by
a constant. For example, if you have a controller called !Frequency, and its range is 0 to 1, you can easily change
its range to 750 hz to 1000 hz by typing:

!Frequency * 250 hz + 750 hz

in the Frequency field. When the controller value is 0, the value of the expression is 750 hz, and when the con-
troller value is 1, the expression value is 1000 hz. Changing the range of a controller comes up often, so it is worth
remembering the general form for this expression:

!controller * (maximum - minimum) + minimum

43

If you don’t have any MIDI faders, you can still type in a name preceded by an exclamation mark into a
parameter field, and it will show up in the virtual control surface where you can control it.§ Alternatively,
you can use Ctrl+H or Paste hot… from the Edit menu to paste a name chosen from a list of names.

Continuing with our example, let’s add a continuously variable offset to the !Pitch supplied from the
MIDI keyboard:

!Pitch + !Frequency nn

Notice that the continuous controller !Frequency must have units of pitch or frequency, in this case, nn
for note number.

Select the GenericSource, use Ctrl+Space Bar to compile, load, start the Sound, and try playing the key-
board while moving the !Frequency fader on the virtual control surface.

Saving Event Value Settings
After you have developed a Sound that uses Event Values and have fine-tuned the Event Values, it
would be nice to save the settings. To do this, drag the Preset Sound (from the MIDI In category of the
prototypes) on to the line connecting the right-most Sound to the speaker icon:

Click on the Set to current event values button to capture the current settings of the Event Values. Now,
every time you play the Preset Sound, all Event Values will jump to those settings at the beginning of the
Sound (but you can still adjust them as the Sound is playing).

The Heartbreak of Numeri-phobia?
For many of you, the kind of arithmetic you do in parameter fields comes as naturally as everyday con-
versation. If you fit this category, then you can skip over this section.

We realize, though, that for some of you, the sight of arithmetic operators may bring back memories of
that apathetic (or even sadistic) algebra teacher who managed to convince you that math was boring and
impenetrable (despite the fact that, as a musician, you have a natural predisposition for mathematical
thinking… if only they had not insisted on boring it right out of you). In the event that you were unfortu-
nate enough to have encountered bad math teachers in your earlier years, have no fear. Kyma can bring
back your natural love of patterns and algorithms and rediscover your inner mathematician!

Here are a couple of tips for breezing through the arithmetic in Kyma parameter fields.

§ Kyma defines some built-in Event Values with different appearances in the virtual control surface. !cc00 through
!cc127 are faders that correspond to the MIDI continuous controllers on the default MIDI channel, !bt00
through !bt127 are momentary buttons on the same controllers, and !sw00 through !sw127 are check boxes on
the same controllers.

You can customize the appearance of the virtual control surface in the global map, see Virtual Control Surface and
Mappings on page 483.

44

 Scale and Offset

90% of all arithmetic that you will need in parameter fields will fit the same basic pattern. Most of the
time, we want to change the range of a fader to be something other than 0 to 1. So most of our expres-
sions will look something like this:

!Fader * range + minimum

To change the range of a fader that goes from 0 to 1, multiply it by the range you really want. For exam-
ple, if you want your frequencies to have a range of one octave, you could multiply (or scale) the
!Frequency fader by 12 half steps:

!Frequency * 12 nn

That would give you a range of note numbers from 0 to 12. Note number 0 is pretty low, so you proba-
bly would want to give it a different minimum note number. To set the minimum, you could add to (or
offset) your value:

!Frequency * 12 nn + 60 nn

Now your !Frequency fader covers the range from middle C (note number 60) to one octave higher
(note number 72).

Sometimes multiplying is called scaling, because it retains the shape of the function, and just scales its
size:

⇒
And sometimes adding a constant number is called adding an “offset”, because it doesn’t change the
shape or the size of the function, it just shifts the whole thing up or down — setting it off from the origi-
nal axis. You may have encountered this terminology before in the form of “DC offset”, when some
constant voltage is added to your audio signal, shifting it up or down with respect to zero.

⇒
In some of the Kyma documentation and nomenclature, you will see the words, scale, offset or
ScaleAndOffset to mean multiply and add.

 Minus 1

One version of the scale and offset that comes up fairly often in Kyma is the one that takes you from the
range of (0,1) to the range (-1,1). Since the range of a Sound’s output is typically (-1,1) and the

45

range of a continuous controller output is (0,1),‡ you will encounter situations in which one range must
be converted to the other.

To convert from (0,1) to (-1,1) you can use

!Fader * 2 - 1

First, you multiply by 2 because (-1,1) is twice as large a range as (0,1). But then you end up with the
range (0,2). So you have to shift it down by subtracting 1 so that you end up with (-1,1).

If you have pasted a Sound into a parameter field§ and want to scale its range of (-1,1) to a range of
(0,1), you can use

aSound L * 0.5 + 0.5

In other words, you first scale the range to half its size, and then add 0.5 to the result to shift it to the
range of (0,1).

 Nyquist

Even more common than the scale and offset is to scale a number without adding an offset. For example,
if you have a controller or a Sound that is giving you a function in the range of (0,1) and you want to
use that function to control the frequency of another Sound, you can scale (0,1) to the range of usable
frequencies by using the following expression:

!Fader * SignalProcessor sampleRate * 0.5 hz

Why? Because in digital audio, the highest frequency you can represent is half the sample rate of the
Capybara. You can get at the current sample rate by sending a message to the SignalProcessor. Then
you can multiply it by 0.5 to get half the sample rate and append the units of hz on the end.

 Note Numbers

While all MIDI continuous controllers are scaled in Kyma to the range of (0,1), Kyma leaves the range
of !Pitch and !KeyNumber to be (0,127), where 60 is middle C. So if you intend to use a continuous
controller as a pitch, you will have to scale it to the desired range of note numbers. For example

!Fader1 * 6 nn + 4 c

first scales the (0,1) range of !Fader1 to the range of (0,6), then gives it units of nn for note number,
and finally adds it to the octave-pitch-class designation for middle C.

 Flipping Time on its Head

Here is another relationship that comes in handy fairly often: frequency and duration are the inverses of
each other. Another way to say this is that the period of a signal (a duration) is the inverse of its fre-
quency. This becomes clearer when you recall that hertz really stands for cycles per second. If you flip
cycles per second, you end up with seconds per cycle or the number of seconds it takes to get through one
cycle of the waveform.

In other words, if you evaluate

441.0 hz inverse

in Kyma, you will get the duration of one cycle of a 441 hz signal. If you translate that to samples, you can
see how many samples that is; for example if the sample rate is 44.1 khz,

441.0 hz inverse samp

is 100 samples.

‡ All continuous controllers have a range of 0 to 1, corresponding to the MIDI controller values of 0 to 127. Pitch bend

(!PitchBend), however, has a range of -1 to 1, corresponding to the MIDI pitch bend range of 0 to 16383.
§ We are getting a little ahead of ourselves here. Using Sounds in parameter fields is explained in detail in Using

Sounds as “Control Voltages” starting on page 52.

46

So if you see a parameter field that asks for a duration (e.g. Period, HoldTime or Delay) and you
would like to specify the duration that corresponds to one cycle of some particular frequency, you can
enter the desired frequency and take the inverse of it.

Likewise, in a Frequency parameter, you can enter a duration and take its inverse in order to get a fre-
quency in hertz. For example, if you are using an Oscillator as a repeating envelope and prefer to specify
the duration of each pass through the envelope waveform, you can put the inverse of that duration in
seconds into the Frequency field of the Oscillator.

 Avoiding Carpal Tunnel

Many of these expressions are available in a list of hot expressions. Choose Paste hot… from the Edit
menu or use Ctrl+H to paste one of these expressions into a parameter field, saving yourself some typing.

 Fun

You now have the bits and pieces to do most of the arithmetic you will need for Kyma. Given this, you
can figure out everything else by puzzling through it, piecing together subexpressions that you have fig-
ured out before, drawing a few little sketches and trying a few things out. (Everyone does it like that, so
there’s no reason to feel inhibited about drawing a sketch or trying out a few test values in order to ex-
periment). And the little secret your high school teachers may just have forgotten to tell you is that it is
kind of fun to puzzle this stuff out — especially when the result is sound (and not just numbers scratched
in pencil on a blue-ruled sheet of paper).

The Real-time Evaluator
The arithmetic and other operations that you perform on Sounds or Event Values (the red names pre-
ceded by exclamation points) in parameter fields may look like a cross between ordinary arithmetic and
the Smalltalk programming language. In fact, these expressions are evaluated in real time by an event-
driven evaluator that runs on the Capybara. In other words, the expressions involving Event Values or
Sounds that you write in Kyma parameter fields are not evaluated on the host PC or Macintosh. They are
evaluated in real time on the Capybara; this means that the timing is unaffected by the other tasks being
performed by your computer (such as running your sequencer, wave editor, and operating system).

For a list of all functions understood by the real-time evaluator, along with an explanation and example
of how to use each one, see Real-Time Expressions in Parameter Fields on page 211.

Making More Room in the Parameter Fields
Once you start doing arithmetic in the parameter fields, you can run out of room pretty quickly. To en-
large a parameter field to the full screen size, use Ctrl+L (for large window). You can also use the mouse
to pull up the center line that separates the signal flow graph from the parameter fields in the Sound edi-
tor, thus giving more room to the parameters:

47

Physical MIDI Faders and Global & Local MIDI Maps
How does Kyma make the connection between a red Event Value in one of the parameter fields and an
actual, external MIDI controller? Behind the scenes, there is a global map that takes a set of memorable
names (like !Frequency or !Pan) and associates them with (less memorable) MIDI controller numbers
(like `MIDIController18 or `MIDIController23). To see the current global map, choose Open…
from the File menu, and select Global map as the file type. Then find and open the file named Default
in the Global Maps folder.

The syntax for setting up an association between a (red) memorable name and one of the standard set of
MIDI events and controllers (shown in blue) is

!MemorableName is: `MIDIControllerNbr.

The blue name (the one preceded by a back quote) is called the Event Source and the red name (preceded
by an exclamation point) is called an Event Value.

You can also specify how you would like the controller to display in the virtual control surface. A #gate
shows up as a button, a #toggle shows up as check box, a #fader shows up as a fader with a field at
the top displaying the numeric value, and a #smallFader shows up as a numeric field (which you can
still increment and decrement as if it were a fader by holding down the Control or Option key while
moving the mouse up and down).

Here is an excerpt from the Default map showing the syntax for specifying how the controllers should
appear in the virtual control surface:

!DamperPedal is: (`MIDIController64 displayAs: #gate).
!DetuneDepth is: (`MIDIController94 displayAs: #fader).
!EffectControl1 is: (`MIDIController12 displayAs: #fader).
!EffectControl2 is: (`MIDIController13 displayAs: #fader).
!ExpressionController is: (`MIDIController11 displayAs: #fader).
!ExternalEffectsDepth is: (`MIDIController91 displayAs: #fader).
!FootController is: (`MIDIController04 displayAs: #fader).
!HarmonicContent is: (`MIDIController71 displayAs: #fader).
!Hold2 is: (`MIDIController69 displayAs: #toggle).

The following examples illustrate how you can associate a name with a controller on a specific channel
(while that same controller number on a different channel is associated with another name).

!Length is: (`MIDIController07 channel: 16).
!Depth is: (`MIDIController07 channel: 15).

48

To prevent a controller from ever showing up in the virtual control surface, tell it to display as
#nothing:

!Harm is: (`MIDIController71 displayAs: #nothing).

The global map is always there, invisibly associating Event Values with your external MIDI devices.
When you first get Kyma, the Default map is selected as your global map. To select a different global
map, use Choose global map… in the File menu.‡

Whatever your current global map may be, you can always temporarily add to it or override portions of it
in a local map. The MIDIMapper Sound has a Map parameter where you can enter the associations that
differ from the global map. These associations apply only to those Sounds to the left of the MIDIMapper
in the signal flow diagram. Anything not overridden in the local map will be specified in the global map.

You can also use a local map to specify controllers that will show up in the virtual control surface only,
without being connected to any external controller. This is especially useful when you have some specific
names that you would like to give the controllers for one specific Sound, but when those controller names
are not generally useful enough to warrant adding them to the global map.

To specify a named controller that will show up in the virtual control surface only (and not be controlla-
ble with physical faders), use the same name for both the Event Value and the Event Source, e.g.

!Freq is: `Freq.

Local maps are also handy for displaying the true value of a fader. In other words, instead of taking the
(0,1) controller and multiplying it by the desired range in the parameter field, you can change the range
of the controller to whatever minimum and maximum value you like. Typically, this is not something
you would want to do in the global map, because the desired range is probably going to be different for
each Sound. So, although you can specify a different range in the global map, it is most often done in a
MIDIMapper.

To specify a range of values for a MIDI controller, use a statement like the following:

!Frequency is: (`MIDIController18 min: 100 max: 1000).

This gives you a fader called !Frequency whose minimum value is 100 and whose maximum value is
1000 controlled by MIDI continuous controller number 18 on the default MIDI channel.

The extra tags specifying channel, range, etc. are not limited to use in local maps. They can also be used in
any new global maps that you design or modify.

Automation
In some situations, you might want to automate parameter changes, rather than controlling them by hand
with a MIDI fader or the virtual control surface. There are several ways to accomplish this:

♦ Use a software sequencer to draw the continuous controller functions, and then control the Capybara
from the sequencer.

♦ Use the sequencer to draw the time-varying behavior of each controller, export the sequence as a
standard MIDI file, and read the MIDI file in Kyma.

♦ Use the time functions built in to Kyma.

♦ Use a Sound to control the way the parameter changes over time (in the same way that you might use
an LFO to control a parameter in a modular analog synthesizer).

♦ Use the Script parameter of a MIDIVoice to algorithmically specify how the controller value
changes over time.

♦ Use the AnalogSequencer Sound to generate sequences of note events and controller values.

‡ When you opened the Default map, you may have noticed that there were a couple of other maps in the Global
Maps folder as well. You can make a copy of the Default map, and customize it for whatever MIDI devices you
have in your studio. For example, the PC1600 map is one that we have set up for the Peavey PC 1600 MIDI con-
troller, and the Lightning map was designed to map the horizontal and vertical movements of the left and right
wands of a Buchla Lightning controller.

49

Automating Controllers using a Software Sequencer
Type or paste a controller number into a Kyma parameter field that matches the name (or number) of a
controller in your sequencing program. For example, you could use the following in a Frequency field:

!cc120§ * 12 nn + 4 c

Use Ctrl+Space Bar to play the Sound, and then start up (or switch to) your software sequencer. Once in
the sequencer, you can record any keyboard events or controller moves. Most sequencing programs also
let you edit or draw the controller moves graphically.

Once you have used Ctrl+Space Bar to load your Sound into the Capybara, the Kyma software does not
have to do much other than updating its status displays, so you can bring the sequencer (or other MIDI-
event generating software) to the front. Once the Sound has been loaded into the Capybara, you can think
of the Capybara just as you would any other external sound module, at least in terms of how you would
control it from the sequencer.‡

MIDI Files
Once you have recorded and/or adjusted the time-varying controller functions to your liking in the se-
quencer, you can (optionally) export the sequence as a standard MIDI file and then use a MIDIVoice or
MIDIMapper to read that file and use it to control a Kyma Sound.

In the Kyma Sounds MIDIVoice and MIDIMapper, you can choose the source of control for the input
Sound. The first choice, MIDIInput, indicates that the Sound will be controlled by the live MIDI input,
whether that comes from a MIDI controller, a sequencer, or some other software that outputs MIDI to the
Capybara. The second choice, MIDIFile, indicates that the control will come from the file named in the
MIDIFile parameter field. The third choice, Script, indicates that the events will be generated algo-
rithmically by a program you have written the Script field (more on this later).

Each time you play the MIDIVoice with MIDIFile selected as the source, it reads up all of the events on
the specified channel of the specified MIDI file and then sends those MIDI events to its input Sound.

§ The default global map defines !cc120 as MIDI continuous controller 120 on the default MIDI channel.
‡ For reasons of speed and universal compatibility, Kyma requires that you send MIDI directly to the Capybara via

the MIDI input on its back panel. If you are generating the MIDI events in software, you have to send them out of
the computer via a MIDI interface and connect the output of that MIDI interface to the Capybara. In other words,
treat the Capybara as you would any other external sound module, even if Kyma and your MIDI event-generating
software happen to be running on the same computer at the same time.

50

To read several channels, create several MIDIVoices, each assigned to its own channel but reading the
same MIDI file, and place all of them into a Mixer:

By saving the controller movements in a MIDI file and reading them with the MIDIVoice, you can com-
bine the Sound and the means for controlling the Sound into one package — another manifestation of the
ubiquitous “sound object”!

Time Functions
Among the functions that the Kyma real-time evaluator can understand are functions that change over
time. Examples include !LocalTime whose value is simply the current time in seconds since the Sound
started playing, or repeatingRamp: which generates a ramp or sawtooth-shaped function that changes
linearly from 0 up to 1 and then repeats.

Suppose you had a GenericSource that was set to read a sample from RAM and that you wanted its fre-
quency to increase gradually over time. You could enter the following expression into the Frequency
parameter field:

4 c + !LocalTime nn

This would result in a sample whose pitch would increase continuously at the rate of one half step per
second. Alternatively, you might use something like

(!KeyDown ramp: 0.1 s) * 3 nn + !Pitch

This would give you the pitch from the keyboard plus a pitch bend from zero to three half steps over the
course of a tenth of a second. Or, if you didn’t want to rely on any keyboard input at all, you could use
something like

(1 repeatingRamp: 3 s) * 440 hz + 440 hz

which would result in a frequency that would glide from 440 hz up an octave to 880 hz over the course
of three seconds, and then repeat the process over and over for the duration of the Sound.

To trigger a Sound periodically, you can use the bpm: (beats-per-minute) function. For example, if you
put the following into the Trigger field of the GenericSource:

1 bpm: 60

it would be triggered once per second. To effectively “loop” a disk file that is 3.5 seconds in duration, you
could type the following into the Trigger field:

1 bpm: (60 / 3.5)

This would trigger the disk playback once every 3.5 seconds.

51

 Random Variation

To add randomness to any parameter, you can use the random and nextRandom functions. Each of these
functions generates random numbers between -1 and 1. To generate a new random number every 2 sec-
onds, you would use:

2 s random

To get a new random number each time there is a trigger like !KeyDown, you would use

!KeyDown nextRandom

or to trigger a new random number 240 beats per minute, you would use

(1 bpm: 240) nextRandom

In the GenericSource, for example, if you choose celtHrp2a as the Sample, !KeyDown as the Trigger,
and you enter the following expression for the Frequency parameter

!KeyDown nextRandom * 12 nn + 48 nn

you will get a different pitch (between 2 c and 4 c) each time you press a MIDI key.

To limit the choices to a specific list of note numbers, you pick them at random from an array. For exam-
ple if you type the following into the Frequency field

(!KeyDown nextRandom abs * 5 of: #(53 50 48 45 43)) nn

you will get a different pitch each time you press the key, but the pitches will be chosen from the list of
MIDI note numbers #(53 50 48 45 43). In this example we are using the random number as an index
into an array of note numbers. Let’s take it apart and look at it step by step:

1. First we generate a random number every time a key goes down:

 !KeyDown nextRandom

 This gives a number between -1 and 1.

2. But we can’t use a negative number to mean a position within the array. So we take the absolute
value, forcing all the numbers to be positive:

 !KeyDown nextRandom abs

 This gives us a number between 0 and 1.

3. In order to have a chance of selecting any position in the array, we next multiply by the size of the
array:

 !KeyDown nextRandom abs * 5

 This gives us a number between 0 and 5.§

4. The next step is to use this number as an index into the array. To do this, we type of: followed by
the array

 !KeyDown nextRandom abs * 5 of: #(53 50 48 45 43)

5. And finally, we have to add the units. So we put parentheses around the entire expression and add
the units of note number to the end:

(!KeyDown nextRandom abs * 5 of: #(53 50 48 45 43)) nn

The following expression in the Frequency field of our GenericSource example adds a random interval
to the pitch from the keyboard. A new interval is chosen at random every 0.125 seconds:

!Pitch + ((0.125 s random abs * 5 of: #(10 7 5 2 0)) nn)

If you hold the key down, you can hear the pitches changing once every eighth of a second, but the sam-
ple is not being triggered during that time, so you hear the sequence of pitches trailing off in amplitude as
the natural amplitude of the sample dies away.

§ Note that if an array index has a fractional part, it is always truncated before the index is interpreted as a position

within the array. That is why we have to multiply by 5, because numbers like 4.999 will be truncated and give us 4,
the last position in the array.

52

 Smoothing Things Over

To filter or smooth out the changes between one Event Value and the next, you can use the smoothed or
the smooth: functions. When you smooth an Event Value, it changes from one value to the next gradu-
ally, rather than jumping instantly to the new setting. When applied to pitch, it is something like
“portamento” or “slew rate”, but you can apply this smoothing to any parameter.

For example, you can add smoothing to the Frequency field of the previous example as follows:

(!Pitch + (0.125 s random abs * 5 of: #(10 7 5 2 0)) nn) smoothed

The default rate of change from one value to the next is 100 milliseconds. To jump more quickly or more
slowly between parameter values, specify the time it should take as smooth: aTime, for example:

(!Pitch + (0.125 s random abs * 5 of: #(10 7 5 2 0)) nn) smooth: 0.5 s

 SMPTE or MIDI Time Code Synchronization

To trigger Sounds in Kyma from an external source of MIDI time code, use the triggerAtTimeCode or
the gateOnAtTimeCodeForDuration: messages. The Capybara has MIDI inputs only, so you will
need to use a device to translate SMPTE time code into MIDI time code.

For example, to generate a trigger at the time code of 1 minute and 12 seconds, you would type

00:01:12.00 SMPTE triggerAtTimeCode

into the Trigger or Gate fields of your Sound. To trigger different Sounds at different times, put all of
them into a Mixer, and set each of their trigger fields to the appropriate start time.

To generate a gate that stays on for a specific duration (rather than a trigger which turns on and stays on
indefinitely), use

20 s gateOnAtTimeCodeForDuration: 1 s

where the first part indicates the time at which the gate should turn on and 1 s indicates how long it
should stay on. Notice that you can specify the time in ordinary units, or you can use the SMPTE format
showing hours, minutes, seconds, and frames followed by the word SMPTE:

hh:mm:ss.ff SMPTE

Using Sounds as “Control Voltages”
You can also use one Sound to control a parameter of another Sound (similar to controlling one module
with the output of another module in a voltage-controlled analog synthesizer). A Sound that is used as a
control signal appears in a parameter field as the name of the Sound enclosed in a box.

To place a Sound into another Sound’s parameter field:

1. Select the “control” Sound.

2. Copy it (using Copy from the Edit menu or Ctrl+C).

3. Activate the parameter field by clicking in the field.

4. Paste the Sound into the field (using Paste from the Edit menu or Ctrl+V).

For example, suppose you wanted to slowly shift the frequency of the prototype FormantBankOscillator.
Drag the prototype FormantBankOscillator into your Sound file window and open it. Select the Oscilla-
tor prototype and copy it using Ctrl+C. Then click in the Frequency field of the FormantBank-
Oscillator, and paste (Ctrl+V) the Oscillator into the Frequency field of the FormantBankOscillator .

53

When you paste a Sound into a parameter field, you see its name enclosed within a box to indicate that it
is a control signal.

At this point, the Frequency of the FormantBankOscillator is the output of the Oscillator. The output
of a Sound is a kind of “stereo pair” that carries both the left and the right channel output.‡ To indicate
the right channel, use an R (for right) instead. To indicate a mix of the two channels, use an M (for mix).

Sound outputs are in the range from -1 to 1, so we are requesting a frequency that ranges between MIDI
note number -1 and MIDI note number 1. This does not make much sense, so let’s add a base pitch and
use the variation between -1 and 1 as a deviation from that central pitch. To set the central pitch to second
octave C, you could use:

Oscillator1 L nn + 2 c

Double-click in a white area of the signal flow editor to force an update. Now double-click the Oscillator,
and change its frequency to a low value like 1 hz. (Note that the default wavetable for the Oscillator is
Sine).

Now select and play the FormantBankOscillator. You will hear its frequency vary in the shape of a sine
wave between a half step below 2 c and a half step above.

 Draw

What if you want to draw a shape, rather than rely on the shape of the Sine for your frequency devia-
tion? Replace the Oscillator with a GraphicalEnvelope (from the Envelopes category of the prototypes).
Double-click on it to see its parameters. In the Envelope field, use shift-click to add several more points
and create an envelope that jogs up and down a few times. (Notice that the prototype GraphicalEnvelope
is triggered by !KeyDown).

‡ By default, the Sound name is followed by an L (for left), indicating that only the left channel should be used as a

control signal.

54

Now select and play the FormantBankOscillator. Each time you press a key on the MIDI keyboard, it
will trigger the envelope, and you will hear the frequency vary according to the shape you drew in the
GraphicalEnvelope.

To make the deviation more extreme, multiply the effect of the GraphicalEnvelope by 12 nn. This gives
you a frequency deviation of one octave (12 half steps):

GraphicalEnvelope1 L * 12 nn + 2 c

 I just want to sing

Some of the Sounds in Kyma extract parameters from their inputs, for example, the AmplitudeFollower
or the FrequencyTracker extract the amplitude and frequency, respectively. If you apply one of these
modules to the ADInput, you can use your own voice (or an instrument) to control parameter values of
Kyma Sounds.

Drag an AmplitudeFollower from the Analysis category of the prototypes, and drop it on top of the
GraphicalEnvelope.

Select and play the FormantBankOscillator and then sing into the microphone. The louder you sing (or
yell) into the microphone, the more pitch deviation in the FormantBankOscillator. This is one form of
“cross synthesis”, controlling the parameter of one Sound with a different parameter extracted from an-
other Sound.

 Treating MIDI Events as Audio Signals

By pasting Sounds into parameter fields, you can, in a slightly twisted way, treat MIDI events as if they
were audio signals or create shared expressions. The trick is to use the Constant Sound.

The Constant is used to indicate a value that remains constant instead of varying over time the way most
signals do. Paradoxically enough, you can put Event Values into the Constant’s Value field so that the
value changes in response to events coming in from MIDI or other sources—in other words, it becomes a
“time-varying constant”.

Suppose that you wanted to treat the MIDI pitch as a signal, subjecting it to signal processing operations
like delay, attenuation, or filtering before using it to control the pitch of an oscillator. To turn MIDI pitch
into a signal, enter

!KeyNumber / 127

into the Value field of a Constant. Why divide by 127? Because a Constant’s value must be between -1
and 1, and a key number is between 0 and 127.

Now you can feed the Constant into a DelayWithFeedback, a HarmonicResonator, a PeakDetector, or
some other chain of processing Sounds, and then paste the chain into the Frequency field of the Oscilla-

55

tor. Since the value has been scaled to the range of -1 to 1, we have to scale it back to the range of MIDI
note numbers and give it some units:

FilteredConstant L * 127 nn

Another situation in which you might want to use a “time-varying constant” is one in which you have a
relatively complicated Event Value expression that is used in several parameter fields, and you would
like to treat it as a “global” expression; in other words, if you change it in one place you would like all of
the other instances of it to be changed in the same way. To do this, you would enter the expression into
the Value field of a Constant, and then paste the Constant into each of the parameter fields to be con-
trolled by the expression.

 Update Rate

A parameter that contains a Sound is updated at a rate of once per millisecond (1 khz). If the parameter
field contains an arithmetic expression that depends on the value of the pasted Sound, the entire expres-
sion will be re-evaluated once every millisecond. If this is faster than necessary, you have the option of
slowing down the update rate. After the channel indication, type a colon and the number of milliseconds
between parameter value updates. For example to update once every 5 milliseconds, type

Oscillator L: 5

If you are doing arithmetic with this value, you should parenthesize it to show that the 5 belongs with the
Oscillator, for example:

(Oscillator L: 5) * 12 nn + 4 c

Sounds that are used as inputs (rather than controls pasted into parameter fields) are of course updated at
the full sample rate (which is 44.1 khz by default, but which can be changed using the DSP Status win-
dow, described later in this section).

Algorithmically Generated Events
MIDIMapper and MIDIVoice can read Event Values from one of three possible sources:

♦ real-time MIDI input (from a MIDI controller, sequencer, or other software),

♦ a MIDI file, or

♦ a script

If you select the last option, Script, then all Event Values to the left of the MIDIVoice or MIDIMapper will
be controlled by events that you generate algorithmically using a program in the Script field. This sec-
tion gives you a little taste of how you can control parameters algorithmically, if you get really interested
in this aspect of Kyma, you should study the examples in the file called MIDIVoice Scripts and read
the section called MIDI Scripts beginning on page 522.

Within the Script field, you can refer to the MIDIVoice or MIDIMapper as self. Then you can tell it to
generate note events or controller value updates.

Virtual Keyboard Events
To generate a note event, specify when the (virtual) key should go down, how long it should be held
down, and what its pitch and velocity values are. For example:

self keyDownAt: 0.5 s duration: 0.125 s frequency: 60.5 nn velocity: 1.

Notice that the pitches do not have to be integer note numbers. You can type in any note number or any
frequency you like (which could come in handy if you are interested in alternate tunings).

If you leave off any of the tags, that parameter will take on a default value. So you need only specify the
parameters you care about.

Controller Events
There are also methods for setting a controller to a specific value at a specific time and for updating a
controller’s value over some period of time.

56

For example, to set controller number 7 to the value 0.5 at time 0, you would type:

self controller: !cc07 setTo: 0.5 atTime: 0 s.

To cause a gradual increase in its value from 0.5 up to 1 by the time 5 seconds has been reached, you
would type:

self controller: !cc07 slideTo: 1.0 byTime: 5 s.

If you want to make sure that the transition sounds smooth and continuous, you can control the size of
the individual steps. For example,

self controller: !Frequency slideTo: 1.0 stepSize: 0.1 byTime: 10 s.

would use steps of one tenth of a hertz if !Frequency were in units of hertz.

Alternatively, you can specify the number of steps it should take to get from one value to the other. For
example,

self controller: !Morph slideTo: 1.0 steps: 100 byTime: 3 s.

would send 100 updates to the value of !Morph over the course of 3 seconds.

Although it might initially seem that you should always send a huge number of steps or set the step-
Size to a very small value, there is a tradeoff to consider. If you are using many controllers and each
controller is sending many updates, you can start loading down the Capybara with too many events. If
the load gets too heavy, it could start interfering with the actual sound generation. So in algorithmic
events, as in all things, use moderation.

The Power of Programming
You might well ask yourself at this point, “Why type all that stuff when I can just play the same thing on
the keyboard and record it in my MIDI sequencer?” Good question! Because if all you did in the MIDI-
Voice or MIDIMapper Script was to type each individual event, then you would be much better off
using sequencing software instead.

The real power of the script begins to emerge when you embed these event-generators in some pro-
gramming control structures. To really see how to do this, you should read about MIDI Scripts on page
522. But just to give you a little appetizer, consider this. If you put a single keyboard event into a loop,
and change its settings each time through the loop, you can generate hundreds of events with just a few
lines of code. For example, here is a script that will generate 500 random notes:

| r t |

r := Random newForKymaWithSeed: 52.
t := 0.

500 timesRepeat: [
self

keyDownAt: t s
duration: (r next + 1) s
frequency: 3 c + (r next * 36 nn)
velocity: r next.

t := t + r next].

and to generate 1000 notes, you would just change the 500 to 1000 (or whatever number you like!)

EventCollections
For many kinds of music, it makes more sense to think in terms of notation than in terms of times in sec-
onds. EventCollections provide a way to specify notes and rests, rather than start times in seconds. For
the full story, see MIDI Scripts on page 522.

57

Analog-style Sequencer
There is more to the “analog sound” than just oscillators, filters and envelopes. Part of that characteristi-
cally analog sound emerges from the concept of voltage control and from the kind of sequencers used to
send sequences of control voltages to the oscillators, envelopes, and filters.

Kyma’s AnalogSequencer Sound generates a sequence of pitches, velocities, durations, duty cycles, plus
any number of other sequences of Event Values for controlling the parameters of its input. You can also
loop a sequence, go through it backwards, and move the loop points around as the sequence is playing.
Any or all of the values in the sequence can be Event Values, meaning that you can alter them from the
virtual control surface, MIDI faders, or from another AnalogSequencer while the sequence is going.

Like any other Kyma Sound, an AnalogSequencer can be mixed with other Sounds or used as an input to
another Sound (for example a MIDIVoice or another AnalogSequencer). Once you start nesting and mix-
ing sequencers, you can quickly end up with complex sequences that, while they do have a pattern to
them, also contain a few surprises that can be difficult to predict.

How do I control thee? Let me enumerate the ways…
To summarize, you can control the parameters of a Sound in any of the following ways:

♦ From the virtual control surface, saving the settings in a Preset Sound

♦ Using MIDI faders, keyboard or other controllers (using the global map and/or MIDIMapper Sound
to map memorable names to MIDI devices)

♦ From a MIDI sequencer or other software that outputs MIDI (running on the same computer as Kyma
or on another computer connected to the MIDI input of the Capybara)

♦ From a MIDI file exported from a sequencer

♦ From a script in a MIDIVoice Sound

♦ From the AnalogSequencer Sound

MIDI Output
Up to this point, we have been obsessed with control — or at least with how to use MIDI input to control
the parameters of Kyma Sounds. Kyma can also be a source of MIDI events, and if you hook up your
synthesizer or sampler to the MIDI output of the Capybara, you can control it in some unusual ways us-
ing Kyma Sounds.

58

MIDI Controllers
The output of any Kyma Sound can be used as a MIDI continuous controller output. In other words, its
stream of instantaneous amplitudes can be sent out as changes to a continuous controller (at the maxi-
mum MIDI rate of 1 khz and with the maximum MIDI controller resolution of 7 bits).

If both the Capybara and your synthesizer are patched into a mixer, you can listen to both at once. Oth-
erwise, you will need to send the output of the synthesizer into the Capybara’s audio input. Then you use
one of the Kyma software Mixers to mix the ADInput (which will be monitoring the synthesizer) with the
Kyma Sound that is sending out the MIDI controller data.§

Here is a typical configuration for listening to the output of a synthesizer that you are controlling using a
Kyma Sound:

MIDI Keyboard Events
To generate a MIDI keyboard event, you have to supply a pitch, a velocity, and a trigger (which indicates
when to send this information as a MIDI note event). As a trivial example, suppose you had a MIDIOut-
putEvent whose Frequency was set to !Pitch, whose Amplitude was set to !KeyVelocity, and
whose Gate came from !KeyDown.

§ Anytime you want Sounds to play simultaneously in Kyma, you have to put them into a Mixer — even if one of the

Sounds (in this case the MIDIOutputController) is not actually producing an audio signal that you can hear. Even
though its output is going to the MIDI output rather than becoming part of the audio stream, its program does
have to be loaded in the Capybara at the same time as the program for reading the ADInput. You can read more
about this in Combining Sounds on page 70.

59

This would read the pitch and the velocity from the Capybara’s MIDI input, and, each time you pressed a
key, would output a MIDI note event so it could be read from the Capybara’s MIDI output and could
control another synthesizer.

All in all a pretty pointless exercise, since you could have just connected your keyboard directly to the
synthesizer in the first place. But let’s suppose that you want to control both Kyma and an external syn-
thesizer or sampler at the same time, such that they are doubling each other.

Anytime you want two or more Sounds to happen at the same time in Kyma, you put those Sounds into a
Mixer. So you could put a Sample in a Mixer with this MIDIOutputEvent, and edit the Sample such that
it is triggered by !KeyDown and that its Frequency comes from !Pitch. Then whatever you play on
the Kyma Sample will be doubled by any external modules that are connected to the Capybara’s MIDI
output.

 Bringing Audio from an External Module into Kyma

If you have both the Capybara audio output and the external module’s output going to your mixing desk,
you can listen to both at once. But even if you don’t have a mixing desk, you can bring the sound of the
external module into Kyma by plugging it into the Capybara’s audio input jacks and using a Kyma Mixer
to mix the sound of the external module with the sounds produced by Kyma. Just drag an ADInput mod-
ule (found under the Sampling category in the prototypes) into the Mixer that already has the
MIDIOutputEvent and Sample as inputs:

60

 Cross-mapping Parameters

There is nothing to prevent you from using !KeyVelocity in the Frequency field or !Morph in the
Amplitude field of the MIDIOutputEvent. And the fact that you can paste any Kyma Sound into any of
the cyan-colored parameter fields means that you can use any Kyma Sound to control MIDI output pa-
rameters as well.

Here, for example, an AmplitudeFollower on the ADInput is controlling the MIDIOutputEvent’s Fre-
quency,‡ and the MIDIOutputEvent is being triggered at a regular rate by a PulseTrain.

If you want to send a system-exclusive message to an external MIDI module, you can use the OutputE-
ventInBytes Sound.

‡ Values in the Frequency field of the MIDIOutputEvent are not limited to equal-tempered pitches. Any deviation

above or below an equal-tempered pitch will be sent as the closest equal-tempered pitch plus a pitch bend. If you
set up your synthesizer or sampler to have a pitch bend range of plus or minus one octave, then the MIDIOut-
putEvents that you send from Kyma can specify the “notes-between-the-keys”, allowing for continuous pitch
changes and/or alternate tunings.

61

62

Other Editors & Info Windows

So far, we have been concentrating on the Sound editor, the prototypes, and the Sound file window.
While these are the central editors for sound design, there are some other, ancillary editors that can be of
assistance in designing your own Kyma Sounds.

File Organizer
The file organizer helps you use, organize, and keep track of all the sound-producing Kyma files on your
disk.

The file organizer is useful for cleaning up your disk, getting rid of redundant or otherwise unwanted
files, and getting your Kyma files organized for easy access and searching. You may just want to keep it
open all the time, so you can quickly create Sounds based on the files by dragging the files into a Sound
file window, rather than starting from a prototype. It is also handy to be able to see the file information
and to be able to open an editor by double-clicking on the file name rather than opening an editor from
the File menu.

Opening and Navigating
Open it by selecting File Organizer from the File menu. The file organizer gives you a list of all of the
files on your disks, color-coded according to whether they are samples, spectra, GA, RE, or MIDI files.
The color conventions are:

Item Color

Unopened disk or folder gray

Open disk or folder black underlined

Sample, EX turquoise

Spectrum purple

GA red-brown

RE yellow-orange

MIDI green

Double-click on a disk or folder name to hide or show the names of its subfolders or files displayed be-
neath it, indented according to how deeply nested they are within folders. You can use the arrow keys
and the page-up and page-down keys to move around in the list.

63

Getting Information on the File
To display the information stored in the header of the file, click on the file name in the organizer (or use
the up/down arrow keys to select the name of the file). This will display information specific to the file
type in the bottom portion of the organizer, including the time and date of last modification and the full
path name for the file.

Editing the Files
To edit the selected file, press Enter or double-click on the file name. This will open the appropriate
Kyma editor or, if you have specified an external editor for this file type,§ it will open your preferred pro-
gram for editing files of this type.

Hearing the Files
To hear the selected file, use Ctrl+Space Bar . Kyma plays sample files directly. For analysis files
(spectrum, GA, or RE), Kyma uses the analysis to synthesize the sound. For MIDI files, Kyma constructs a
minimal “orchestra” and plays the notes of the MIDI file on those simple “instruments”.

Using the Files in Sounds
To create a Sound based on a file, drag the file name from the file organizer into a Sound file window. For
example, if you drag a samples file from the file organizer into a Sound file, it will turn into a DiskPlayer
whose file name is set to that file. If you drag a spectrum, it will turn into a SumOfSines whose Analy-
sis0 field is set to that file and whose Duration and OnDuration fields are set to the duration of the
spectrum file. Similarly for an RE file, Kyma creates an RE resonators Sound. For a MIDI file, Kyma will
create a Mixer of several MIDIVoices, one for each channel of the MIDI file. Each of these voices has a
minimal “instrument” in it, so you can modify it to “orchestrate” the MIDI file score.

To set the value of any parameter field in the Sound editor, you can drag a file name from the file organ-
izer into the parameter field. If it is a parameter that makes sense for the file, the file will paste its value
for that parameter into the field. For example, if you drag a spectrum file into a Duration field, it will set
the duration of the edited Sound to be the same as the original duration of that spectrum file.

Sample Editor
Kyma has a basic sample and waveform editor that you can access from the File menu using either
New… or Open… (and setting the file type to Sample file). In addition to the usual cut, copy, and paste
operations on samples, you can use this editor to generate single cycles of periodic waveforms (for use in
oscillators), envelope functions (which can be accessed via the FunctionGenerator module), and arbitrary
tables of numbers (which you can index into via the Waveshaper module).

§ See File Editors on page 68 for more information.

64

Attic
The very top of the sample editor is an overview of the entire file. Drag the mouse across this overview to
draw a gray box around any subpart of the file. The region enclosed in the gray box is what you see in the
larger waveform display below the line of buttons.

Upstairs
The large waveform view is where you can select, copy, cut, paste, and trim sample files. It shows the fa-
miliar representation of a signal as amplitude versus time. To select the entire file, use Select all from the
Edit menu (Ctrl+A). Select a sub-section by dragging the mouse across the desired portion of the wave-
form (selections are shown within large red brackets). If you simply click on one point in time within the
waveform, it will mark an insertion point, rather than sweeping out a selection. An insertion point is in-
dicated by a single, vertical red line that blinks like the insertion cursor in a text editor.

Each of the buttons refers to the current, red-bracketed selection or insertion point.

The left and right arrows will jump the display left or right by the size of the selection. The play button
plays the selection. The disk button will replace the selection with the contents of a sample file that you
select using a file dialog (or, if you have an insertion point rather than a selection, it will insert the entire
contents of the other file at that point in this file). The magnifying glass button causes the current selec-
tion to fill the window in both the horizontal and vertical direction. All of the buttons with little
waveforms and arrows on them either stretch or compress the waveform in the direction of the black ar-
rows. And the ellipsis or et cetera button (…) handles some miscellaneous functions. One of the
miscellaneous options is to inspect and/or edit the header information in the sample file. The other is a
button rather cryptically labeled as Display Lissajous which will display the waveform in horizontal di-
rection versus the same waveform delayed by a specified number of samples in the vertical direction.

Downstairs
The lowest portion of the sample editor contains templates for generating waveforms or functions. Select a
template from the pop up list on the left. When you click the Insert button, the selected algorithm will
generate a waveform based upon the parameters that you have entered in the template, and if you have a
selection in the waveform view it will replace that selection with the newly generated waveform.

The Fourier template, for example, has fields for the duration of the waveform, for the number of the
harmonics that you would like to add together to create the waveform, for the relative amplitudes and
phases of each of the harmonics, and for an overall gain on the entire waveform. To try it, first make sure
the entire waveform is selected in the waveform window by clicking in the waveform area and perform-
ing Select all (Ctrl+A), and then click the Insert button.

And in the Basement…
By now some of you are probably wondering how to write your own programs to generate arbitrary ta-
bles and store them as Kyma wavetables that can be indexed using the Waveshaper module. The answer
lies deep at the bottom of the list of the templates where it says Programs. Here you can find a Smalltalk
program corresponding to each of the template waveform generators. Find the program closest to the one
you would like to write, and alter it to do exactly what it is that you need. (If you have never pro-
grammed in Smalltalk before, you should first read The Smalltalk-80 Language on page 513.)

Spectrum Editor
One way to display a sound visually is as amplitude versus time as in the sample editor. Another is to
display it as frequency and amplitude versus time as in the spectrum editor.

Creating and Opening a Spectrum File
Before you can display a Sound in the frequency domain, you must first create an analysis of the time-
domain waveform. The result of this analysis is a spectrum file which you can open and edit in the spec-

65

trum editor. The analysis can be done in Kyma’s Spectral Analysis tool (invoked from the Tools menu,
see Tools menu: Spectral Analysis on page 443), or using the CERL Sound Group’s Lemur program.‡

Open the spectrum editor on a file from the File menu or by double-clicking a spectrum file in the file or-
ganizer. (This display looks a lot better in color on the computer screen than it does on the page here.)

The band across the top is reserved for showing marker positions and track information. The large color
center area is for displaying the spectrum. The row of buttons across the bottom are for editing and dis-
play operations. They are grouped to correspond with the F-keys on your computer keyboard.

This section is intended to be an overview of the spectrum editor. See Spectrum Editor on page 487 for a
detailed description of all of the features of the spectrum editor.

Spectrum Information
Time is shown from left to right, frequency from bottom to top, and amplitude is mapped to color (the
bright colors like yellow and green are the largest amplitude, then the blues and purples, with red (and
black) showing the smallest amplitudes.§ The horizontal lines are referred to as “tracks”. Each track corre-
sponds to the output of a narrow bandpass filter, and you can think of a track as a measure of the amount
of energy present in the signal in that one band of frequency over time.

In order to understand how this representation of the spectrum can be used to resynthesize the original
sound, think of each of the horizontal lines as representing a “frequency envelope” for a single sine wave
oscillator. The change in the color of a track as you trace it from left-to-right corresponds to an amplitude
envelope on that oscillator. When you apply each of these frequency and amplitude envelopes to a differ-
ent oscillator and then put all of these oscillators into a mixer in order to add their results, you will hear
something very close to the original signal.

Using the Editor
To display information on a particular track, place the mouse over that track (without clicking down).
You will see the track number and the time in seconds corresponding to the mouse location, the ampli-
tude in dB (where 0 dB is the maximum), and the frequency in hertz.

 Selecting

To select a single track, click on it. You will hear that track and its color will become brighter to indicate
that it is selected. To extend the selection, hold the Shift key down while making another selection. To

‡ Lemur was written by Kelly Fitz, Bryan Holloway, Bill Walker and Lippold Haken, and is available from
http://datura.cerl.uiuc.edu.

§ There is a button that lets you switch to showing amplitudes on the vertical axis rather than the frequency enve-
lopes, primarily for editing the amplitude envelopes.

66

select a region that includes several tracks, use the mouse to draw a box around the region. You can ex-
tend boxed selections in the same way that you extend single track selections, by holding the Shift key
down when you make the new selection. You can also make selections based on a number of amplitude
or frequency criteria.

 Playing and Scrubbing

Anytime you make a selection, the selected tracks or portions of tracks are immediately played so you
can hear what you just selected. There are also buttons to play the entire spectrum file, the part of the file
that is selected, and the part of the file between the start and end markers.

To hear different sections of the file, use the mouse to drag the vertical yellow scrub bar over the regions
you would like to hear. You can also use MIDI pitch bend to “scrub” (from the old practice of controlling
the speed at which analog tape passed by the playback heads by turning both reels with your hands). You
can step the scrub bar one frame to the left or one frame to the right (and hear the spectrum at that one
frame of time) by using the left and right arrow keys.

 Clearing and Deleting

There are two ways to “remove” material from the spectrum. One is to simply set the amplitude of the
track to zero for all or part of its duration. This effectively removes it from the mix so it has no effect on
the resynthesis during those times when its amplitude is zero. The other is to actually delete it from the
analysis file.

In the spectrum editor, zeroing the amplitude is called “clearing”, and removing entire time segments is
called “deleting”. Clearing is used to zero the amplitude of all or part of a track’s duration, and deleting is
used purely in the same sense that it has in a waveform editor — that of deleting a segment of time from
the file.

 Extracting Portions of a Spectrum File

You can copy a region and paste it into a Sound file window, where it will show up as a SumOfSines. You
can then time-stretch and/or frequency-scale that region of the spectrum and end up with a complex
timbre that does not necessarily sound anything like the original analysis from which it was extracted. By
putting several of these SumOfSines into a Mixer, you can construct dense textures from bits and pieces
of several spectra.

 Modifying

The amplitude and frequency envelopes associated with each track can be modified by redrawing them
or by applying a “filter” or algorithm to all tracks within the selected region.

67

Text
There is not that much to say about the text file editor other than it exists and it is a typical text editor,
and you can create or edit text files by choosing New… or Open… from the File menu and selecting the
file type named Text.

You can use the text file editor to create sets of data to be read by the TextFileInterpreter, which can map
datasets to Sound parameters. You can also use a text file window to test out Smalltalk expressions; type
in the expression, select it, and use Ctrl+Y to evaluate the expression.

Preferences
You can set some interface preferences by selecting Preferences from the Edit menu. These are decisions
about the appearance or performance of various aspects of the user interface that, once set, will be saved
in a file called Kyma Preferences or kyma.pre. Because they are saved in a file, Kyma will remember
them each time you start up the program, so you won’t have to reset them each time.§

 Multi-user Systems

When more than one person is using a single Kyma system, for example in a school, or a large studio or
lab, each person can have a unique preferences file.

When you are setting up the system for multiple users, locate the Kyma Preferences or kyma.pre file
(automatically created the first time you quit Kyma). Create a folder for each Kyma user, and drag a copy
of the preferences file into each folder. Instruct the users that they should start Kyma by double-clicking
the preferences file in their own folders. From then on, any changes that individual users make in their
preferences will be saved only in their preferences file and will not alter the system for everyone else.

Appearance
You can decide whether you would like the default icon size in a parameter field to be small or large,
whether you would like to display full file path names in parameter fields, and whether you would like
to show all the digits of any floating point double-precision numbers.

Icon Size

Double float digits

Full path names

Performance

 Disk Recording/playback and the Graphic Interface

To be able to stop disk playbacks the same way you stop other Sounds (Ctrl+K), you should check the
box labeled Update display during disk operations in the performance preferences.

§ If your system seems to suddenly start acting strangely, the first thing you should try is to throw away your prefer-

ences file, and restart Kyma. The preferences file contains information about the basic state of your system, so if
that file should happen to have an error in it, it will cause problems in Kyma. Don’t worry about throwing away a
preferences file, because Kyma will generate a new one for you the next time you quit the program.

68

When checked this control also means that other “animated” parts of the user interface, like the DSP
status window, the virtual control surface, the oscilloscope, and the spectrum analyzer will continuously
update even during disk recording and playback.

The only reason you might have for not checking this option is if you experience problems (like clicks or
stuttering) in your disk recordings. By not checking the box, you are telling the host computer to devote
its full attention to the disk and not to bother with periodic updates to the interface.

 Timecode Frames per Second

The Timecode frames per second value is used to convert any times you specify in units of SMPTE into
seconds. 24 fps is the film industry standard, 25 fps is for PAL (used in most of Europe) and SECAM
(used in France and the former Soviet Union) video, and 30 fps is associated with NTSC video (the stan-
dard in the Americas and Asia).

This frame rate is used only for converting SMPTE to seconds in the user interface. The Capybara, when it
receives MIDI time code, actually keeps track of time in half-frames so it can also do the drop-frame stan-
dard associated with color video.

 Optimize Sample RAM

If this box is unchecked, each sample requested by your Sounds will be loaded onto all the expansion
cards. In effect, this is the same as saying that you only have as much sample RAM as you have on a sin-
gle expansion card.

If you check the box, it forces Kyma to load each sample only into the memory of the expansion cards that
use that sample. So by checking the box, you effectively multiply the amount of sample RAM available by
the number of expansion cards in your Capybara.

The only reason you might have for not checking this box is that optimizing the use of the sample RAM
can slow down the compile step when you Compile, load, start a Sound that has samples in it. If you use
samples only rarely, you may not have any need to check this box, but otherwise, you should leave it
checked.

 Virtual Control Surface

By default, a virtual control surface will automatically open any time you play a Sound that uses Event
Values. If you do not check this box, the virtual control surface will open only if you request it from the
File menu.

File Editors
If you have a favorite external editor that you would prefer to use for particular file types, check those file
types here. For example, if you would prefer to edit SD-II files in your favorite wave editor rather than
using the wave editor that comes with Kyma, you would check the SD-II box. The next time you try to
edit an SD-II file, Kyma will ask you to find the application. From that point onward, Kyma will remem-
ber that it should find and start up your external application every time you edit a file of type SD-II.

Frequently Used Folders
Use this dialog to locate the folder(s) Kyma should search when locating files requested by your Sounds.

69

Select the folders in the top list (using Open to see inside a folder) and add them to the list below using
the Add button.

If you are frequently seeing the dialog that says Kyma could not yet locate a file, come here and make
certain that the samples, MIDI files, and other external files that you frequently use are in folders in this
list of frequently used folders. That should speed up the process of searching for these files when you
compile Sounds that refer to them.

Spectrum Analyzer
Use this to set the window length and window type for the spectrum analyzer that you can invoke from
the Info menu. Note that this does not have any affect on the LiveSpectralAnalysis Sound, the Spectru-
mAnalyzerDisplay Sound, the FFT Sound, or the Spectral Analysis Tool.

Miscellaneous
When you start up Kyma as a new user, there is a help window telling you how to get some sound out of
the system right away (in case you might have been a little too eager to fire up the system and hadn’t
read the manual yet). After the third or fourth time of seeing this window, the astute user may decide
that it is no longer necessary to read this message. As part of your reward for reading this far into the
manual, you now know that you should uncheck the box that says Show Help on startup.

By default, Kyma will open an untitled Sound file window each time it starts, giving you a workspace for
creating and saving Sounds. If you prefer to use existing Sound files as starting points, and find yourself
always closing the untitled window to get it out of the way, you should uncheck Show untitled window
on startup.

If you run into a problem, and you call the support team at Symbolic Sound, we may ask you to check the
box that says Allow stack traces . This option gives you more verbose (though most likely impenetrable)
error messages that may help us help you track down the problem. Most of the time, though, you really
don’t want to see this cryptic, low-level stuff, so you should leave it turned off.

70

Combining Sounds

If you want several different Sounds to occur one after another, assign each of them a finite duration, and
put them into a Concatenation (concatenate means “chain with”). This is something like splicing together
Sound objects on tape or in a hard disk editor.

Owl Gun Shot Splash

0 5 10 15 20 25 30

If you want two or more Sounds to happen simultaneously, put them into a Mixer. A Mixer adds its in-
puts together, just like a physical mixing console, and just as the sound waves from different sources add
in the air. There are several flavors of Mixer in Kyma: EndTogetherMixer forces its inputs to end at the
same time, CenteringMixer lines up the midpoints of all its inputs, and OverlappingMixer is like a Con-
catenation except that it overlaps the end of one Sound with the beginning of the next by a specified
amount of time.

Owl

Gun Shot

Splash

0 5 10 15 20 25 30

Mixer

Owl

Gun Shot

Splash

0 5 10 15 20 25 30

EndTogetherMixer

Owl

Gun Shot

Splash

0 5 10 15 20 25 30

CenteringMixer

Owl

Gun Shot

Splash

0 5 10 15 20 25 30

OverlappingMixer

If you want the Sounds to overlap with each other in time but want some of the Sounds to start later than
others, you can use a TimeOffset to delay the start time of each Sound. The TimeOffset delays the start of
a Sound by whatever amount of time you specify in the SilentTime field.

71

Algorithmic Splicing and Mixing

Scripts
To algorithmically specify when Sounds should start and how they should overlap in time, use the Script
Sound, found in the Algorithms category of the prototypes. The Script algorithmically constructs a Mixer
of Sounds within TimeOffsets according to a script. Each line of the script has the format

soundName start: aTime.

In other words, you type the name of an input, the word start:, and a time when a copy of the Sound
should start. Each of the inputs is used as a kind of model or template for creating a copy, so you can cre-
ate any number of copies of each input, each one starting at a different time and even overlapping with
each other in time.

For example, the script,

s1 start: 0 s.
s2 start: 1 s.
s1 start: 3 s.

would result in the following timeline:

s1

s2

s1

0 1 2 3 4 5 6

You can extend the idea of templates even further by making some of the parameters of the input Sounds
variables instead of fixed constants. A variable is a word preceded by a question mark (and shows up in
green in the user interface). Then you can set the values of the variable parameters from the script. The
format for setting a variable parameter from the script is:

soundName start: aTime varName1: value1 … varNameN: valueN.

In other words, after assigning the Sound a start time, list the name of each variable followed by a colon
and the specific value that you would like to assign to that variable. For example, suppose you had a
Sound whose Frequency field was ?freq and whose Gain field was ?amp. You could use the following
line in a script to create a copy of that Sound whose frequency was 443 hertz, amplitude was one half, and
start time was 3.2 seconds:

aSound start: 3.2 s freq: 443 hz amp: 0.5.

As it turns out, these scripts are actually programs in the Smalltalk programming language. This can
come in very handy in cases where you have some systematic description of the Sound you want to cre-
ate.

For example, say that you wanted to construct some new, strange kind of reverberation based on the
HarmonicResonator. You decide that you would like to create a Mixer of six of these resonators, each
with a slightly different resonant frequency. You could get a Mixer from the prototypes, open it up and
drag six copies of the HarmonicResonator one-by-one from the prototypes into the Mixer, then alter each
of the six Frequency fields one-by-one. Then if you wanted to adjust those settings, you would have to
open each of the six one-by-one in order to test out a different set of Frequency values. Or you could
instead leverage the power of programming and create those six copies in a loop:

1 to: 6 do: [:i |
res

start: 0 s
freq: (0.5 * i + 25) hz].

Then you could change the number of resonators simply by changing the 6 to a 10 (or whatever). And
you could change the relationship between the frequencies, simply by changing the expression following
the freq: message.

72

If you are excited by the prospect of creating Sounds algorithmically, see Scripts and FileInterpreters on
page 525, and The Smalltalk-80 Language on page 513.

Sounds vs. Events
It is important, at this point, to make a clear distinction between the Script Sound and the script parame-
ter of a MIDIVoice or MIDIMapper.

In the case of the MIDIVoice, you have a single Sound that is loaded on the Capybara, and the script is
generating Event Values that will update parameters of that Sound. It is like playing notes on a single
instrument.

The Script Sound, on the other hand, creates a new Sound — a Mixer with several inputs (each of which
may be optionally time-offset). Once this mixer Sound has been created, it is then loaded into the Capy-
bara. The Script is a way to algorithmically construct Sounds, similar to the kinds of things you do in the
graphic user interface: dragging new Sounds into a Mixer, setting their values, putting a TimeOffset on
each one to delay its start time relative to the others, etc.

A Script in a MIDIVoice is like sending MIDI events to a patch on your synthesizer, whereas a Script is
like actually creating a new synthesizer. In fact, it makes perfect sense to have a Script as an input to a
MIDIVoice. The Script would create a Sound and could even place Event Values in some of the parame-
ter fields algorithmically. The MIDIVoice would supply events that would change those Event Values
over time.

In other words, the idea of the MIDIVoice is to supply parameter value updates to an existing architec-
ture, while the idea of the Script Sound is to algorithmically create a new architecture. It would not be a
very good use of the Script to treat it like a “score”, generating hundreds of note-events for the same
“instrument”, because the Script would actually create hundreds of copies of the instrument, each set up
to play one single note — like a bell choir. The idea of hundreds of notes played on a single instrument
fits the MIDIVoice model much better — one instrument, lots of notes. (This is not to say that you cannot
use the Script as a score — only that it is not as efficient as doing the same thing with a MIDIVoice). On
the other hand, if you want to create something that changes from a sampler, to a synthesizer, to a disk
playback, or if you wanted to create some music in, say, three large sections each with a different set of
“instruments”, then the Script would be the most appropriate way to implement it.

Specialized Algorithmic Sounds
In addition to the Script, there are several Sounds in the Algorithmic category that implement specific
algorithms for putting together new Sounds:

♦ CellularAutomata

♦ ContextFreeGrammar

♦ RandomSelection

♦ Repetition

♦ Substitution

Any one of these could have been written instead as a script for the Script Sound. The Script is the most
general solution for constructing Sounds algorithmically, but in some instances it is easier to use one of
these more specialized Sounds. See Prototypes Reference beginning on page 218 for details on how to use
each of these algorithmic “sound constructors”.

Live green, see red, feel blue
At this point, it is probably worth reiterating what the different colors mean when you see them in pa-
rameter fields or in global or local maps.

 ?Green Variable

This is used as a kind of place holder or variable in a parameter field of a Sound. It always begins with a
question mark and a letter and can be followed by any number of letters or numbers. It must be associ-
ated with an actual value at some point before the Sound is loaded into the Capybara. If you do not set

73

the value of a variable in a Script Sound somewhere to the right of a Sound that uses the variable, then
Kyma will ask you to supply a value for the variable when you try to play it. You can also use green vari-
ables to indicate which parameters should be visible when you encapsulate a complex Sound. See The
Class Editor on page 536 for more information on how to create new Sound classes.

 ̀Blue Event Source

You will come across the blue Event Sources only in the context of the global map or MIDIMapper. These
names represent the sources of Event Values, not the values themselves. In other words, `MIDI-
Controller07 would represent a source of input; whereas !Volume represents the current value of that
input.

 !Red Event Value

The red Event Values are the memorable names that correspond to the blue Event Sources. You use the
Event Values in parameter fields to indicate values that are to be controlled in real time.

The source of the Event Value is defined in global map or local MIDIMapper; its value is supplied from
MIDI, the virtual control surface, Tools, or any of the Sounds in the Event Sources category. When the
value of an Event Value changes, it causes updates to any Sound parameters that use it.

Who’s on top?
One of the things that makes Kyma different from other languages is that, because Kyma is based on the
notion of “sound objects”, rather than on the model of “notes” played on an “instrument”, there is no
strictly enforced hierarchy with a master-score or sequencer up at the top controlling everything below it.
There are several “score-like” modules, that is, modules that can generate events or that can create
Sounds that are offset from each other in time, but these modules are Sounds that can be used in place of
any other Sound.

Even the score-like modules can be concatenated or mixed with each other or nested within each other. In
other words, Kyma does nothing to prevent you from using one score to set and control the parameters of
another score or even of several other scores. So you can create a Sound where the “score” is distributed
in modules throughout the signal flow diagram.

This does not mean that there is anything in Kyma to prevent you from constructing a straightforward
model that perfectly mimics the behavior of more familiar paradigms.

The subtly powerful thing about Kyma is that it encompasses those familiar paradigms while still leaving
a door open for you to experiment with new paradigms — with new ways of thinking about sound and
structuring sound, ways that could only be possible (or at least practical) because you are using a com-
puter.

As an artist and/or researcher you are familiar with the process of dancing on that edge between tradi-
tion and innovation, and know that new ideas can be introduced as extensions to familiar or proven
concepts. So, we invite you to push at the edges of what is known or what is commonly accepted! And let
us know where Kyma helps or hinders you in that regard.

Well, enough of this little philosophical interlude, now let’s take a look at the nuts and bolts of how your
Kyma system turns graphic signal flow diagrams into actual sound that you can hear.

Dynamic Sound Objects
You may have been wondering why so many of the Sounds in Kyma have Duration parameters, espe-
cially since, in most of the examples, we have been setting the Duration to on. It turns out that if you
know in advance when you want a Sound to be available and when you no longer intend to use it, Kyma
can use this information to optimize the use of the processing power of the Capybara. In other words,
you can, in effect, describe a piece of hardware that changes over time.

Suppose for example that you wanted the Capybara to process your voice for 10 seconds, and that you
wanted to begin playing a synthesizer along with the voice during the last 5 seconds. Then you wanted to

74

continue playing the synthesizer from your MIDI keyboard and have it gradually cross fade with some
sampled sounds of flamingos squawking.

In effect, you would like the Capybara to change from an effects processor, to an analog synthesizer, and
finally into a sampler at the end, and you would like these hardware phases to overlap in time. Here is a
time line sketch of the same thing:

A/D Processing

Analog Synthesis

Sampler

0 5 10 15 20 25 30

If you specify this as a Mixer with TimeOffsets on the synthesizer and the sampler, and you give each
section a finite duration, then Kyma can schedule the use of resources on the Capybara in a more optimal
way:

Time Sound

 0 - 5 s A/D Processing

 5 - 10 s Mixer (A/D Processing, Analog Synthesis)

10 - 15 s Analog Synthesis

15 - 20 s Mixer (Analog Synthesis, Sampler)

20 - 30 s Sampler

We should reiterate that this is analogous to the hardware itself evolving over time; it is not analogous to
sequencing or to the notes of music notation. It is saying that the synthesizer does not exist before it is
time for you to begin playing it, that it exists for 15 seconds, and then goes out of existence once you have
finished playing it.

This is part of the power of software synthesis — that it allows you to reallocate computing cycles and
allocate them toward whatever algorithm you like. You can (literally in the space of one tick of the sample
rate clock) switch from using all of the Capybara’s resources as an effects processor to using all of the re-
sources to implement a polyphonic subtractive-synthesis synthesizer. The resources are generic; they are
things like how much memory is available and how many multiplications and additions can be done in
one sample clock (22 microseconds). Kyma can just as easily use the memory and the arithmetic unit to
implement a filter as it can to implement an oscillator or read a sample stored on the hard disk.

Part of the beauty of software is that everything is reconfigurable and modular, and by manipulating
symbols and graphic icons, you are actually manipulating electrons flitting across metal pathways at
nearly the speed of light, not physical masses that require manufacturing, materials, and space. The fact
that it all ends up producing sound in the air is a little bit astounding when you stop to consider it. But
we can’t spend too much time feeling astounded by computers and software, since you are probably get-
ting anxious to get to work and there are still a few more things to cover in this overview — like how can
we control time?

Time flies like a banana
The Capybara would not be able to implement the time-varying hardware example from the last section
if it were not keeping track of time; that is how it knows when it is time to stop one Sound and begin
computing the next one.

There are three Kyma modules that allow you to take some control over time on the Capybara: Time-
Controller, TimeStopper, and WaitUntil.

The input to a TimeStopper module is loaded into the Capybara, but the time clock is stopped until the
value of the Resume parameter becomes positive. For example, even if the input to the TimeStopper had
a duration of 1 samp (the shortest duration possible), it would last forever unless the value of Resume
changed from 0 to 1 at some point.

75

TimeController is a little less extreme; it merely changes the rate at which time passes on the Capybara. If
you set the Rate to 0, however, it too will stop time.

The input to a WaitUntil module will not be loaded into the Capybara until Resume is triggered; then the
input plays through at its normal rate and for its normal duration.

These modules affect the time-counter that the Capybara uses in order to determine when to start/stop
Sounds and when to issue events.‡ Thus, they have an effect on things like Concatenations and TimeOff-
sets, and MIDI files or scripts in the MIDIVoice. They do not have any effect on the sampling rate. For
example, a TimeController would have no effect on the speed of playback of a DiskPlayer, but if that
DiskPlayer were concatenated with an Oscillator, a TimeController could delay the time at which the
DiskPlayer ended and the Oscillator began.

Suppose you have a situation (say a live, musical performance or a psychoacoustical experiment) where
you know the ordering of the Sounds, but you would like to give the performer (or the subject) control
over exactly when the Capybara switches from one Sound to the next. If you put each of the Sounds into
a WaitUntil , and then feed all of them into a Concatenation, you can control the exact time at which each
Sound is loaded into the Capybara, according to the conditions you place in the Resume field. The change
from one Sound to the next is instantaneous (to within a single sample-tick), because all of the Sounds
have already been compiled and loaded into the memory of the Capybara and are just waiting for their
chance to get loaded and start playing!

For example, say you had three sections, each with a different kind of processing on the ADInput. You
would like the performer to have control over when to start and when to move on to each succeeding
section. The first WaitUntil’s Resume field might have a MIDI switch in it, so the performer could start
things by depressing a foot-switch or by pressing a button on a controller. The next WaitUntil might
have a test on the output of a FrequencyTracker on the ADInput so that the next section would not begin
until the performer sustained a 5 c. The last WaitUntil might have a test weighing the strength of the
higher partials relative to the strength of the lower ones in order to detect when the performer speaks an
“s” (or to detect an attack transient of a musical instrument).

Time (and time again)
When we speak of time in Kyma, there are actually several different time scales that we could be talking
about:

♦ The rate at which the structure is changing.

♦ The asynchronous Event Values that could be coming from MIDI or generated internally.

♦ The rate of Sounds pasted into parameter fields as control signals.

♦ The sampling rate, the rate at which the audio signals are computed.

The structure-changing rate is the rate at which old Sounds may expire and new ones take their place due
to Concatenations or TimeOffsets. These changes take place “between the samples”, that is, there is no
delay between terminating one Sound and loading/starting the next. In order for this to work, though, all
of the changes must be specified in advance.

Event Values are asynchronous updates to the parameter values of the Sound that is currently loaded on
the Capybara. These could be coming in live from MIDI devices, a MIDI sequencer, generated by the
AnalogSequencer, or they could be read from a stored sequence like a MIDI file or the sequence generated
by a script in a MIDIVoice. In all cases, though, the input is not necessarily periodic and it is not always
known in advance when an event might come in. The maximum rate of change for these asynchronous
events is once per millisecond, corresponding with the maximum rate of transmission for the MIDI inter-
face.

Sounds pasted into parameter fields are often used in expressions that include Event Values, so the
maximum rate of LFO-like control updates is also set at once per millisecond (or 1 khz).

‡ The Event Values called !Time (time in seconds since the start of the entire Sound) and !LocalTime (time in sec-

onds since the start of the Sound referencing !LocalTime) are also affected by these modules. !RealTime (time in
seconds since the start of the entire Sound) is not. These Event Values can be read only, not written.

76

The sampling rate can be set to 48, 44.1, 24, 22.050, or 11.025 khz using the DSP Status window. This is the
rate at which audio signals are updated on the Capybara.

Randomly Accessing Sounds
Suppose that you have several different Sounds and that you would like to be able to start and stop them
at will, in any order? For example, you might be accompanying a live performer, in which case you
would want to be able to synchronize the start and end times of synthesized sounds, samples, and/or
processing of the live input. Or you might be setting up a psychoacoustic experiment in which you want
to randomize the order in which the stimuli are presented to a subject.

There are two approaches to solving this problem, depending on the amount of processing time you have
available, how quickly the transitions must be between Sounds, and whether you require cross-fading
between the Sounds.

Mixer model
If you would like any possible succession of Sounds with cross-fading between them, you must put an
amplitude envelope on each of the Sounds, and place all of them into a single Mixer. If you assign each
Sound a unique trigger, you will be able to trigger any Sound at any time and they will overlap by the
duration of the decay of the first one and the attack time on the second. This presupposes that you have
enough computing power to compute all of these Sounds simultaneously.

 The Special Case of Samples and Disk Recordings

If all of the Sounds that you want to trigger happen to be either disk tracks or samples, there is an alter-
nate solution. Using a KeyMappedMultisample , you can trigger any of several disk files (or samples) as
long as they are all stored in the same folder on your disk. Using a MIDIVoice or MIDIMapper to define
polyphony, you can specify the number of disk files that could be sounding at one time. If all you want is
a simple crossfade between disk files, for example, you can get by with a polyphony of 2.

Compiled Sound Grid
If you do not have to crossfade between Sounds, you can use a compiled Sound grid for the purpose of
randomly accessing Sounds. The idea behind the compiled Sound grid is that you do the first step of the
Compile, load, start process — the compile step — to all Sounds in the grid at once, and save the results
on disk. Then you can do the final two steps — loading and starting — at the moment you want to actu-
ally play the Sound. Because you have done the most time consuming part of the processing ahead of
time, you can load and start arbitrary Sounds in an arbitrary order much more quickly.

77

To play a compiled Sound, tab into or click in its box. Alternatively, you can send the MIDI program
change number corresponding to the number in the upper left corner of the Sound’s box.

The compiled Sound grid is useful when you can afford a little bit of silence between downloading differ-
ent Sounds. For example, if each Sound corresponds to one section of a musical performance or one set of
psychoacoustic stimuli. Downloading is fast but it is not instantaneous, and you cannot crossfade be-
tween the currently loaded Sound and the new one you are loading.

 The Special Case of Sequential Ordering

If you know the order of Sounds ahead of time and would like to control the time at which one Sound
ends and the next one begins, you can use a Concatenation in which each Sound is nested within a Wai-
tUntil or TimeStopper Sound. In this configuration, each new Sound is loaded instantly, with no delay,
since the Sounds in the Concatenation are stored in the RAM of the Capybara.

78

Compile, load, start

How does Kyma take the graphical representation of the signal flow (a Sound with an uppercase “S”) and
turn that into actual sound (lowercase “s”) that you can hear? When you select Compile, load, start from
the Action menu (or, more expediently, use the key equivalent of Ctrl+Space Bar), Kyma compiles the
Sound, loads it into the Capybara, and tells the Capybara to start its time-counter.

Compile
First, Kyma rewrites the graphical representation of signal flow into a sequence of time-tagged instruc-
tions to the Capybara. At the same time, it also compiles any parameter field expressions, so that they can
be evaluated in real-time by the real-time expression evaluator on the Capybara. Also at the same time,
Kyma is deciding how it should split up your signal flow diagram into subparts that can be assigned to
different expansion cards on your Capybara (remember that you have at least two expansion cards in
your Capybara and may have as many as eight of them). In other words, Kyma keeps track of how much
sample RAM is left on each card and how much processing each card is being asked to do and uses this
information to decide where to schedule each part of your Sound.

During the compile step, you will see cursor change to a watch, and you may be asked to help locate
samples, MIDI files, or other external files needed by your Sound. Kyma will search for a file for some
amount of time and then put up a dialog asking whether you prefer to locate it yourself or whether Kyma
should keep looking; if you know exactly where the file is, it can be quicker to find it yourself; otherwise,
just hit Enter and Kyma will eventually find it.‡

Load
Once the time-tagged sequence of instructions has been divided up among the processors, Kyma sends
the information to the Capybara. During this step, the cursor changes to an animated icon of a host com-
puter downloading information to the Capybara.

During this time, Kyma will also download any samples or wavetables required by the Sound from the
hard disk of your host computer into the sample memory on your Capybara. Whenever a sample is being
loaded into the Capybara, the cursor changes to a picture of a waveform being downloaded into the
Capybara.

Start
Once enough of this information has been loaded, Kyma tells the Capybara to start the time-counter. You
can always tell when the Sound is playing (even if it is silent) because the cursor turns hollow; the Capy-
bara will tell the host computer when the duration of that Sound has expired, so the cursor will be filled
in again at the termination of that Sound.

‡ Your Sounds often require “external” files such as samples, wavetables, MIDI files, text files, analysis files, etc. To

speed up the process of compiling you should specify the folders or directories containing these files as your Fre-
quently Used Folders in the Preferences (accessed from the Edit menu). For example, you might keep all of your
waveforms in one folder, all of your samples in subfolders of a samples folder, all of your MIDI files in another. Or
you might prefer to keep all of the files used in a particular project in subdirectories of a single directory associated
with that project. However you choose to organize your files, specifying them in the Frequently Used Folders will
allow Kyma to locate them more quickly as it compiles your Sounds.

79

You may notice that sometimes the Sound will start to play before Kyma has finished downloading it to
the Capybara. In these cases, Kyma has calculated that enough time-tagged events have been loaded that
it can afford to let the Capybara start playing while Kyma continues to load the remaining events.

Compile, load
To compile and load a Sound without actually starting it, use Compile & load from the Action menu.
Then you can control when the Sound starts by using Ctrl+R or Restart from the DSP menu (which al-
ways restarts whatever Sound is currently loaded in the Capybara).

This can be useful in a performance or in any other situation where you want to start a Sound without
waiting for it to first compile and load.

Scheduling on Multiple Processors
There are two constraints that Kyma has to satisfy when dividing up your Sound among the multiple
processors: one is that the processor has enough memory and computing time available to handle that
subpart, and the other is that a Sound’s input must be scheduled on the same processor as the Sound it is
feeding into or on a processor to the “left” of the Sound it feeds into.

 1 2 3 4 5 6

Example of scheduling on a six-card Capybara

To get a graphical indication of how much computing time your Sound is taking up on each of the proc-
essors in your Capybara, use the DSP status window (choose Status from the DSP menu).

DSP Status Panel
This window gives you a picture of the state-of-the-Capybara. In the upper left you can see the time that
has elapsed since the start of the currently loaded Sound. This time is reset each time you play the Sound
or use Ctrl+R to restart the currently loaded Sound.

80

Sample Rate
To change the sampling rate, choose from one of the rates listed below the Sample Rate label. The input
and output low pass filters will be adjusted accordingly (so as to block out any frequencies above half the
sampling rate).

Interface
If you have digital I/O installed in your Capybara, you can use this list to switch between using the
Analog inputs (the built-in converters), or the Digital inputs, in which case the Capybara expects a digital
signal in either the AES/EBU or S/PDIF formats. You can have digital inputs and outputs or analog in-
puts and outputs, but you cannot have a mixture of both (e.g. digital in and analog out). Also, make sure
that the digital signal path does not form a loop; in other words, the digital output of the Capybara
should not be fed through several boxes and fed back in to the Capybara at the end, because the Capy-
bara will not be able to tell where it should be finding its clock — whether it should pay attention to the
incoming clock or whether it should pay attention to its own internally generated clock.

When you switch to digital I/O, it will appear as if one entire expansion card is always fully loaded, but
don’t worry about this; although it does take up a little extra processing on your last card to use the digi-
tal I/O, it is not really taking up as much time on that processor as the status display indicates.

VU meters
From left to right, the first two meters are VU meters showing the left and right input levels. The next two
give the left and right output levels.

Computation Used on Each Expansion Card
The next grouping has a meter for each expansion card in your Capybara. Although they are numbered
from high to low, Kyma will begin scheduling Sounds on the leftmost (highest numbered) expansion
card, then, if it runs out of time on that one, will spill over onto the next expansion card and so on. For
Sounds that have Concatenations or TimeOffsets, you may be able to see how the amount of processing
required on each card changes over time as some Sounds stop and different ones start up.

81

82

Strategies for Non-real-time

In some situations, after the Sound has been loaded, you may see a warning informing you that your
Capybara is close to the limit on computation time. If this happens, go ahead and listen to the Sound
anyway. Kyma is set to be slightly conservative on this warning, so it could be that the Capybara is still
able to keep up with real time. If you have given the Capybara more than it can consistently do in real
time, you will hear digital clicks and breakup in the sound. In general, the further it is from being able to
compute in real time, the more clicks and pops you will hear; you may also hear something that sounds
like granular time-stretching. But don’t despair! There are still quite a few tricks you can employ in order
to get around this.

What Influences the Real-time Capabilities?
Whether a particular Sound can be realized in real time or not depends on several factors:

♦ What kinds of modules are in the Sound (some of them require more computing time than others)

♦ How many modules are in the chain (the more modules, the more computing time required)

♦ The polyphony setting on any MIDIVoices, MIDIMappers, or AnalogSequencers in the Sound (the
number of modules in the chain to the left of a MIDIVoice will be multiplied by the amount of po-
lyphony that you request)

♦ The number of expansion cards in your Capybara (if Kyma can split the computation among several
cards rather than having to schedule all of the modules on a single card, then the Capybara can do
more real-time computation).

Using DSP Status
Take a look at the DSP status window while you are playing your Sound. If the usage bar for the last
(rightmost) card is fully in the red,‡ it is usually a sign that you are requesting something beyond what
your Capybara can compute in real time; it indicates that Kyma tried to find resources for the Sound on
the first card, second card, etc., and when it couldn’t find enough resources anywhere else, it just tried to
schedule it on the last card because there were no other choices left.

Record to Disk
The quickest solution is to select the Sound, go to the Action menu, and select Record to disk…. This will
record your Sound to the disk (don’t worry if it still sounds like it is sputtering; it will really record it onto
the disk without the breaks). From then on, you can play the digital recording using a DiskPlayer, Sam-
ple, or GenericSource.

This is the quick and easy solution for Sounds that do not require any live interaction from MIDI or the
audio inputs. Even if your Sound is being driven from a sequencer, you can export the sequence as a
standard MIDI file, check the box that says to read MIDI from a file rather than from the live inputs, and
then record the Sound to disk.

But what if you are performing one of the parts live from a MIDI keyboard, controlling some of the faders
in real time, or using the microphone inputs as sound sources? Or, barring all of that, what if you don’t
really want to record the entire Sound to disk just because it would take up too much disk space? There
are some alternate solutions!

Disk Caching
One approach is to record sub-branches of your Sound on the hard disk, and read the samples from the
disk from then on, thus freeing up time on the Capybara to compute the rest of the Sound in real time.
Place a DiskCache just to the right of the branch that you have decided to record to disk. Then play the

‡ When the digital interface is selected for audio input and output, the rightmost bar in the DSP status window will

always be in the red, regardless of the actual usage on that card.

83

DiskCache. It will record everything to its left into a disk file. When it has finished recording, remove the
check from the Record box in the DiskCache parameters. From this point forward, that entire branch
will be read from the disk rather than computed in real time.

The advantage of using a DiskCache over simply recording to disk is that, with the DiskCache, you never
lose track of what you did to create that disk recording. Everything that you used to generate the record-
ing is still there, to the left of the DiskCache in the signal flow graph. This makes it easy to make changes
to the original Sound and re-cache the results. No more trying to remember exactly how you created a
particular track or where the disk recording of a particular Sound might be. The Sound and its recording
are linked together in the Sound structure.

In some cases, disk-caching is something like multi-tracking, where different “layers” of sound are re-
corded, one at a time, in a hard disk recorder. In the case of Kyma Sounds, though, the “tracks” might
occur anywhere within the Sound structure; they are not necessarily all inputs to one Mixer.

There are several different strategies for choosing which part of the Sound to cache on the disk. You
might choose the most computationally expensive branch in order to free up the most time. Or you might
be forced to choose only those parts that do not rely on live input — the fixed or sequenced parts of your
Sound that do not change from playing to playing. It does not make sense to have nested DiskCaches,
because that is like storing the same thing on the disk twice.

Optimizing your Sounds
Sometimes you can optimize your Sounds in such a way that the sonic result is exactly the same but the
entire Sound requires less processing time.

Get a Baseline
Use Get info from the Info menu to get a measure of the complexity of your Sound in terms of a rough
estimate of the percentage of your Capybara that it requires in order to run in real time. Jot down this
percentage before you start simplifying so that you can see which things have an impact.

Look for Common Inputs
If you can identify two identical Sounds that are being processed in different ways, you can copy one of
them, select the other one, and choose Paste special… from the Edit menu. This will cause them to be
identical. That way, the Capybara can compute this Sound once and feed the result to two different places
(rather than recomputing it for each branch).

Check Polyphony
If you have any MIDIVoices, MIDIMappers and/or AnalogSequencers, check that you haven’t requested
more polyphony than you had intended. When you request 10 voices of polyphony, Kyma makes 10
copies of the Sound, so you should request exactly the polyphony that you need, not more.

84

Remove Redundancy
The most common source of redundancy is in amplitude scaling. For example, if you have a Sample
feeding into an Attenuator, feeding into a Mixer, there are potentially three places where you could be
scaling the amplitude.

Often you can combine these amplitude scales to simplify your Sound. In this example, you could specify
the level in the Scale field of the Sample, and delete the Attenuator. Then you could take the scale factor
in the Mixer and multiply it by the value in the Scale field of the Sample, making it possible to change
the Mixer scale factors to 1.0.

Other Sounds that have potentially redundant scale factors include the MIDIVoice, MIDIMapper, and
Oscillator (which you can scale by putting a constant into its Envelope field or by setting the Scale
parameter in its AR or ADSR envelope).

Anything that you could simplify in an algebraic expression, you can probably also simplify in a Kyma
Sound. For example, if you have several inputs to a Mixer, and each of them is going through its own At-
tenuator, and all Attenuators are set to the same value, you can eliminate the Attenuators and do all the
scaling in the Mixer. That is like saying

 a × x + a × y + a ×z = a × x + y + z()

Downsample Control Sounds
If you have some Sounds pasted into parameter fields, you can experiment with updating them at a
slower rate to see if it has any negative impact on the sound. Recall that you can specify the number of
milliseconds between updates, as for example

Oscillator L: 5

would mean to read the value of the Oscillator every 5 milliseconds and use that to set the value of the
parameter. For many parameters, you can get by with update rates slower than once per millisecond and
this will reduce the amount of computation required by your Sound.

Use Equivalent Sounds that are Less Complex
There may be a module that will do exactly what you need but which is less complex than a module you
are using to do the same things. For example, you might be using an Oscillator to play once through a
function where a FunctionGenerator could be used to do that more efficiently. You might be using an ex-
ponential envelope in a situation where a linear one would do as well. You may be using a
FunctionGenerator with a Ramp waveform where you could use the expression 1 ramp: 2 s to accom-
plish the same results using less computing power. Use Get info to compare the relative complexity of
different Sounds that can be used to accomplish the same results.

85

Poor Scheduling
If it appears that only one of your expansion cards is being overloaded and that there are cards to the
right of that one that are completely free, you should probably contact us and send us a copy of the
Sound (either by email, via our FTP site, or on a floppy), because we would like to have a look at it so we
can improve the scheduling algorithm.

Sample Rate
If all else fails, you could lower the sample rate. This is not a satisfactory solution in the long term, because
it will also cut off the high frequencies of your output. However, it can be a good way to work with your
Sound in real time until you get it adjusted the way you like it, at which point you can set the sample rate
back up again and record the Sound to disk.

Throwing More Hardware at the Problem
If you find yourself running out of real-time computation power all the time, you might consider adding
some more expansion cards to your Capybara. In general, the more expansion cards in your Capybara,
the more polyphony and complexity you can squeeze out of it in real time.

Never Give Up
Never fear, between all of these strategies, you will be able to find some combination that will get around
any temporary “out of real time” messages.

86

Learning Kyma

When people tell us their experiences in learning Kyma they describe three stages: first, the excitement of
looking around, trying out all the examples, hearing the sounds, and being able to manipulate them in
real time with MIDI, plus an exhilarating sense of learning many new things at a very fast pace.

At some point they report reaching a plateau where they may feel frustrated, as though they can’t seem to
make Kyma do what they want anymore. But what is really going on is that they are starting to move
from the first layer (using and tweaking the existing Sound examples) into a deeper layer where they are
starting to create their own Sounds and getting into programming. It’s not that Kyma has suddenly got-
ten harder, it’s that they are trying to do more difficult and complex things with Kyma.

However, once they have worked their way through this plateau, they have reached a point when they
have suddenly felt truly fluent in Kyma. Once you make it through this plateau period, Kyma becomes
your own environment, your own language that you can customize and use to do anything you like.

You may experience these same three stages or you may experience something entirely different. In any
case, we would like to hear from you about your experiences in learning Kyma, both because we can use
your experiences to make Kyma more intuitive and because we may be able to use your experience to
help other people learn Kyma more effectively.

Congratulations!

If you have read this far, you have what it takes to become a Kyma guru, sought after and admired by
your friends who will be constantly bothering you for your expert advice and assistance.

But that is not why you’re reading this book; you’re reading the book because you want to use Kyma in
your own work. So, it is time to press on; do the rest of the tutorials and soon you will be fluently creating
and tweaking sounds in an intense feedback loop between you and your machine (and feeling something
along the lines of what a gambler feels at the handle of a slot machine).

Your interest in Kyma indicates that you have an intellect and a curiosity beyond the ordinary, that you
are still driven by the same insatiable and joyfully persistent drive to learn and understand the world that
you had as a child.

The easy way out would have been to take the standard, off-the-shelf sounds, the ones that everyone else
has, the ones that would identify you as one of the crowd. But you have a need to get inside the sound, to
control it, to truly understand what you are doing, and to break new ground, to create new sounds that
have not been done before. Since you’ve been this way all of your life, you already know that it’s not the
easiest way to be. But it is the most satisfying. So congratulations for refusing to lower your standards.
And we hope you will stay in touch with us, because it is stimulating for us to get to talk with people like
you.

OK, time to order out for a pizza, unplug the telephone, turn the page and start in on the tutorials. (But
don’t hesitate to plug the phone back in and call Symbolic Sound if you run into any questions!)

Tutorials

Learn Kyma in 24 Hours!

♦ One month, one hour per day, taking every 7th day off or

♦ Two hours a day for two 6-day weeks or

♦ Four hours a day for six days or

♦ In 24 hours straight! (not recommended)

Part I: A Tour through the Examples

Building your own Sound library
One of the best ways of learning how to design your own Sounds in Kyma is to start by examining and
modifying the Sounds that other people have made. Whenever you make a modification that sounds in-
teresting, you can rename the Sound, add a short annotation to it (so that later you remember what it
does), and save it in a new Sound file. This is a great way to start gradually building up your own cus-
tomized Sound library that you will be able to draw upon in the heat of creative passion. Once you
become familiar with the examples that came with Kyma and have extended that set with your own ex-
amples, it will be a rare situation in which you would not be able to recall a Sound that is close to what
you need and begin modifying that (rather than having to start from scratch each time).

The Itinerary
This “tour” through the examples is a tutorial is intended to give you an overall sense for what kinds of
things are possible in Kyma and to help you get started building your own Sound library. We’ll do this
by looking at each of the example Sound files, getting an idea of what kinds of Sounds it contains, dis-
secting some of the Sounds from that file in detail, and experimenting with modifying parameters of
some Sounds to get a feel for which parameters have what effects.

By the way, this tutorial is not intended as an introduction to sound synthesis, just an introduction to the
example Sound library in Kyma. If you find that you need an introduction to sound synthesis, we suggest
that you check the local library or bookstore for a copy of one of the books listed in the Background Mate-
rials Appendix, call Symbolic Sound to find out about attending one of the intensive Kyma Immersion
weekends, and/or check to see whether an educational institution near you might offer an introductory
course on electronic or computer music (you may even be reading this book as part of a course right
now).

In general though, you should continue to plunge forward through this tutorial even if you happen to
encounter a few terms or concepts along the way that are not completely familiar. Most of the concepts
and terminology will become clear once you start listening and experimenting, and any remaining ques-
tions can be easily cleared up by a text book or a course. And if you do take a course, the intuitive
understanding that you will have acquired by working with these concepts in Kyma will put you far
ahead of all of your classmates (so please be kind to them and don’t gloat too much when you discover
how much better you understand everything).

Pre-amp

Amplifier
Capybara audioMIDI

MIDI Faders

Keyboard

Synthesizer

Computer

88

You will get the most out of this “tour” through the examples if you take a moment right now to make
sure that you have everything connected and set up as follows:

♦ The Capybara analog outputs should be connected to an amplifier and speakers or to a headphone
amplifier and headphones. Alternatively, if you are using the digital I/O, the digital out should be
feeding into a digital-to-analog converter such as a DAT, and the DAT outputs should be connected
to the amplifier or headphone amplifier.

♦ If you have a microphone, feed it into a preamplifier to bring it up to line level (your mixer may have
a input that does this), and connect it to the left channel input of the Capybara. If you are using digi-
tal I/O, then the microphone must be connected to an analog to digital converter (say, another DAT
machine), and the output of that DAT should be connected to the digital input of the Capybara. If
you do not have a microphone or if you prefer to use a musical instrument, synthesizer, sampler,
DAT or CD as a source, simply connect the line-level (or digital) outputs of your source to the audio
inputs of the Capybara.

♦ If you have a MIDI keyboard and/or MIDI controller, connect the MIDI output of the controller to
the MIDI input on the back of the Capybara. If you would like to use both a keyboard and a control-
ler, connect the MIDI output of the keyboard to the MIDI input of the controller. Then connect the
MIDI output of the controller to the MIDI input of the Capybara.

♦ If you would prefer to use your software sequencer as a source of MIDI note events and MIDI con-
trollers, connect the MIDI output from your computer’s MIDI interface to the MIDI input on the back
of the Capybara. Then, connect the MIDI output from the Capybara to one of the MIDI inputs on
your computer’s MIDI interface.

♦ If you have an external sound module that you would like to control from Kyma, connect the MIDI
output from the Capybara to the MIDI input on the back of the external sound module.

To check that you are getting audio input, find ADInput in the system prototypes under the Sampling
category. Select it and use Ctrl+Space Bar to play it. Choose Status from the DSP menu. Start making
noise into the microphone and make sure that one or both of the input level bars are jumping. If not, then
it means that the audio input is not properly connected to the Capybara.

To check that you are getting MIDI input, choose Configure MIDI… from the DSP menu. Click the
Show MIDI messages button. Play a few keys on the MIDI keyboard and move a few faders on your
MIDI controller. The values in the window should change while you do this. It will also tell you what
MIDI channel(s) it is receiving MIDI messages on. If you do not see the values changing in this window,
it means that the Capybara is not receiving MIDI input. Click the mouse to exit this window, and check
your MIDI connections again and make sure that your keyboard and controller are both switched on. If
you are using something like MIDI patchbay or other MIDI routing program, you may have to make sure
that the input is routed directly to the output.

The examples provided with Kyma are set up to use MIDI channel 1 for input. You should set your MIDI
devices to output on MIDI channel 1. If this is not possible, may need to change the default MIDI channel
(see DSP menu: Configure MIDI… on page 435) or modify the global map (see Global and Local Maps on
page 482).

Once you have everything set up and verified, it is time to start having fun!

In each of the Sound files in the Examples folder, you will find examples of different kinds of sound
synthesis and processing. The examples in each file are described in the section in this chapter with the
same name as the Sound file.

For many examples, there are two alternate versions provided: the different versions achieve similar
(although not exact) sound synthesis or processing results, but use different amounts of Capybara proc-
essing and memory resources. These example Sounds are labeled with the minimum number of
Capybara expansion cards that are needed for real-time operation at 44.1 khz sample rate. For example,
there are two versions of glottal chopped: glottal chopped (5) for Capybaras with five or more expansion
cards, and glottal chopped (2) for Capybaras with two or more expansion cards.

89

Start by choosing Open… from the File menu, make sure the file type is Sound file, and open the file
called analog from the Examples folder which you should find in the Kyma folder.

Analog

Select and play RomeTaxiRadio to get an idea of the kinds of Sounds contained in this file. These are all
emulations of the kinds of sounds you could get from the old modular analog synthesizers. Use the vir-
tual control surface to change !Rate from 1 to 0 and back to 1 again. Change !NN8 and !NN7 to modify
the last two pitches in the sequence. Experiment with the other faders and take note of what effect each of
them has on the sound. To set a fader to a precise value, click in the small text box at the top of the fader,
type in the value you want, and press Enter or Return. The fader will jump to that new value. When you
have had enough, use Ctrl+K to stop the Sound.

Dissection
Select and play the Sound named delayed saws. Play the MIDI keyboard and experiment with each of the
faders in the virtual control surface, listening to how each affects the sound.

Double-click on delayed saws to take a look at how the Sound is put together. Let’s dissect this Sound,
starting with the leftmost module (the output) and moving rightwards.

The rightmost module is a StereoMix2. Double-click it so you can see its parameters displayed in the
lower half of the Sound editor. There are two inputs to the mixer: 3 filtered saws and delayed filtered
saws. Pan1 is set to zero, meaning that it is panned hard left, and Pan2 is set to one meaning that In2 is
entirely in the right channel. In1 is attenuated a little bit, since Scale1 is set to 0.75. In2 is at full am-
plitude since Scale2 is set to one.

Following the lower branch first, double-click on delayed filtered saws to view its parameters. This
branch takes 3 filtered saws as its input and delays it by one second.

Now double-click 3 filtered saws. This is called a Preset Sound. It gives you a way to save the current
settings of faders in the virtual control surface so that the next time you play the Sound, they will start out
at those settings. Notice that the EventValues parameter has a setting for each of the faders you saw in
the virtual control surface:

!Atk channel: 1; initialValue: 1.0.
!CutOff channel: 1; initialValue: 0.75.
!Detune1 channel: 1; initialValue: 0.0750853.
!Detune2 channel: 1; initialValue: 0.0511945.
!Feedback channel: 1; initialValue: 0.665529.
!Rel channel: 1; initialValue: 1.0.
!Volume channel: 1; initialValue: 0.156997.

90

You can read these settings, but you can’t modify the text, at least not by typing. The only way to alter
this parameter is to change the settings of the faders in the virtual control surface, and to then press the
button labeled Set to current event values found just below the EventValues parameter field.

Proceeding ever leftward, let’s next double-click the module called LPF. If you don’t see a module to the
left of 3 filtered saws, click on the small tab attached to the center of the left edge of the 3 filtered saws
icon. This little tab with a right-pointing arrow in it indicates that a Sound has hidden. Click on the tab to
show the Sound’s immediate inputs. Click again to hide the inputs of a Sound. To display all of the inputs
of a Sound (i.e. all of its immediate inputs, the inputs to those inputs, etc.), click the tab while holding
down the Control or Command key. You can use these tabs to keep your signal flow graphs uncluttered
and easy to read, while still being able to edit any part of the graph when necessary. (See Editing the Sig-
nal Flow Diagram beginning on page 26 for more information about using the signal flow diagram.)

Here we get our first glimpse of some of the red Event Values we were controlling from the virtual con-
trol surface. This is a generic filter that you can set to lowpass, highpass, or allpass. This particular filter is
set to lowpass, so it will tend to attenuate all frequencies in its input that are above the value in the Fre-
quency field. The other parameters tell us that this is a fourth order filter and that an Event Value called
!Feedback controls a parameter similar to the “resonance” control of analog filters. When you were ex-
perimenting with the faders in the virtual control surface you probably noticed that you could make the
filter ring or even blow up by increasing the value of !Feedback.

The expression in the Frequency field

filter cutoff L * (!Cutoff * 11050 hz + 200 hz)

indicates that, depending on the setting of !Cutoff, the maximum Frequency value will be between
200 hz and 11250 hz. This maximum value is in turn multiplied by a Sound called filter cutoff that gener-
ates an envelope shape.

To see how the envelope shape controlling the filter cutoff is generated, double-click the icon named filter
cutoff. This is an ADSR (Attack time, initial Decay time, Sustain level, Release time) envelope generator.
From the parameters we can tell that when the envelope generator is triggered by a MIDI key-down
event, it goes from 0 to maximum amplitude with 10 milliseconds, drops to 75% of its maximum ampli-
tude in the next 10 milliseconds, where it remains for as long as the key is held down, after which it drops
back to zero in 5 seconds starting from when the key is released. So, as you already heard when you were
experimenting earlier, each time you press a MIDI key, the filter opens up to allow more high frequencies
to pass through, and when you release the key, the filter closes back down again.

What input is LPF filtering? Double-click the icon called phatness. This is a Gain module that is set to
multiply the amplitude of its input by ten. In this case, since the input is already a full-amplitude signal,
the effect of the Gain will be to distort the signal by clipping it, turning it from a sawtooth-like waveform
into more of a square-shaped waveform, and as a result, changing the timbre from something with all
harmonics to something with only the odd harmonics.

To see and hear this for yourself, select phatness and choose Oscilloscope from the Info menu. Leave all
the other faders at zero, and type 0.01 into the field above the !Volume fader (and hit Enter). Then play
some low pitches on the keyboard. Gradually increase !Volume using the fader until you see and hear
the waveform flatten out at the top and bottom because it hits the maximum amplitude. Notice that
changing !Volume changes not just the loudness, but the timbre as well.

To see how the spectrum is affected, make sure phatness is still selected, and choose Spectrum analyzer
from the Info menu.‡ Hold down C 6 on your keyboard (two octaves above middle C), and alternate the
position of the !Volume fader between almost zero and almost one by clicking with the mouse towards
the bottom and then towards the top of the fader. Notice how every other spectral line disappears when
the signal is clipped? Try this a few times, listening to the change in timbre that accompanies this change
in the spectrum. There is another, more subtle effect you can observe on the spectrum: as soon as the
waveform is clipped, it has an infinitely sharp corner on it, and infinitely sharp corners have an infinite
number of harmonics, so some of the short lines you see clustered around the harmonics are actually ali-

‡ By the way, this explanation is not essential to understanding and using Kyma — it is just an interesting aside.

91

ases of those higher harmonics, artifacts of one of the basic facts of life in the digital domain: you cannot
represent any frequencies above half of the sampling frequency.

Next let’s see how the sawtooth is created before it is distorted by the Gain module. Double-click the icon
named 3 key-mapped saws. This is a Mixer with three inputs: saw1, saw2, and saw3. The Mixer adds the
outputs of all three of these Sounds and then multiplies the sum by the current value of !Volume. Since
the Gain subsequently multiplies that result by ten and the value of !Volume can range from zero to one,
the end result is that the sum can be multiplied by a number in the range of zero to ten, depending on
where you set the value of !Volume.

So far all we’ve seen is adding, filtering, enveloping, and distortion. When do actually get to the part that
generates sound? Funny you should ask (did you?), because that is what we finally get to with this next
and final level; double-click on saw1 to see its parameters. A KeyMappedMultisample uses an entire
folder full of samples as its source material and uses the policy described in the Mapping parameter to
map different samples to different MIDI key numbers or ranges of key numbers. In saw1, each sample
from the folder is mapped to the range of pitches specified in the header of the samples file. Why use dif-
ferent samples for different pitch ranges? Because of that fundamental law of the digital domain: you
can’t represent any frequencies above half the sampling rate. So the higher the fundamental pitch, the
fewer harmonics its waveform can have, because those harmonics, being at frequencies that are multiples
of the fundamental, can quickly get high enough to exceed the half sample rate limit. That’s why saw1
uses waveforms with many harmonics for the bass notes, and waveforms with only a few harmonics for
the really high frequencies.

Take a look at the Frequency of saw1 and compare it to the same parameter field in saw2 and in saw3.
If it is difficult to read everything that is in the Frequency field, position the cursor on the center line
dividing the signal flow graph from the parameter fields until the cursor turns into a double-arrow
pointing up and down. Then use the mouse to drag that center line upwards, making all the parameter
fields larger so you can read their contents.

Notice that the Frequency values differ by the value of !Detune1 and !Detune2. By making these
three “oscillators” slightly out of tune with each other, you can get them to sometimes reinforce each
other, sometimes cancel each other, and generally get a more dynamic, evolving timbre than you would
be able to get out of fixed frequency oscillators. Try this out right now. Select 3 key-mapped saws (the mix
of the three sawtooth oscillators) and choose Oscilloscope from the Info menu. Experiment with different
values for !Detune1 and !Detune2.

Now, what about this expression in the Frequency field?

!KeyNumber smoothed nn + !Detune1 nn

This is saying that the frequency is the MIDI key number in units of note number (nn) plus some fraction
of a half step that depends on the value of !Detune1. The smoothed means that when you change from
one note number to another, it will take 100 milliseconds to make the transition, rather than making it
instantaneously.

Modifying the Example
Now it’s time to start mutating the Sound in order to both gain a deeper understanding of how it is put
together and to start building your own Sound library. First, close the Sound editor, and make a duplicate
of delayed saws so you can retain the original Sound and make your changes to the duplicate. (Do this by
selecting the icon and using Ctrl+D for duplicate). To change the name of your new Sound, make sure
DuplicateOfDelayed saws is still selected, and hit Enter. This gives you a dialog where you can enter a
new name for the Sound; you might as well call it ‘my saws’, just to be stunningly original.

In order to keep track of which Sounds came with the system and which ones you design yourself, you
can create a new Sound file (by typing Ctrl+N and selecting Sound file as the file type) and drag the my
saws icon into this new window. Save it on the disk, creating a new folder for the purpose called my ex-
amples and giving the file itself a memorable name like my analog.

At this early stage, this may seem like just an exercise, but in fact, it is a good idea to start using Sound
files to categorize and organize your new Sound designs from the very beginning. As soon as you start
tweaking Sounds, you start hearing things you’ve never heard before, and even if you are diligently fol-

92

lowing the tutorials step-by-step, you might make a fortuitous mistake that leads to some fantastic result
that you will want to save for future reference.§ The idea is to save your Sound in a file along with other,
similar Sounds and to give the Sound file a name that will lead you back to that file weeks or months later
when you might be searching for examples of analog-like sounds.

Double-click my saws so you can start editing and making it your own. As a first step, increase the po-
lyphony using a MIDIVoice (found in the MIDI In category of the prototypes, or by searching the
prototypes using Ctrl+B and typing a partial word like midi into the dialog box). Where should the
MIDIVoice go in the signal flow graph? If we want all the voices to share the same delay, we should put
the MIDIVoice before the DelayLine. It also makes sense that the Preset should apply to all the voices at
once, so let’s place it on the line between 3 filtered saws and LPF.

Leave all the MIDIVoice parameters at their default values, and select my saws again so you can use
Ctrl+Space Bar to compile and load the new Sound. Once the Sound is loaded, experiment with playing
two-voice polyphony on the MIDI keyboard.

The constant, 1 second delay is getting a little tedious, so let’s control the delay with a MIDI fader or on-
screen controller. Double-click delayed filtered saws, hit the Tab key until you get to the DelayScale
field, hit Escape on the computer keyboard, and move one of your MIDI faders. (If you don’t have any
MIDI faders, use Ctrl+H to get a list of hot parameters; start typing the word delay, and then hit Return
so that the Event Value !Delay is pasted into the DelayScale field). Select and play my saws again.
Hold down some MIDI keys and move !Delay from zero up to its maximum value (using either a MIDI
fader or the virtual control surface). You can’t fail to notice that the delay has the interesting side effect of
changing frequency as you change the length of the delay. After letting the extreme change die down,
experiment with very subtle changes to !Delay.

Experiment with all the Event Values in the virtual control surface until you have the settings to your
taste. Then double-click 3 filtered saws, and press the button named Set to current event values. This
will save your current settings along with the Sound.

Add an Annotation as the rightmost module in the signal flow (found under Variables and Annotation
in the prototypes). Select the Annotation and press Enter, so you can give your Sound a descriptive
name that will help you locate it later. Double-click the Annotation, and type a brief description of this
Sound in the Text field. Sure, right now this seems like a lot of annoying extra work, but in a few weeks,
when you revisit this Sound and try to remember exactly how it works, you will be glad you left yourself
a little reminder note. Once you have finished with your annotation, close the editor, and close your new
Sound file, saving the changes you made.

§ Kyma was specifically designed to tempt you off the path of diligently following directions and lead you down the

path of experimentation, so don’t expect that you won’t be fooling around with developing some additional
Sounds on the side, even as you diligently and systematically work your way through the tutorials!

93

Take a few moments now to listen to some of the other Sounds in the analog file, so you will know what
is available here and can come back to draw upon these as you need them.

94

Audio Demonstrations

These examples are set up as mini-laboratories to demonstrate different synthesis techniques or psychoa-
coustic phenomena. Use them to demonstrate these concepts to your students and/or to yourself!

Using the Additive Synthesis Lab
For example, use Ctrl+Space Bar to compile, load, start the Sound called Additive. In the virtual control
surface, you can increase or decrease the amplitude of 16 sine wave harmonics, and see the effect this has
on the waveform in the small oscilloscope display.

Click in the numeric field above the F02 fader; this should select the contents of that field. Type in a 0 to
set the fader value to its smallest value. Then press the Tab key. This selects the next fader to the right.
Type in a 0 here as well. Continue to tab over and enter zeroes, observing the change in the waveform as
you remove each harmonic up through F16 and you only hear (and see) the first harmonic or the funda-
mental.

Now go back and add a very small amount of each harmonic back in. If you see the waveform clipping or
hear it distorting, you may have to reduce the !Volume.

How the Additive Synthesis Lab Works
Close the virtual control surface, and double-click on the icon called Additive to see how this Sound was
put together.

The rightmost sound is a Preset. Double-click on it so that its parameters are displayed in the lower half
of the Sound editor. The Preset is used to set all the Event Values to reasonable values when you first
play the Sound. For example, you would not want the initial value of !Volume to be zero, because it
might confuse the person using the virtual control surface if they don’t hear any sound.

Position your cursor over the line dividing the signal flow graph from the parameter fields. When you see
it change to an up/down arrow, click down and drag the dividing line up, until you can see all of the set-
tings in the Event Values parameter field. You cannot edit these values, but you can reset them to the
current settings of your virtual control surface by clicking on the button labeled Set to current event val-
ues. Drag the dividing line back down so you can see the signal flow graph again.

Double-click on the next module, the one called explanation. An Annotation does not affect the sound at
all; it is more like a comment in a program — you can read it, but it doesn’t affect the result (other than to
make you feel extremely happy to find it there if you are trying to understand the program!) Whatever is
written in an Annotation anywhere within the signal flow graph will be displayed in the virtual control
surface when you play the Sound. This comes in handy when you want to include a word or two of ex-
planation for the person using the virtual control surface.

95

Next is a module named waveform. This is a OscilloscopeDisplay, and it is another type of Sound that
does not have any affect on what you hear — just on what you see in the virtual control surface. It shows
the waveform of its Input as if you were feeding the Input into an oscilloscope, and uses the name of
the Sound (in this example waveform) as the name of the oscilloscope display in the virtual control sur-
face. Imagine a kind of virtual oscilloscope screen inside the Capybara. The OscilloscopeDisplay writes
its Input on this virtual screen from left to right, until it receives a trigger. Each time it receives a trigger
it starts over again at the left and continues writing the waveform that it gets from its input. As quickly as
it can (but still on trigger boundaries), the host computer reads the virtual display and plots the entire
thing on the computer screen all at once.‡

So the Trigger input to the OscilloscopeDisplay should be something periodic, something that puts out
a one at the beginning of each cycle in the Input waveform; that way you will always get a picture of
complete cycles of the input waveform and the waveform will not appear to “drift” across the screen to
the right or left because it is out of synchronization with the trigger. The best Sound to do this job is the
PulseTrain, because it puts out a one once per period and is zero at all other times.

Double-click the Sound called trigger to see its parameters. The period of repetition is set to 256 samp.
You can optionally vary the “duty-cycle”, or the amount time during each cycle when the waveform
value is above zero. Try this out right now by checking the VariableDutyCycle box, typing !Duty
into the DutyCycle field, selecting the trigger Sound and choosing Oscilloscope from the Info menu. As
you slowly move !Duty from 0 up to 1, you can see that the width of the “pulse” gets wider and wider.
At the two extremes of 0 and 1, you don’t hear anything, because the value isn’t changing, and sound
does not exist without change. Remove the check from the VariableDutyCycle box before proceeding.

Double-click OscillatorBank74.§ This generates a bank of 16 sine wave oscillators. The frequencies and
amplitudes of those sine wave oscillators are supplied from SyntheticSpectrumFromArray18. Double-
click on that Sound to see how the amplitudes and frequencies are specified.

A SyntheticSpectrumFromArray takes an array of frequencies and an array of associated amplitudes and
puts them together to create a spectrum for controlling an OscillatorBank or a FormantBankOscillator.
You can optionally associate an array of bandwidths with the spectrum for Sounds like FormantBank-
Oscillator which make use of bandwidth; in this case, though, we have left SendBandwidths
unchecked because an OscillatorBank does not use bandwidth information.

Envelope puts an overall amplitude envelope on all partials; in this case, the overall amplitude is con-
trolled by !Volume. The value of NbrPartials is arbitrary, but you should generally use a number at
least as large as the value of NbrOscillators in the OscillatorBank; in this example, we are generating
amplitude and frequency values for 16 sine wave oscillators.

Amplitudes, Frequencies, Bandwidths, and Envelope are all hot parameters (indicated by the light
cyan background color in the parameter fields), meaning that you can use Event Values and Sounds as
elements of the array. For example, the value of Amplitudes is:

!F01 !F02 !F03 !F04 !F05 !F06 !F07 !F08 !F09 !F10 !F11 !F12 !F13 !F14 !F15 !F16

an array of amplitudes, each controlled by a fader in the virtual control surface.

‡ Note that although both the right and the left channels of the input are written to the virtual oscilloscope display on

the Capybara, only the left channel is read and displayed on the host computer. You will be able to display both
channels in a future update of the software.

§ By the way, if you are wondering how it got a name like that, here’s the explanation: whenever you drag a Sound
from the prototypes into a Sound editor or Sound file window, Kyma makes a copy of the prototype. When Kyma
makes a copy of the prototype, it appends a number onto the end of the prototype’s name; for example, the third
time you drag an OscillatorBank from the prototype strip, it will be named OscillatorBank3. The current
number for each prototype is stored in the preferences, so it will continue giving you consecutive numbers for as
long as you keep the same preferences file. So, in this particular case, this was the 74th OscillatorBank used by the
person who created this Sound. Kyma tacks the number onto the end of the name to help you distinguish between
this Sound and others of the same class without having to immediately rename it as you are constructing the
Sound. However, you should select the Sound and hit Enter to give it a more mnemonic name as soon as possible.

96

Now examine the value of Frequencies:
{256 samp inverse} {256 samp inverse * 2} {256 samp inverse * 3} {256 samp in-
verse * 4} {256 samp inverse * 5} {256 samp inverse * 6} {256 samp inverse * 7}
{256 samp inverse * 8} {256 samp inverse * 9} {256 samp inverse * 10} {256 samp
inverse * 11} {256 samp inverse * 12} {256 samp inverse * 13} {256 samp inverse
* 14} {256 samp inverse * 15} {256 samp inverse * 16}

The first value

256 samp inverse

is a frequency whose period is 256 samples long.‡ The next element in the array is twice the first, the next
is three times the first, the next is four times the first and so on. In other words, these are integer multiples
of the first frequency, otherwise known as harmonics of the first frequency which is otherwise known as
the fundamental.

But why the curly braces? Because you have to give Kyma some indication of what constitutes a single
element of the array. If you had not enclosed each expression within curly braces, then Kyma would have
interpreted each subpart of the expression as one element in the array; in other words, 256, samp, and
inverse would have been interpreted as individual elements of the array. But when you enclose it
within curly braces, the expression is evaluated first and then used as a value in the array.

To evaluate {256 samp inverse} or for that matter, any other expression in a parameter field, place the
mouse between the open brace and 256 and click twice; this should select the entire expression within the
curly braces. Then use Ctrl+Y (or Evaluate from the Edit menu) to evaluate the expression and print out
its value:

172.265625d hz

or approximately 172.3 hz.§ Once you have seen the result, hit Delete to erase the still-selected number.‡

All of the prototypes in the Spectral Sources category (including the SyntheticSpectrumFromArray) gen-
erate spectra in the same format. Do the following to get an idea of this format:

♦ Turn down the gain of your amplifier (because the sound you are about to hear is not pleasant!).

♦ Select the SyntheticSpectrumFromArray, and choose Oscilloscope from the Info menu. You should
see the virtual control surface with 16 faders on it and a flat-line waveform display.

♦ Set the !Volume fader up to its maximum value of 1.

‡ Recall that frequency is the inverse of period. The easy way to remember this is to recall that frequency is cycles-per-

second (cycles/second) and that the period of a signal is the number of seconds-per-cycle (seconds/cycle).
§ The “d” at the end of the number indicates that this is a double-precision floating point number, where double-

precision gives you 12 significant digits instead of the normal 6 significant digits you get with a regular floating
point number.

‡ Since you can evaluate expressions in Kyma, you can use it as a calculator. Create a new text file using New… from
the File menu, and select Text as the file type. Save the file on your disk as kymacalc.txt or kyma calculator.
Now type in the expression:

51.75 * 0.07

select it, and use Ctrl+Y to evaluate it. If you have some formulae that you use a lot, enclose them within double-
quotes so you can keep them around in this file and be able to evaluate just one of them at a time. For example,
enter

“(9.0/5.0) * 100.0 + 32.0”

and click twice between the open-quote and the open parenthesis to select everything within the double-quotes.
Then use Ctrl+Y to evaluate the expression. By substituting the current temperature in Celsius for 100.0, you can
use this expression to tell us how cold or hot it is where you are in terms of Fahrenheit.

So now you have a little Kyma-calculator to do quick arithmetic calculations on the side as you need them, do your
accounting, compute your income taxes, compute the phase of the moon, or whatever…

97

Now, try the following:

♦ Bring up !F1, the amplitude of the first harmonic to about half way. (You should see periodically
spaced vertical lines)

♦ Bring up the amplitude of !F8, the 8th harmonic to about 3/4 of the way up.

♦ Set !F4 to about 1/4 of the way up.

♦ Set !F12 to its full amplitude of 1.

What you see is a picture of the spectrum repeated 32 times across the width of the oscilloscope display.
In fact, you should be able to create a kind of “shape” using the fader settings and see it repeated in the 32
spectra. Try this right now. Set !F1 to its maximum value, !F2 to just slightly less than that, !F3 to
slightly less, and so on until !F15 is just above zero and !F16 is set to zero. You should see a kind of
sawtooth shape repeated 32 times in the oscilloscope display.

Cautiously bring up the gain on your amplifier (not too fast or your ears will be very sorry). You should
hear a very high pitch. How high? Well, the period is 16 samples long. So this seems like the perfect op-
portunity to employ your Kyma-calculator text file. Enter the expression:

16 samp inverse

select it, and use Ctrl+Y to evaluate it and see what the frequency is in hertz.

The output of the left channel of the SyntheticSpectrumFromArray is:

amplitude1, amplitude2, ... amplitude16

repeated every 16 samples. The right channel (not shown on the oscilloscope) is:

frequency1, frequency2, ... frequency16

We take a closer look at this kind of spectrum format later on, in the section called Live Analysis, Resyn-
thesis on page 131.

But for now, take a moment to try out the other audio demonstrations (or make a note to come back to try
these later, once you have finished the rest of these tutorials). For some of the examples, you may need to
click the grow box on the virtual control surface in order to be able to read all of the text and have more
detailed control of the virtual faders.

98

Backgrounds, Textures

Sounds in this file are useful for generating dense, evolving, and spectrally rich textures.

For example, select and play the Sound called tornado sirens. Using the virtual control surface, try mak-
ing gradual adjustments to the following parameters, and jot down what effect changes to that parameter
have. Return each parameter to its approximate original position before proceeding to adjust the next pa-
rameter, so you can hear their individual effects:

!Pan
!Density
!Frequency
!Cycles
!FrJitter
!PanJitter
!DurJitter

SampleCloud Example
Play the Sound called emerging intelligibility and double-click on it to open an editor. Open the entire
signal flow graph by holding down the Command or Control key and clicking the tab on the left side of
the rightmost Sound:

If you double-click the rightmost Sound, you’ll see that this is a Mixer of two SampleClouds bearing the
strikingly original names cloud1 and cloud2.

Double-click cloud1 to have a look at its parameters. This SampleCloud is going to operate on a sample
called virtual DEF granulating it by applying the sample called gaussian as the envelope on each
individual grain.

The SampleCloud picks short segments of GrainDur duration from the sample file indicated in the Sam-
ple field at the position indicated by TimeIndex. To each of these grains, it applies an amplitude
envelope whose shape is indicated by GrainEnv. The number of grains that can be playing at any one
time is controlled by Density up to the maximum indicated in MaxGrains. Pan controls the stereo po-
sition of the grains, and Amplitude gives an overall amplitude for the entire cloud of grains. Time-
Index, GrainDur, and Pan can each be assigned some amount of random jitter in their values, so there
can be some variation in where each grain is taken from the sample, how long each grain lasts, and where
it is placed in the stereo field.

99

TimeIndex controls the location where grains will be chosen within the sample called virtual DEF,
with -1 marking the beginning of the sample, 0 marking the middle, and 1 marking the end. In this ex-
ample, TimeIndex is set to:

1 repeatingFullRamp: (10 s)

which means that it changes from -1 to 1 over the course of 10 seconds and then repeats. The effect of
this is to move in normal time order through the sample from beginning to end and then to wrap around
to the beginning again.

However, this nice orderly progression through the sample is interfered with by the TimeIndexJitter
parameter, controlled here by another Sound called expDown. TimeIndexJitter is the amount of ran-
dom jitter added to the position given by TimeIndex. In other words, its value is an indication of how
much variation there should be in exactly where the grains are chosen from the sample.

Let’s take a look at expDown, but first, in the interest of saving your speakers, turn your gain on you am-
plifier all the way down. Then select expDown in the signal flow graph, and plot its shape by choosing
Full waveform from the Info menu. Unfortunately expDown lasts for 60 seconds, so you can run and get
yourself something to drink while it plays and plots its full waveform on the screen. When you get back
from your break, you can see from the full waveform of expDown that the amount of random jitter in the
TimeIndex starts out high and decreases exponentially over the course of 60 seconds until it is almost
zero. In other words, at the beginning of this Sound, grains could be taken from anywhere within the
sample (because the jitter amount is large), but by the time 60 seconds have gone by all the grains are be-
ing chosen from around the current value of TimeIndex.

expDown also controls the random variation in grain duration, so initially, there will be a lot of different
duration grains, but by the end, all the grains should be about 0.1 seconds long. Similarly for Pan: the
grains could start out anywhere in the stereo field, but by the end, they are all being placed about a
quarter of the way towards the left speaker.

Density, on the other hand, is controlled by a Sound called expUp, so we can make a reasoned guess
that the density of grains per second is going to exponentially increase over the duration of this Sound,
with the density starting out very sparse and ending up almost continuous.

Flip back and forth between cloud1 and cloud2 to see if you can detect how the parameters differ. (Hint:
one of them is a parameter we haven’t discussed yet…)

Seed is used to “seed” or start the random number generator. By giving each of these two SampleClouds
a different seed, we can ensure that they will not be exact duplicates of each other, because the stream of
random numbers used for parameter jitter will be unique for each cloud. Thus, by adding them together
in the Mixer, we can get a higher maximum density of grains at any one time (in this case 50 at a time).

The other parameter that is different between the two clouds is Pan, meaning that one of the clouds will
tend to be toward the left and the other will tend to be towards the right in the stereo field.

Modifying the SampleCloud
Close this Sound, create a new Sound file window , drag a copy of emerging intelligibility into the new
window, and double-click on it to edit. Any time you drag a Sound from one window to another
(including from the prototypes or the Sound editor) you are automatically dragging a copy of that Sound,
not the original. So you can modify this new one without concern that you might also be changing the
original.

100

Edit cloud1, setting the parameters as follows:

Parameter Value

Duration on

Amplitude !Amp

TimeIndex 1 repeatingFullRamp: ((!Rate * 100) s)

TimeIndexJitter !TJitter

GrainDur !GrainDur s

Density !Density

Play cloud1 and adjust the parameters in the virtual control surface. Try the following initial settings:

Fader Value

!Amp 0.3

!Density 0.4

!GrainDur 0.1

!Rate 0.6

!Tjitter 0.0

Experiment with adjusting each of these parameters, one at a time. !Rate controls the speed at which the
TimeIndex moves from -1 to 1 using the repeatingFullRamp function. The maximum amount of
time it takes is 100 seconds, and the minimum is 0 seconds (i.e. as fast as possible).

Double-click on cloud2 and set all of its parameters to the same values as the parameter values in cloud1.
The quick way to do this is to drag the cloud1 icon into each of the parameter fields of cloud2, one by one.
(You can use this little trick with any two Sounds that have parameter names in common).

Change the Sample parameter of both cloud1 and cloud2 to Violin (or to one of your own samples).

Play the mix of cloud1 and cloud2 and adjust the parameters to your liking. To save these settings, drag a
Preset from the MIDI In category of the prototypes onto the line between the Mixer and the output
speaker icon. Double-click the Preset and press the button called Set to current event values. From now
on, when you play the Preset, it will set all of your parameters to those initial values.

With Preset selected, press Enter, and enter a descriptive name for the modified Sound. Then close the
Sound editor, and save the Sound file window in the folder with your other Sound file.

101

Compression, Expansion

The Sounds in this file are examples of using the DynamicRangeController (DRC) module to compress or
expand the dynamic range of another Sound. The DRC performs a time-varying attenuation on its Input
based upon the amplitude envelope of the Sound used as its side chain input.

Compression
The idea of compression is to take the full range of amplitudes and compress them into a narrower range
by attenuating the larger amplitudes, and then optionally scaling all of the amplitudes up so that the low
amplitude parts of the signal become much louder relative to the maximum.

By way of analogy, if you were listening to music through speakers and kept your hand on the volume
knob of the amplifier, and turned it down whenever it got loud and turned it back up again whenever the
music got soft, you would be acting as a compressor. Of course since there would be some amount of de-
lay between when you heard the music get loud and when your reflexes actually managed to turn down
the volume, this would work better if you could listen to the music directly over headphones and could
delay the output through the speakers by some small amount. For the same reason, there is a delay pa-
rameter on the DRC, so that there is time for the DRC to attenuate sudden changes in the amplitude
envelope.

You can use a compressor to prevent an input from ever getting too loud; for an example select orig,
limiter (Info-Full waveform), and choose Full waveform from the Info menu. Another application of
compressors is removing unwanted amplitude variations, caused, for example, by performers moving
around with respect to the microphone (plot the full waveform of orig, smoothed out (Info-Full wave-
form) as an example).

There is also a characteristic timbre to compressed sounds, and it can make percussive and plucked string
sounds seem, psychoacoustically, louder or “punchier” by reducing the difference between their sharp
attacks and quick decays — in effect stretching out the decay time so that the sound stays louder for a
longer period of time.

For an explanation of the DRC parameters, find the DynamicRangeController in the Dynamics category
of the prototypes. Select it, and then choose Describe Sound from the Info menu. Leave that window
open, and play the Sound called Compressor w/hot controls in the compression, expansion Sound
file window. Then you can experiment with different parameter settings.

Expansion
Expansion (not too surprisingly) is like the opposite of compression; it takes amplitudes that might have
been very close together in the original amplitude envelope, and spreads them further apart in the am-
plitude envelope of the output. For example, you might want to take all amplitudes below some noise
floor and specify that they should be mapped to zero amplitude (or close to zero amplitude), creating a
kind of “noise gate” to remove unwanted background noise when it is softer than the desired signal. Ex-
amine the Sound called noise gate to see an example of this.

Experiment with the Sound called Expander w/hot controls to hear the effect of different parameter set-
tings.

Other Effects
By using different Sounds at the side chain and the input, you can create other effects like ducking, gat-
ing, or de-essing.

Take a look at the Sound called Ducking. It is set up as a compressor with a speaking voice as the side
chain and a violin sample as the Input. Whenever the speaking voice is triggered, the violin sample
“ducks” behind it into the background.

use voice to gate another sound is similar except that it is set to expand instead of compress, so when the
voice is triggered, it opens the gate on the Noise input, and when the voice is silent, the gate is closed.

102

In pick out unvoiced the EX version of a sample is used as the side chain and the original sample is used
as the Input to an expander. Since EX files emphasize the high end of the spectrum, only the highs open
the gate. As a result, only the consonants make it through the gate, the vowels are blocked out. In virtual
lisp, pick out unvoiced is used as the side chain, and the original sample is used as the Input to a compres-
sor. As a result, the consonants are suppressed and the vowels pass through unattenuated.

Live lisper uses a LiveSpectralAnalysis to pick out the unvoiced parts of a GenericSource and uses that as
the side chain to a compressor with the same GenericSource as Input. Try this out on the default speech
sample, and then try playing it again, this time choosing the live input, so you can try removing the con-
sonants from your own voice.

103

Cross Synthesis

The idea of cross synthesis is to track a parameter of one sound and use it to control that same parameter
or a different parameter in another sound. The result is the superimposition of some of the characteristics
of one sound onto another.

Simple Cross Synthesis
Double-click track freq & amp and open the signal flow graph completely by holding down the Com-
mand or Control key while clicking on the arrow tab on the left edge of the rightmost Sound. To make it
clearer, drag the GenericSource further to the left, and position 0 cascade and spectrum for fmnt oscils so
they are not on top of each other.

Select GenericSource25 and play it. Then select track freq & amp and play it. Can you tell what is going
on (especially given that preface in the first paragraph)?

The rightmost Sound is a VCA since it imitates a “voltage-controlled amplifier” (actually more like a 4-
quadrant multiplier). In actuality, all it does is multiply its two inputs — synthetic ah and boost amp env.

Follow the boost amp env thread. boost amp env itself is a Gain that boosts its input by eight times. Its
input, amp fol is an AmplitudeFollower. Double-click it to see its parameters. To read a description of
how this kind of Sound works, click on the italicized label Amplitude Follower in the lower right corner
of the parameter fields. This opens a help window containing a description of the Sound and each of its
parameters.

After you have read the description of what the AmplitudeFollower does, select the GenericSource25, and
use Full waveform from the Info menu to see how the amplitude changes over time. Leave that window
open, select amp fol, and plot its full waveform. Line up the two windows, one below the other to com-
pare them.

Because of the absolute value, the output of the AmplitudeFollower is all above zero. Because of the aver-
aging, it is a little sluggish in its reaction time. For example, at around 0.7 seconds, there is a big spike in
the unprocessed waveform (the “tch” in “virtue”), but in the amplitude envelope, this spike never gets
very large, because the AmplitudeFollower is averaging over 0.1 seconds. Try changing the TimeCon-
stant to one tenth of its value: 0.01 s. Then plot the output of the AmplitudeFollower and compare the
size of the spike. By decreasing the TimeConstant, you can make the envelope respond to shorter fea-
tures in the waveform. Take note of the minimum and maximum values written at the top of the
waveform window. That should explain why we needed to feed the output of the AmplitudeFollower
into a Gain before using it as an amplitude envelope on synthetic ah.

104

Go back and double-click on synthetic ah now to follow that thread. This is a FormantBankOscillator
whose Frequency is

freqTrk L * SignalProcessor sampleRate * 0.5 hz

The frequency seems to be coming from the Sound called freqTrk … but what does the rest of that line
mean? Recall that the output of a Sound is always in the range of (-1,1), and in the case of the Frequen-
cyTracker it is within an even narrower range of (0,1). But frequencies are in a larger range: 0 hz to half
of the sampling rate. (Remember, this is a digital system, so the highest representable frequency is half of
the sampling rate). By multiplying by half of the sampling rate, we assure that whenever freqTrk is at its
maximum value of 1, the frequency will be half of the sampling rate:

SignalProcessor sampleRate * 0.5

This little expression is so handy that we put it in the list of hot parameters, so you can simply paste it
into a parameter field rather than having to type it. Try it now by doing a Ctrl+H (hot paste). The second
item on the list is Half the sampling rate.

Double-click freqTrk now. This Sound is trying to track the fundamental frequency of its input. The more
you know about the frequency range of the Input, the better it can do at tracking the fundamental fre-
quency. In this case, we know the Input is within the range of 3a to 4c, so entering those as the Min-
Frequency and MaxFrequency respectively, helps the frequency tracker avoid octave errors. As far as
all the other parameters, it is best to leave those at their default values.

This is a synthesized sound whose frequency and amplitude envelopes come from a sampled sound — a
simple example of cross synthesis.

More Amplitude Followers!
Imagine taking the GenericSource and feeding it into a bank of 3 filters, so that one filter covers the low
frequencies, one passes the midrange, and the last one’s covers the high frequencies.

Source

LPF

HPF

BPF

Now imagine putting an amplitude follower on the output of each of those filters. That way, the first en-
velope would show how much energy was in the lower frequencies, the second would show how much
energy was in the midrange, and the last one would show how much energy was in the high frequencies,
each one showing how that energy was changing over time.

Source

LPF

HPF

BPF

Amp Follow

Amp Follow

Amp Follow

And finally, imagine multiplying each of those envelopes by a synthesized signal, just as we did with the
synthetic ah. Instead of a FormantBankOscillator though, imagine multiplying by the output of three
different filters (independent of the first three filters, but with the same settings) with a mix of white noise
and a harmonically-rich buzz oscillator as their input.

105

As a final step, imagine adding the outputs from all three filters together using a mixer:

Source

LPF

HPF

BPF

Noise+Buzz

LPF

HPF

BPF

Amp Follow

Amp Follow

Amp Follow

Now play Traditional vocoder-22 bands, which is pretty much what we have just described except that
there are 22 pairs of bandpass filters, not just three filters as shown above.

Classic Vocoder
Use !Frequency to change the frequency of the buzz oscillator. !Noise crossfades between the noise
and the buzz oscillator inputs so that it is purely noise at the top and purely the buzz oscillator when it is
at zero.

!TimeConst is the same as the TimeConstant in the AmplitudeFollower of the previous example. It
controls how quickly the 22 amplitude followers will respond to changes in the filters’ outputs. Higher
values will give a reverberated quality, while very small values will make the speech more intelligible.

!Bandwidth is a control on the bandwidths of all 22 bandpass filters. Set the !Noise fader all the way to
the top, and then gradually decrease the value of !Bandwidth, making the filters ring more and more
until they are almost pure sine waves (because that is all that can fit in such a narrow band). You may
have to boost !InLevel, the level of the noise input, for very narrow bandwidths because less of the sig-
nal can get through when you make the pass band so narrow.

Finally, set the !Live fader all the way to one, and try speaking into the microphone. At this setting, you
control the filters with your voice.

This is an example of imposing the amplitude and spectral content of human speech onto some synthetic
sources like noise or an oscillator. You can use the same concept to impose characteristics of human
speech onto the sound made by an animal or machine. For example, try out AD-mr dophin, selecting Live
when the GenericSource asks for the source. Now is your chance to tell off the smart dolphin from the
first example.

Now Add Frequency Deviation
You, the ever astute reader are no doubt asking “Aha, but what about the frequency tracking?” remem-
bering that the original example had a frequency tracker along with the amplitude follower. It turns out
that if you add frequency tracking within the band of each of the bandpass filters in the previous section,
you end up with the algorithm used by the LiveSpectralAnalysis Sound and the Spectral Analysis Tool
(which we will cover in depth in subsequent tutorials). The result is a set of amplitude envelopes just as
before, along with a set of corresponding frequency envelopes. Each amplitude and frequency envelope is
used to control the amplitude and frequency of a single oscillator. Then all of the oscillators are added
together for the final output.

Try playing piano man. This is an example of resynthesis using the frequency envelopes from one analy-
sis and the amplitude envelopes from another. More accurately, the amplitude envelopes are gradually
cross-faded from one analysis to the other.

106

FFT cross synth
Try playing talking forced air heater. This Sound takes the spectral envelope of the GenericSource called
modulator (take spect env of this) and, in the frequency domain, multiplies it by the spectrum of input
(apply spect env *to* this). Then it applies the FFT again to bring the product back into the time domain
where you can hear it as the basic sound of the input (in this case the sound of a forced-air heater) with
the formants of the modulator (in this case the sound of speech). fft cross voice and harp is another ex-
ample of this particular flavor of cross synthesis.

RE Analysis Tool
RE, or resonator-exciter analysis, is another variation on the theme of crossing the formant characteristics
of one sound with the basic spectral content of another. The idea is to start with a sample or digital re-
cording, and to break it down into two parts: a time-varying filter and an input signal for that filter. Once
you have broken the original sound into those two components, you can begin mixing and matching
components — feeding the input signal from one into the time-varying signal of another, or feeding sam-
ples or even synthetic signals into the filter.

“Oh really, Mr Dolphin?”
To hear an example of this kind of synthesis, play smart dolphin, and smoothly change !Index from 0 to
1. Keep trying until you hear what the dolphin is saying (the trick is to move the !Index fader smoothly
and to take about 1.5 to 2 seconds to get from 0 up to 1).

This example is a looped dolphin sample being fed into an RE filter. As you move !Index you are
changing the coefficients for the filter — controlling the rate at which this filter changes over time
(somewhat analogous to controlling the rate at which you change the shape of your mouth and position
of your tongue when you speak).

Grain Man
granulation into RE filter is an example of feeding a synthetic signal through an RE filter. Trigger the
time-varying filter using the MIDI keyboard. Control the rate of the grains using !Rate on the virtual
control surface. Try setting !Rate to 1, triggering the filter, and then moving !Rate to a smaller number
while the filter is playing. This sounds like the audio counterpart to the graphic special effect that looks
like someone turning into lots of tiny spheres and disintegrating.

Wielding your Tools
Let’s try creating one of these filters using the RE analysis tool:

1. From the Tools menu, select RE Analysis. It opens an analysis window with several parameters.

2. Use the Browse… button to choose the sample Virtual DEF from the Speech folder of the Sam-
ples folder of the Wavetables folder. It will play back once for verification.

3. Leave the settings for Filter order, Update rate, and Averaging time at their default settings. The fil-
ter order corresponds to twice the maximum possible number of resonances in the final filter (some
of the resonances may simply reinforce each other rather than being at different frequencies). Later,
you can try analyzing again with 64 as the order number to hear if it makes a difference.

4. Click the button named Create RE only, indicate that you want to save the file in the RE folder of the
Wavetables folder, and wait until the thermometer display indicates that the analysis is complete.

At the completion of the analysis step, Kyma will create and play an example Sound based on the RE file
just created. This is the RE filter with noise as the input.

Double-click on the Sound to edit it. Change the parameters of time index Sound as follows:

Parameter Value

Duration on

Trigger !KeyDown

OnDuration 6.02 s * (1 - !Rate) * 2

107

Next, edit the Noise module, changing its Duration to on.

Play this edited version of the Sound, adjusting !Rate to go through the sequence of filter coefficients
more slowly or more quickly.

Find the Sound called alternate input to RE filter in the Sound file window. Substitute this Sound for
noise input in the Sound editor on Virtual DEF RE. You can do this as follows:

♦ Select alternate input to RE filter

♦ Copy it

♦ Return to the Sound editor and select noise input

♦ Paste

Play the newly altered version of Virtual DEF RE. This example imposes the formants of the speech onto
the basic material of the harp gliss.

Experiment with substituting some of your own, broadband samples for the harp gliss in the Generic-
Source when it asks. In general, the best kinds of inputs are those which are continuous, have a narrow
dynamic range, and a rich spectral content (i.e. the closer they are to continuous white noise, the better the
results).

108

Delays, Chorusing, Reverb

Think for a moment about how an echo occurs. You shout or clap your hands, sending out a sound wave
that propagates out in all directions, a growing sphere emanating from your hands or mouth. It takes
some time for the sound to travel (around 600 meters per second) until it reaches a cliff wall or the flat
side of a building, where, like light on a mirror, it reflects back to you (having lost a little bit of its energy
to friction with air molecules on its way there and back and also when it ran into the wall which absorbed
some of the energy). To say the same thing diagrammatically:

+Source

Delay Attenuate

Your Ear

In other words, you would hear the clap directly at your ear (after a negligible delay), and then again
with attenuation after it had bounced off the building.

Delays
Double-click on pete’s dual delay . To see the entire structure, click the tab on the left edge of the Annota-
tion while holding down the Control or Command key. Now, to make the structure more clear, drag the
GenericSource downwards and to the left until it is clear that the GenericSource flows directly into the
Mixer called direct + delays as well as into two different DelayWithFeedback modules.

If you double-click each delay, you can see that the upper delay (feeding into the left channel) is 3 sec-
onds and the lower delay (feeding into the right channel) is half that long. Try playing pete’s dual delay
with the default source. First you hear the direct source, then the left echo, and then the right echo. Play it
again, this time choosing Live as the source. Sing your favorite round (e.g. “Row, Row, Row Your Boat”,
your favorite Bach canon, or whatever). By fitting each phrase of the round into 3 seconds, you can get
the canon effect with direct sound and the two delays. Experiment with singing (or playing) arpeggiated
chords into the microphone.

Chorusing
Open up chorusing using random , and use Ctrl+click to display the entire signal flow diagram. This
Sound, like pete’s dual delay has the direct source added to some delayed versions of the source. But in
this case, the delays are much shorter than the 3 second and 1.5 second delays of the previous example.

109

Select the GenericSource, and play it by itself. This is a recording of Pete Johnston singing his own favor-
ite canon into pete’s dual delay.§ Now compare it to the chorused version by selecting and playing
chorusing using random. In the virtual control surface, type in a value of 0 for the !Delay, and hit Enter
or Return. This is the source with no chorusing. Then type in a 1 and hit Enter or Return. This is the
maximum chorusing.

How is it that we can almost always tell the difference between one person singing and several people
singing in unison? One factor is that different sound sources are different distances from your ear, so
there should be slightly different delays on each performer. Another is that the performers may be
slightly out of tune with each other. Both of these effects can be modeled using a DelayWithFeedback
with a variable delay time.

Look at the parameters of 10-25 ms. The Delay is set to 25 ms and the DelayScale (the proportion of
Delay that is actually used) is

0.7 + (randLFO1 L abs * !Delay * 0.3)

In other words, the maximum delay time of 25 ms is multiplied by a number that varies between 1 (0.7 +
0.3) and 0.4 (0.7 - 0.3), depending on the value of !Delay and of the low frequency oscillator.

The low frequency oscillator is a sine wave oscillator with a subaudio, random frequency. Take a look at
randLFO1, in particular, its Frequency parameter:

0.37 hz + 1 s random hz

This looks a little confusing because there is a time value in a frequency field, but the time just refers to
how often a new random number should be generated. The expression

1 s random hz

generates a random frequency between -1 hz and 1 hz and changes to a new random frequency once per
second. When added to 0.37 hz, it gives the LFO a frequency range of -0.63 to 1.37 hz. A negative fre-
quency tells the Oscillator to read through its wavetable backwards. In the sine wave case, a negative
frequency sounds the same but is 180 degrees out of phase from the same frequency without the minus
sign.

Take a look at some of the output of randLFO1 by selecting it, choosing Full waveform from the Info
menu, and asking it to plot 10 seconds of the output. (Because the Oscillator’s duration is on, you must
specify the amount of time to plot). This signal is controlling the delay, so the delay times will vary
smoothly above and below some fixed delay but at a random rate.

Reverberation
When a sound wave propagates within an enclosed space, it takes some amount of time to get from the
sound source out to the edges of the enclosure where it runs into a wall; some of the energy is absorbed
by the wall, and some of it gets reflected back into the room, taking some additional time to get to your
ear.

§ Besides being the Technical Director and Kyma guru at Tape Gallery in London, Pete does a pretty good imitation

of Freddie Mercury in this recording (though he says he can do even better when he is not out of practice).

110

So you could model a sound source in an enclosed space as:

+Source Your Ear

Delay Attenuate

Delay Attenuate

The delays model the amount of time it takes for the sound to get from the source to your ear, or from the
source to the wall, bounce off the wall and get back to your ear. The attenuators represent how much of
the sound is absorbed by wall or lost to friction in the air before it gets to your ear. To model a real room,
you would need to add the effects of many of these delays with attenuation, and essentially that is what
reverberation models are — combinations of delays and attenuators. Of course, finding just the right
combination of delays and attenuators is both a science and an art.

Now you, too, can dabble in the art of reverberation using some basic elements found in Kyma, especially
the DelayWithFeedback, the HarmonicResonator, the ReverbSection, the filters, and one or more mixers.

Several classic reverberation models are based on allpass and comb filters combined in parallel (in a
mixer) or in series (one feeding into the next). For example, open the Sound example named hal cham-
berlin reverb, and Ctrl+click the tab on the left side of settings, so you can see the entire structure. Drag
the GenericSource down and to the left until it is clear that the GenericSource feeds directly into di-
rect+reverb and through two different networks of delays to the nested allpass filters, with the final
stages of the left and the right channels going through slightly different chains.

Play hal chamberlin reverb and adjust the faders in the virtual control surface. Double-click on one of the
DelayWithFeedback modules to look at its parameters. You can use the DelayWithFeedback to imple-
ment either an allpass or a comb filter by selecting the appropriate filter type. Check the Prezero box so
that the delay line is filled with zero when it starts up, so that you don’t hear whatever happens to be left
in the delay lines from the last time. By setting Feedback to some nonzero value, you can generate many
attenuated echoes in a single module, rather than having to add each delay and attenuation one-by-one.

Next, take a look at homemade reverb. This is an example of HarmonicResonators used in parallel with
each other. Play it first and experiment with different settings in the virtual control surface. Then double-
click it to have a look inside. This is an example of creating a Sound structure algorithmically, using a
Script.

Double click DIY reverb, and look at its script:

1 to: 7 do: [:i | res start: 0 s freq: (25 + (0.5 * i)) hz].
monks start: 0 s.

111

This script creates seven copies of the HarmonicResonator called res, each with a slightly different value
for the Frequency parameter, and one copy of monks. It feeds all eight of these Sounds (the seven rever-
berated and one direct copy of monks) into a mixer. To see the result of the Script, select DIY reverb , and
choose Expand from the Action menu. You will see a warning that you cannot recover the original Sound
if you replace it with its expansion, but just ignore that for now, because we don’t have to save the
changed version. You should see a Mixer with lots of res inputs:

Take a look at the parameters of the res modules. Each one has a slightly different value for Frequency.
You have probably also noticed that the red Event Values have changed to blue Event Sources. These are
system names for the actual MIDI controllers that the red Event Values are mapped to in the global map.
In other words, the red names are just mnemonic (i.e. easier to remember) names for the system MIDI
controller names. Close the Sound editor but do not keep the changes to homemade reverb.

Play Euverb and experiment with the parameters in the virtual control surface. This reverberation model,
contributed by Eugenio Giordani, is constructed from comb filters, allpass filters, lowpass filters, and
harmonic resonators combined in series and in parallel. Open it up to study how it was created. You may
want to open up one signal path at a time, because it is fairly complex. On the other hand, if you’re feel-
ing courageous, it is a pretty impressive sight when you use Ctrl+click to open the whole thing at once!

112

Disk Recording, Playback

In Kyma, you can record to the disk and play back from the disk under the control of MIDI triggers or
other triggers that depend on the audio signal (such as exceeding a threshold amplitude).

Playback
For example, select 8 disk files, 3 at a time and use Ctrl+Space Bar to play it. Once it is downloaded, try
playing the MIDI keyboard.§ This Sound maps each of several sound effects stored on disk to a key on the
MIDI keyboard. Since there are more keys than there are recordings, the key-assignment pattern repeats
every 8 half steps on the keyboard. The MIDIVoice is used to specify how many of the disk files can be
sounding at the same time. Unlike Samples, which must fit in the Capybara’s sample RAM, the only
limitation on the duration of disk recordings is the amount of free space you have on your hard disk(s).
On the other hand, you can get more polyphony using samples, and you can play through samples in
reverse.

Looping
In theory, you cannot loop the files that you play directly from the hard disk. But you are a power user
(we know because you have read this far in the tutorials)! So here is the secret: put a metronome trigger in
the Trigger field. For example, take a look at pseudo looping a disk file. Its Trigger field is set to

1 bpm: (60.0/2.57211)

Where did this strange tempo come from? The metronome expects to see the number of beats per minute.
So a setting of 60 would give us one trigger per second. If you divide that number by the duration of the
recording in seconds, then the tempo will slow down for durations longer than one second and speed up
for durations shorter than one second.

But how can you know the duration of the recording? One way is to open the file organizer (choose File
organizer from the File menu), and select the name of the file in the list. All the information on the file is
displayed at the bottom of the file organizer. Another quick way to get the duration is to set the Dura-
tion parameter of the DiskPlayer to 0 s. Then select the icon and choose Get info from the Info menu.
Among other things, this will list the duration of the recording. In both the file organizer and the info
window, you can select the duration (without the units), copy it, and paste it directly into the Trigger
field as the divisor.

To see an example of how to loop a section from the middle of a disk file, open looping 3 s from middle of
Disk file (don’t you just love these names?).

Recording
You can record any Kyma Sound to disk, including the ADInput, other DiskPlayers, Sounds that are too
complex to be rendered in real time, and individual Sounds buried within a signal flow graph.

Tape Recorder Tool
The quickest way to record an external input to the hard disk to use the Tape Recorder Tool.

Try using it now to record your voice through the microphone. Choose Tape Recorder from the Tools
menu. This opens a graphic interface mimicking the control panel of a typical tape recorder.

§ You can stop a disk file playback or recording the same way you interrupt the playback of any other Sound: using

Ctrl+K. If you ever find yourself in a situation where Ctrl+K fails to stop the Sound, the most likely reason is that
the preferences have been set to disable user interface operations whenever a disk operation is taking place. Even
when this preference item has been set, there is still one other way to stop the disk playback: by holding down the
Shift key and clicking the mouse. Under most circumstances, you should use Preferences from the Edit menu to
set the appearance preferences to Update display during disk operations. If you are doing a critical recording and
find that user interface updates are interfering with recording, then you can switch off this preference item tempo-
rarily, and remember to use shift-click if you want to interrupt the recording. Once the recording is done,
remember to switch the preference back so that Sounds that access disk recordings will not behave differently from
other Sounds.

113

Click Filename to choose the format of the recording (set it to AIFF, 16-bit, mono, for example), and to
choose where it should be saved on the disk.

Press the red record button (symbolized by a red circle on the button face) to put the tape recorder into
monitor mode. This automatically presses the pause button and monitors the input. It won’t start re-
cording until you press the play button or unclick the pause button.

In monitor mode, test the input levels. Max(L) and Max(R) show the maximum levels seen so far at the
input. Click Reset to reset those to zero. Attenuate the input using the two faders on the right.

When you are ready to record, press the play button (symbolized by the large rightwards pointing ar-
row), and start speaking.

To stop recording, press the stop button on the left (symbolized by a black square at the center of the
button).

To listen to the recording, press the play button.

When you are done, click in the close box of the window.

Action-Record to disk... and File-Play
This Sound file also contains examples of other variants on the record-to-disk theme. For example, you
can record any Kyma Sound to the disk; you are not limited to recording the ADInput only.

Try recording the Concatenation example in the prototypes (Algorithms category). To record any Sound
to disk, select its icon, and choose Record to disk… from the Action menu. Give this a try with the Con-
catenation in the prototypes. Record a 16-bit mono AIFF format file to your desktop, giving it a name like
deleteMe so you can get rid of later and keep from cluttering up your disk. To play the recording, select
Play… from the File menu, and locate deleteMe in the file dialog. This is a quick way to play disk files
when you don’t need to edit them.

Listen Wet, Record Dry
The Action menu option is fine for recording a complete Sound to the disk, but what if you want to have
the disk recording operation occur as one sub-part of a larger Sound structure?

Then your best bet is to us the Sound called DiskRecorder (found in the Disk category of the prototypes).
Double-click on record dry, listen processed to see how it is put together. This Sound takes a Generic-
Source, feeds it into a DiskRecorder, and then processes the output of the DiskRecorder . A structure like

114

this could be used to let a performer listen and adapt to the way the sound is being processed, while
capturing the dry, unprocessed performance on disk. This leaves you with more flexibility for editing the
dry performance or changing something about the processing later.

Double-click record dry input to see its parameters. A CaptureDuration of 0 s indicates that the entire
duration of the Input should be captured. If you want to capture a specific amount of time, then enter
that amount of time in this field. You may be tempted to type on here, but if you do, Kyma will warn you
that your disk is not large enough to store a 2 year recording (unless you have a very, very, very large
hard disk).

FileName is the name of the file that you want to record into. If you don’t provide a full pathname for
the file name, Kyma will automatically place the file into the Program folder of the Kyma folder. To rec-
ord the sound elsewhere on your disk, change the appearances preferences (click on the Appearances
button after choosing Preferences from the Edit menu) to display the full path name of files. Then go
back to the RecordToDisk, use the disk button next to the File parameter field to select a different file in
the target folder, and replace the file name part of the full pathname, leaving the rest of the pathname un-
changed.

Trigger is set to 1, meaning that the recording is triggered immediately, as soon as you load this Sound.
If you are recording from the microphone, though, there is one more level of protection before it actually
starts recording to disk. Kyma will give you a metronome count-off just before the recording starts.

The remaining parameters have to do with the format of the disk recording: WordSize is the number of
bits-per-sample (the resolution), Format is one of the standard sample formats, and you can choose
whether you want to record two independent channels or a mono mix of the two channels of the Input.

Leave this Sound editor open, so you can modify the Sound in the next section.

Triggered Recordings
You can probably guess from looking at the parameter names how one might go about triggering a re-
cording rather than always having the recording start as soon as the Sound is loaded.

Modify the DiskRecorder in the record dry, listen processed example as follows:

♦ Set Trigger to !KeyDown (by pressing Escape and then two simultaneous keys on the keyboard)

♦ Set CaptureDuration to 3 s

Once the Sound starts playing, you can monitor the processed input continuously, but it will not start
recording to disk until you press a MIDI key.

Select and play record dry, listen processed. When it asks for a source, choose the sample called virtual
DEF. Kyma may ask if you want to record over the file named deleteMe which, of course, you do.

Once you hear the processed voice, hit a MIDI key. At that point it will record for 3 seconds and then
stop.

Check the results by holding down the Control or Command key, and clicking on the disk button next to
the FileName. This is a handy way to open the waveform editor on the file named in that field.

Click in the waveform part of the editor, select-all (Ctrl+A), and press the play button to hear what you
have recorded. It should be three seconds of the unprocessed voice.

Close record dry, listen processed without saving the modifications that you have just made.

Multi-tracking

Recording a New Track in Synchronization to an Old One
Suppose you would like to synchronize a new track to one that you recorded previously. Double-click on
listen Trk1, record Trk2 to see an example of how to do this.

This is a Mixer with a DiskRecorder and a DiskPlayer as its inputs, so it plays back one disk file while
recording a new one. You can use this kind of structure to make a new recording while listening to the
old one over headphones, for example.

115

Mixing Two Disk Files Down to One
Double-click mix 2 files down to 1 to see how it works. The rightmost Sound is a DiskRecorder, so it does
the recording of the two other files.

Next is a Preset. This saves the last position of the faders, so they don’t start out at zero.

Feeding into that is a StereoMix2 with hot parameters controlling the level and the pan position of each
input. Each of the inputs is a DiskPlayer. So the output of the StereoMix2 is a mix of the two input files as
controlled in real time by the faders in the virtual control surface.

Select mix 2 files down to 1, and instead of playing it normally using Compile, load, start…, select the
next option lower in the Action menu: Compile & load . This will compile the diagram and load it in the
Capybara but will not start playing the Sound until you are ready.

Next, click in the virtual control surface so that it comes to the front; this way you will be able to control
the faders while the Sound is being recorded.

Once you are ready to start recording, use Ctrl+R to “replay” the Sound that is currently loaded in the
Capybara. Click the mouse at different fader levels during the recording.

To audition the result, control-click on the disk button next to the FileName field in the DiskRecorder.
Select-all, and use the play button to listen to the recording.

Reading an Old Track, Processing it, Recording into a New Track
Double-click oldtrk->processing->newtrk. Control-click the tab of the rightmost Sound to completely
open up the signal flow diagram. This is an example of a DiskPlayer that is fed into some processing, and
then fed into a DiskRecorder to record the processed track as a new track.

Try playing this Sound, recording into our old standby, the deleteMe file. Have you been noticing that
the cursor has a black dot inside during disk operations? As soon as the cursor changes back to normal,
use control-click on the disk button if you would like to check the results.

Caching
Caching is related to multi-tracking, but with a few useful twists. A cache is a place for storing something
where you can pick it up quickly at some later point. In this case, the idea is to compute some sound
ahead of time and store it somewhere on the disk where you can read it exactly when you need it. You
can use DiskCaches to record the fixed, unchanging parts of your Sound to disk and free up additional
processing time and sample RAM resources for the parts of the Sound that are performed in real time.

A DiskCache module can be placed anywhere within a Sound structure, and it serves as a storage place
for everything to its left in the signal flow diagram. Double-click disk caching example to see an example.

Double-click cache the crystals. If you play the Sound when Record is checked, it will record everything
to its left into its cache. If you play it with Record unchecked, it will play back from its cache. Play it
now, in order to store crystals & aliens hum tunes into the cache.

Now, remove the check from Record, and play it again. From now on, it will read from the recorded
cache. If you ever want to make a change to crystals & aliens hum tunes, just check the Record box to
record the changed version into the cache. By using a DiskCache to save the recording, you never lose
track of exactly which Sound is recorded in which file; it is always the Sound directly to the left of the
DiskCache that is recorded into the file named in the FileName parameter field of the DiskCache.

Play disk caching example and play along with the ice crystals on the MIDI keyboard. Any Sound that
requires live input can be cached, but keep in mind that once you cache it, it is just like making a record-
ing of your performance. Every time you play it back from the cache it will be the same. Sometimes this is
exactly what you want — to be able to record a performance so that you can add other layers to it in real-
time when you play it back.

116

Distortion

By applying some nonlinear processing to your Sounds, you can add extra harmonics to the output,
making it spectrally richer. This is the technique behind things like frequency modulation, ring modula-
tion, waveshaping, and even cranking your guitar amp beyond the range where it has a linear response
— all in an effort to broaden the spectrum and avoid those pure, yet boring, sine waves.

Waveshaping
The key to producing distortion in a signal is to process it in a nonlinear way. Demonstrate this to yourself
right now by opening up WS distortion. A Waveshaper uses the value of its Input as the index into the
wavetable named in ShapingFunction.

Try out a linear shaping function by setting the ShapingFunction parameter to FullRamp. FullRamp
is a straight line from -1 up to 1. To see FullRamp, hold down the Command or Control key and click
the disk button next to the ShapingFunction field; FullRamp looks like a straight line. Now select WS
distortion, and choose Oscilloscope from the Info menu. Use a MIDI keyboard to play the harp sample
and look at the waveform.

Next, try changing the ShapingFunction to WinSine4. Hold down the Command or Control key and
click the disk button in order to see what the WinSine4 wavetable looks like; this is definitely not a
straight line. Then select WS distortion and choose Oscilloscope from the Info menu. Play some low
notes on the MIDI keyboard and look at the difference in the shape of the waveform being displayed on
the oscilloscope.

Clipping
Waveshapers are not the only way to apply a nonlinear process to a signal. One really simple way is to
simply turn it up too loud. This clips the signal, and introduces sharp edges (and thus new harmonics) in
the waveform where before there were only smooth curves.

Take a look at sub-fundamental distortion. Notice that your sound here is fed into a Gain and that the
Gain is set to 10. Select the Gain, choose Oscilloscope from the Info menu, and watch what happens to
the shape of the waveform as you increase the !Volume fader. This clipped signal is fed into LPF which
filters out all but the lowest frequencies. Try playing sub-fundamental distortion and adjusting !Volume.
For complex signals, clipping introduces distortion products that are below the fundamental as well as
above the fundamental of the signal.

Frequency Modulation
The reason that frequency modulation (FM) can be used to synthesize complex tones is that it, too, is a
nonlinear process and adds extra harmonics where there were none before. In Kyma, you can use any
Sound as an FM modulator, including samples or the live input. Try playing Harp FM; this uses a Celtic
harp sample as the modulator on a sine wave oscillator. The higher the modulation index, the more har-
monic distortion is introduced.

117

EQ

In general, the idea of EQ (equalization) is to use filters and dynamic range control to attenuate or em-
phasize different ranges of a Sound’s spectrum. The original idea was to emphasize a different frequency
band on each track so that when you mixed them all together, they would fall into different critical bands
for the listener and would not mask each other or lose apparent loudness. It goes beyond that though,
because some of the side-effects and artifacts of these techniques have become a desirable part of the
overall timbre. This processing has become identified with certain styles in recorded music — additional
evidence in support of one of the basic concepts behind Kyma: that sound is sound; there really is no hard
and fast division between synthesis, recording, effects, mixing, EQ. At every step along the way, you are
generating, shaping and sculpting the sound.

All of the EQ examples have one thing in common: they split the spectrum up into separate bands and
then do something different to each frequency band.

GraphicEQ
It could be as simple as giving a different amplitude scale to each of the bands, for an example, play the
Sound called graphic eq. This is noise being fed into the GraphicEQ Sound. Use the virtual control surface
or your MIDI faders to adjust each of the faders in turn so you can hear what each frequency band sounds
like.

Emphasizing the Highs
Now try the Sound called brittle2. After experimenting with the parameters, double-click on it to see how
it works.

A GenericSource is fed into a highpass filter, a bandpass filter, and a lowpass filter. The higher frequen-
cies are compressed using the DynamicRangeController. The mid-range frequencies are delayed by
!DelayMid * 10 ms, and the low end is delayed by !DelayLow * 10 ms. Then the three frequency
bands are all added back together for the result.

Notice that the GenericSource is also fed straight into an Attenuator called original. Take a look at the
parameters of original. The GenericSource is at full amplitude whenever the !Bypass button is held

118

down. At all other times, the amplitude of the unprocessed original is set to zero, so it won’t contribute to
the result at all.

Double-click on mid, and look at its Scale parameter:

!Mid * (1 - !Bypass)

This is what allows you to control the contribution of the midrange to the overall mix using the !Mid
fader. Whenever the !Bypass button is held down, its value is 1; otherwise it is 0. So when !Bypass is
held down, the amplitude of mid is zero, so it contributes nothing to the final result. This is a little trick
that you can probably find other uses for in other circumstances. If you want an either-or condition, scale
one Sound’s amplitude by !aGate and scale the other one’s amplitude by (1 - !aGate).

create bypass button is a MIDIMapper used, in this case, to make !Bypass show up as a momentary
button on the virtual control surface (rather than as the default fader controller). The syntax is:

!Bypass is: (`Bypass type: #gate)

It’s called a gate, because it stays at a value of 1 for as long as you hold it open; it doesn’t just send out a
single 1 as a trigger and then return immediately to 0.

Double-click the module called hi to see its parameters. This is a DynamicRangeController set up to act as
a compressor. The idea is to compress the dynamic range of the signal so that there is less of a difference
between the smallest and the largest parts of the amplitude envelope. It does this by tracking the ampli-
tude envelope of the SideChain, and attenuating the Input whenever the amplitude envelope exceeds
the Threshold. It is not a uniform attenuation, however. It uses the Ratio to determine how much it
should attenuate the Input.

This particular Ratio value of 4/1, means that for every 4 dB increase in the amplitude envelope, at-
tenuate the Input so that it will only increase by 1 dB. AttackTime and ReleaseTime control the
responsiveness of the envelope follower on the SideChain: AttackTime the responsiveness to in-
creases in the amplitude of the SideChain, and ReleaseTime, the speed with which the envelope
follower reacts to decreases in the amplitude of the Input. The envelope follower introduces a small de-
lay in the SideChain relative to the Input. You compensate for this by delaying the Input by the time
specified in the Delay field; that way the attenuation will kick in at the right time, and not just after a
change in the Input amplitude.

Although it may seem counterintuitive that attenuating the strongest parts of the signal can make the sig-
nal sound louder, that is just because we haven’t gotten to the last parameter yet: Gain. Once you have
compressed the range of the amplitudes, you can then apply a gain to all of the amplitudes. You can put a
lot more gain on the signal without having to worry about clipping, because the largest amplitudes have
been attenuated. The quieter parts of the signal are now louder relative to what they could have been be-
fore, which explains why the compressor emphasizes background noise, breathing, mouth clicks, etc. For
percussive sounds, a compressor can effectively lengthen the amount of time that the sound is at a high
amplitude before it decays into the background, giving the ear and the auditory system more time to
register it as being loud, hence the “punchier” sound of drums or plucked strings when you put them
through a compressor.

Experiment with different settings on the DynamicRangeController by setting the following parameters
to the following values:

Parameter Value

Threshold !Thresh * 0.1

AttackTime !Attack * 0.1 s

ReleaseTime !Rel * 0.1 s

Delay !Del * 0.1 s

Play the DynamicRangeController, and experiment by adjusting the faders on the virtual control surface.
If you find a setting that you like, double-click on Brittle2 (the Preset module), and click on the button
labeled Set to current event values . This will recall the current settings each time you play Brittle2.

119

Now take a look at the input to mid, the two cascaded filters called >150 and <1200. You can already
guess from their names what they do. The first is a high-pass filter that allows only frequencies above 150
hz to pass through. That feeds into a low-pass filter that blocks frequencies above 1200 hz. The two filters
together act as a bandpass filter, allowing frequencies between 150 hz and 1200 hz to pass through unat-
tenuated.

Once again, double-click on mid. Try setting the Feedback parameter to !Feedback. Play brittle2, and
use the virtual control surface to set !Feedback up around 0.9. Then try different fader settings for
!MidDelay. If you like this altered version, drag a copy of brittle2 from the Sound editor into your own
Sound file window and save it (after having renamed it so you can remember what it does). Then close
this Sound editor without saving the changes so you can also keep the original version around.

Experiment with the other examples in this Sound file for more ideas on how to shape the spectrum of
Kyma Sounds using filters to selectively process subranges of the Sound’s total bandwidth. As an exer-
cise, think about how you might go about splitting the input into even more frequency bands and what
different kinds of processing you could apply to each of those bands.

120

Envelopes

In general usage, the word “envelope” is used to mean some kind of wrapper or enclosing cover around
something else. In some sense, you can think of an amplitude envelope as enclosing or defining a sonic
“event” or discrete “object”.

First, in the interest of preserving your speakers for a little while longer, turn the gain on your amplifier
down. Once your speakers are protected, play the Sound called endless sine. This is the kind of sound
that is quickly relegated to the background. It sounds as if it could be the hum of a machine or a distant
motor; it isn’t changing, so it seems safe to ignore it, and it almost disappears after a while. Putting an
amplitude envelope on the endless sine will give it “closure”, and make it seem like a single “event” or
“object”.

FunctionGenerator
To apply an amplitude envelope to any Sound, the method is the same: multiply the Sound by the enve-
lope. To see an example of this, double-click on apply shape of env to oscil amp. Select Function-
Generator17, and choose Full waveform from the Info menu. A FunctionGenerator reads through its
wavetable exactly once each time it is triggered, so what you see in the full waveform display is a picture
of the Gaussian wavetable.

Leave that full waveform window open, and return to apply shape of env to oscil amp; this is a Product
module. Select it, and choose Full waveform from the Info menu. What you see is the shape of the Gaus-
sian wavetable applied to the amplitude of the sine wave oscillator. (Actually, it looks more like the
Gaussian shape mirrored across the zero axis, because the sine wave is both positive and negative, and
when you multiply the positive value from the Gaussian curve by a negative value from the sine wave,
you end up with a negative number).

AR and ADSR
Double-click on a different shape . As you can see, this is the same configuration: a Product with two in-
puts: sine wave and ADSR env. Select ADSR env , and choose Full waveform from the Info menu. Then
double-click ADSR env to see its parameters.

An ADSR envelope is based on the idea of an envelope that will be controlled by a trigger. You specify
how long it should take to reach the maximum amplitude when the trigger is first “attacked”, how far it
should “decay” after that initial attack and how long it should take to decay that far, what its amplitude
should be while the trigger is “sustained”, and what the envelope behavior should be when the trigger is
finally “released”. You can see the different parts of the envelope clearly in the full waveform display: the
attack of 0.2 seconds, an initial decay down to 0.75 of the full amplitude over the course of 0.1 seconds, a
flat sustain portion, and finally a release that takes 0.5 seconds.

In this example, the envelope is triggered once and has a finite duration, so the sustain is computed by
Kyma as the total duration minus the sum of the attack, decay, and release durations.

GraphicalEnvelope
Play the Sound called graphic env chopper, and use the MIDI keyboard to select different pitches and get
a feel for how it behaves. Double-click on it to see how it is put together. Notice that there is a configura-
tion that looks a lot like the last Sound we looked at; it’s a Product with 3 detuned GA saws and
GraphicalEnvelope14 as its Inputs.

Double-click GraphicEnvelope14 to see how it got its name. This Sound has a rubber-band style editor for
drawing the desired envelope shape. When you click in the Envelope field, you should see two little red
arrows. These mark the beginning and ending of a loop. Count the number of spikes or ridges between
the red arrows. Make sure the original Sound is still playing, and hold down a key on the MIDI keyboard.
When you press a key, it goes through the entire envelope up to the left arrow once, then loops between
the arrows as long as you hold the key down, and finally when you release the key, it will go through the
segment after the end-loop arrow. What it stores is not the absolute amplitudes, but the slope of each

121

segment, so it will take whatever amplitude it happens to be when you release it and use the slopes of the
segments following the end loop to do the “release”.

Generalizing the Idea of Envelope…
In Kyma, an envelope is a time-varying function that can control any of the parameters of another Sound.
To control a parameter by an envelope, copy the envelope Sound (Ctrl+C), click in the parameter field,
and paste the envelope Sound into the parameter field (using Ctrl+V). Actually, any Sound can be used
as an envelope, because any Sound can be pasted into the parameter field to control that parameter.

Look, for example, in the Frequency field of the low pass filter in graphic env chopper:

lfo L * 5000 hz + 5200 hz

This is using an oscillator as a kind of “frequency envelope”. Double-click on lfo to see its parameters. Its
Wavetable is Buzz and its Frequency is

9 s inverse

If you ever want a repeating envelope, you can set the Wavetable of an Oscillator to the envelope func-
tion, and then set its Frequency to the inverse of how long it should take to go through the envelope
once. Why? Because that is the number of seconds per cycle. And frequency is the number of cycles per
second.

122

Formants

Picture a sine wave added to a delayed version of itself. If the delay time is equal to the amount of time it
takes to complete one cycle of the sine wave, the delayed sine wave will reinforce the original sine wave.
If the delay time is one-half of one cycle, adding them together will completely cancel them out. To prove
this to yourself, play a delay is a filter, and experiment with different delay times. Then play different
delays cancel different freqs to see how different frequencies are affected by the same delay time.

Now picture lots of sine waves bouncing around inside a violin or inside your vocal cavity. Because the
reflections are delayed and then added back to the original source, the same thing happens inside your
head as happens in the delayed sine waves experiment we just did: some frequencies are boosted and
others are attenuated. These characteristic boosts and attenuations in the spectrum are called formants,
and they tend to be independent of the fundamental frequency of the sound, acting more as a fixed filter
on the basic glottal pulse (which can change wildly in frequency).

In general, someone with a large head (an alien giant, for example) will have lower frequency formants,
and someone with a tiny head (say, a munchkin) will have higher frequency formants. So, if you move
the formants without changing the fundamental frequency, you can make a voice more menacing and
dangerous-sounding by lowering its formants or make it more cute and less dangerous by raising its
formant frequencies. Prove this to yourself by playing low menacing (SID6.7) § and munchkin and talking
into the microphone. You feel like saying different things through the low menacing voice than you do
through the munchkin voice.

Play shift formants and experiment with the !Formants fader. The Sound called female shift formants
does a similar thing but to a live input. In both cases, this technique performs a spectral analysis of the
voice, uses the SpectrumFrequencyScale to raise or lower the frequencies while leaving the formants in
the same place, and then uses a ScaleAndOffset to scale both the frequencies and the formants back up to
the original fundamental frequency.

Next try ring mod voice. This one also works on live input and uses single sideband ring modulation to
accomplish a similar result.

Yet another way to accomplish a similar result is use the Vocoder. Try shift formnts (vocoder). Like the
other examples, this one shifts the formants without changing the fundamental pitch, but in this case the
pitch is a monotone, because it is supplied by a sawtooth oscillator.

Synthesizing Formants
You can also synthesize formants (rather than shifting around the ones that are already there) using the
TwoFormantElement or the FormantBankOscillator. Try playing crossfade formant filter params, and
experiment with the !Vowel fader. Double-click on crossfade formant filter params to see how it is con-
structed. The idea behind it is that a spectrally rich signal is fed into two filters which are combined in
parallel. More specifically, in this Sound, a sawtooth oscillator feeds into two TwoFormantElements
named formants 1 & 2 and formants 3 & 4. The outputs from these two formant filters are added together
in a Mixer called 4 formants . Then the Mixer is fed into a MIDIMapper in which !Vowel is mapped to
the range of 0 to 7 and a grid size or step size of 1.

Double-click on formants 3 & 4 to see how its parameters are controlled. The frequency of Formant1 is
((!Vowel of: #(2450 2300 2450 2550 2400 2200 2150 2200)) smooth: 0.25 s) hz

and its amplitude is
 ((!Vowel of: #(-12 -8 -16 -26 -29 -16 -12 -19)) smooth: 0.25 s) dB

§ This example was used by Francois Blaignan to process the voice of SID 6.7 in Paramount Picture's Virtuosity while

Francois was still at Serafine Sound Design. Francois has since gone on to start his own sound design studio and
has become the cross-synthesis guru of Hollywood.

123

In both of these expressions, !Vowel is used as an index into an array of possible frequencies and am-
plitudes.‡ For example, if !Vowel is 0, the formant frequency is 2450 hz and its amplitude is -12 dB (the
values for the vowel A). If !Vowel is 7, the formant frequency will be 2200 hz and its amplitude will be
-19 dB.

When a new frequency and amplitude are selected, they are approached smoothly over the course of 0.25
seconds, rather than jumping immediately to their new values (this is due to the

smooth: 0.25 s

following each array.

Next, play the Sound called wow, and play some low notes on a MIDI keyboard. This is a FormantBank-
Oscillator synthesizing the vowels OO and A. If you open wow, you will see that it is a Formant-
BankOscillator whose Spectrum comes from two, interpolated SyntheticSpectrumFromArrays: one
containing the frequencies, amplitudes and bandwidths for an A, and the other containing the same in-
formation for an OO . A FunctionGenerator on a Gaussian wavetable, triggered by !KeyDown, controls
the interpolation between the parameters for OO and A, making a smooth transition between the two.

‡ The formant amplitudes and frequencies for these examples were found in Computer Music, written by Charles

Dodge and Thomas Jerse, published by Shirmer Books.

124

Frequency Scaling

One of the most common modifications to apply to a sound is to change its pitch or frequency. There are
several techniques for frequency scaling, and, depending on the model you are using to synthesize the
sound, each has its own set of side-effects or artifacts.

DiskPlayers and Samples
One of the simplest and most direct techniques for modeling an acoustic sound is to put a microphone
near the sound source and to record how the air pressure changes over time. This stream of air pressure
measurements (known as a waveform, a sample, a digital recording , or a disk track) is recorded in a disk file
where it can later be read, value-by-value to recreate the original sound (at least the original sound as it
was recorded at the one point in space where you placed the microphone).

If we define the frequency of a sound (very loosely) as the rate at which the waveform is wiggling up and
down, then it follows that the faster we read the waveform, the faster the wiggling, and thus the higher
the frequency. The slower the rate at which we read the waveform, the slower the changes in the wave-
form and the lower the frequency. It also follows that the faster we read through a recording, the less time
it takes to get through the whole thing; in other words, using the simple “sampling” model, you cannot
change the frequency of a sound without also changing its duration.

Try playing the Sound called frequency scaled disk and adjust the !Rate parameter. When you lower the
Rate parameter of a DiskPlayer, you lower all the frequencies of that sound. If the original sound source
had some formants (resonant characteristics that boost the amplitudes of some frequencies and attenuate
the amplitudes of others) then the formants will effectively be lowered in frequency too. Through years of
experience in listening, we associate low frequency formants with large resonant cavities and high fre-
quency formants with tiny resonant cavities. That’s why a sped-up recording tends to sound like a
chipmunk or some other tiny animal and a slowed-down recording tends to sound like a giant or some
threateningly large animal. You can use this effect to play upon ancient instincts and associations, for ex-
ample, by lowering the frequency when you want to create an ominous atmosphere or a dangerous and
powerful voice, and by raising the frequency to create a sense of lightness or a “cute”, childlike voice.

There are other situations, a sampling keyboard imitating an acoustic instrument for example, in which
changing the duration of the sound and changing the apparent size of the sound source are undesirable
side-effects. Try the Sound called freq scaled sample. This is a single recording of a harp tone whose fre-
quency is controlled using the MIDI keyboard pitch. Try playing the lowest note on your keyboard and
then the highest. The difference in duration is pretty noticeable. One way to minimize the duration differ-
ences and timbre changes is to use several different samples, taken from different frequency ranges of the
original instrument, and map them to keys or ranges of keys on the MIDI keyboard. This doesn’t get rid
of the side-effects, but since any single sample is not being distorted very much, it reduces the effects.

Select trb from RAM and do a Compile, load, start. Then play a scale from the bottom to the top of your
MIDI keyboard. You can hear where the different trombone samples have been mapped to different key
ranges. (For more detail on the KeyMappedMultiSample, see Sampling on page 161).

Granular
Compare the last Sound you played to granular trb shift. Compile, load, start granular trb shift and then
play a scale across the full range of the MIDI keyboard.

125

Now double-click on the Sound to see how it is put together.

A GenericSource is fed into a FrequencyScale Sound and a FrequencyTracker. Look at the parameters of
the FrequencyScale. It takes the GenericSource and an estimate of the frequency of the GenericSource as
inputs. Then it scales the frequency of the GenericSource by

!Pitch hz / 4 d sharp hz

which is the ratio of the frequency as supplied from the MIDI keyboard to the original frequency of the
sample. Notice that both !Pitch and 4 d sharp are not frequencies but pitches, so they have to be con-
verted into units of frequency in hertz. The ratio between two MIDI note numbers is quite different from
the ratio of the two note numbers expressed in hertz; for example the ratio between 4 a and 3 a would be
69/57 (about 1.2) in note numbers but 440/220 (exactly 2) in hertz. You can convert between most
units of frequency or duration by typing the name of the desired units after the value in the original units.
In MaxScale, enter the largest frequency ratio required. In this case it is 8/1 or a maximum shift of 3
octaves up.

For Window, select a wavetable that can serve as a nice, smooth granular amplitude envelope. In this case
we have chosen Hann for a Hanning window. To see the shape of the grain envelope, hold down the
Control or Command key and click on the disk button to the right of the Window parameter field. Any
smooth up and down shape like this can be used as the Window, for example, you can try Gaussian, and
even LinearEnvelope out to hear how they might affect the sound.

How is Window function used? Take a look at the waveform of the trombone.

126

It looks very much like a series of impulse responses (as we saw in the earlier tutorial on filtering).

The FrequencyScale works best on sounds that can be modeled as a source of impulses hitting a resonant
filter, for example the trombone (flapping lips generate an impulse that is fed into the filter of the body of
the instrument) or the human voice (glottal pulses passing through the resonant cavity of the mouth and
lips). The FrequencyScaler looks for what it thinks are individual impulse responses in the waveform and
creates little grains by putting an amplitude envelope (shaped like the Window function) on each one.
Then, to lower the frequency, it stretches these grains further apart so they occur less often. And to raise
the frequency, it pushes the grains closer together so that they occur at a faster rate. This is the same as
decreasing or increasing the rate of the impulses without changing the impulse response of the filter. If the
impulse-into-filter model is a good match for the way the sound was originally produced, then the Fre-
quencyScaler will do a good job of changing the frequency without changing the duration or moving the
formants around. Why? Because the formant structure is inherent in the filter or the resonator and can be
inferred from the way it responds to a single impulse. Since this method does not change the shape of the
impulse response, it does not change the formants.

The FreqTracker input is used to get an idea of where to find the impulses in the Input. The Delay is
to compensate for the delay through the FrequencyTracker; it delays the Input by the same delay intro-
duced by the FrequencyTracker, so that the frequency estimate lines up with the current Input. The
minimum delay you should use is 256 samp and the maximum is 20 ms. Within those boundaries you
should use something close to the period of the lowest frequency you expect to see in the input. Remem-
ber that to convert a frequency to a period, type the frequency in hertz followed by the word “inverse”,
for example

4 d sharp hz inverse

The quality of the frequency scaled sound depends on the quality of the frequency estimate, so it is im-
portant to start with the best possible frequency estimate. Double-click the FrequencyTracker to see its
parameters. The most important parameters to adjust are MinFrequency (the lowest frequency you ex-
pect to see in the Input) and MaxFrequency (the highest frequency). The narrower you can make this
range, the better your frequency tracking will be. In this case, we know that the original frequency of the
single trombone tone was 4 d sharp, so the range of 4 d to 4 f is pretty safe!

All of the other parameters are pretty nonlinear (in that tiny changes in these parameters can destroy the
frequency tracking), so it is recommended that you do not change these. You can experiment with more
or fewer Detectors, with the caveat that more is not necessarily better in terms of the effect this will
have on the tracking.

This technique has one more advantage (even beyond the fact that it does not affect the duration or the
formant structure), because it can work in real time on live input. For example, play the Sound called
scale w/Frequency and try various settings of the !Frequency fader. If you put !Frequency low
enough, you will hear the individual grains. Play it again, this time choosing live input in the Generic-
Source dialog, and try frequency scaling your own voice in real time. You may have to edit the Sound to
adjust the MinFrequency and MaxFrequency parameters of the FrequencyTracker to more closely
match your own range.

Wavetable Synthesis
If you model a sound as oscillators reading from wavetables, then you can select durations and frequen-
cies independently of one another; frequency is controlled by the size of the increment you use in
stepping through the wavetable, and duration is simply how long the oscillator is left on.

For example, wavetable frequency scale uses a GA resynthesis of three different trombone tones mapped
to two different ranges of keys. The lower range has 2 c at its low end, 3 c sharp at its high end, and fills
in the intermediate timbres by continuously morphing between those two endpoints. The higher range
has 3 c sharp as its low endpoint, 4 d sharp as its high end and, similarly, morphs between the two to
get the intermediate waveforms and envelopes.

See Wavetable Synthesis on page 185 to see how to create a GA analysis/resynthesis from the Tools
menu.

127

Additive Synthesis
If you resynthesize from an analysis file by adding together many sine wave oscillators, then you can
scale the frequency by simply scaling the oscillator frequencies up or down. The rate at which you read
through the amplitude and pitch deviation envelopes is independent of the frequency of the oscillators,
so you can scale the frequency without affecting the duration.

Try additive synth freq scale as an example of reading an analysis from RAM and using it to control sine
wave oscillators whose frequency you can scale up and down.

The analysis does not have to be read from the disk, it can be generated in real time from a live input. Try,
for example, live analysis/resynth & freq scale first with the default Virtue sample, and the second
time, choosing live input for the GenericSource and trying it on your own voice.

Double-click live analysis/resynth & freq scale to see how it is put together.

A GenericSource feeds into a LiveSpectralAnalysis which controls an OscillatorBank. Double-click the
LiveSpectralAnalysis to view its parameters. It is set for fundamental frequencies above 2 f (or 87 hertz)
and BetterFreq. The LiveSpectralAnalysis uses a bank of bandpass filters to analyze the input, and
Response is a control on the bandwidth of those filters: BestFreq is the narrowest bandwidth, then
BetterFreq, etc., with BestTime being the widest bandwidth. The FrequencyScale is set to

!Frequency * 1.5 + 0.5

which means it ranges from one octave below the original pitch (0.5) to one octave above (2), depending
upon the value of !Frequency. Since Harmonic is not checked, this is not doing an harmonic analysis,
so none of the rest of the parameters are used.

As you can hear, this method does not affect the duration, but it still suffers from the “chipmunk” syn-
drome, since it scales all oscillators without changing their amplitude (and thus effectively shifts the
apparent formants up or down along with the fundamental frequency).

Fixed Formants
If you have a high voice, play live resynth w/freq scale, fixed formants next. If you have a low voice, try
low freq live input, fixed form instead. The first time you play it, use the default input, and then play it
again, this time choosing the live input for the GenericSource and then singing or speaking into the mi-
crophone to frequency scale your own voice. Adjust !HighestPch and !LowestPch to the range of
MIDI note numbers covered by your singing or speaking voice (where 60 is middle C).

128

Double-click the Sound to see how it differs from the moving formants version.

The signal flow is similar to the last Sound we looked at except that the LiveSpectralAnalysis feeds into a
SpectrumScaler before it goes to the OscillatorBank. If you take a look at the SpectrumScaler parameters,
you will see that the frequency scaling expression has moved from the LiveSpectralAnalysis to here. The
SpectrumScaler scales the frequencies of the oscillators but keeps the apparent formants in the same
place.

In order for the SpectrumScaler to work, you must feed it an harmonic analysis. Take a look at the pa-
rameters of the LiveSpectralAnalysis, and you will see that Harmonic is, indeed, checked. The LowFreq
and HighFreq parameters are the lowest and highest fundamental frequencies that you expect from the
Input. To be completely truthful, they specify the range of frequencies you expect from the harmonic
number given in the field called TrackedHarmonic. In this example, the TrackedHarmonic is set to 1,
so the LowFreq and HighFreq refer to the first harmonic (the fundamental). The AmpScale is set to

!Frequency * 1.5 + 0.5

only because scaling down the frequency ordinarily makes the resynthesis louder, so this is here to try to
compensate by scaling down the amplitude as you scale down the frequency — no deep hidden meaning.

RE Synthesis
If you slow down the EX file feeding into an RE filter, you get something that sounds lower in frequency
and has a longer duration, but which keeps some of the original formant structure. Try the Sound called
RE w/ slower & lower EX input. You will, most likely, have to adjust !Atten as you adjust !Rate, since
some rates will cause the filter to overflow.

Open this Sound for editing, and take a look at the parameters of the FunctionGenerator called timeIndex.
Notice that it is triggered by !KeyDown and that its OnDuration is

6.01422 s * (1.0/!Rate)

6.01422 seconds is the duration of the original sample. Whenever !Rate is increased, we want to go
through the RE filter faster, and, because we are scaling the duration by the inverse of !Rate, faster rates
mean smaller durations. Likewise, !Rate less than one will give us longer durations (which is exactly
what we want, since going through the EX file at a slower rate should give it a longer duration).

For more details on how to create an RE analysis using the Tools menu, see Cross Synthesis on page 103.

Surrealism
In the Sound collection called surrealistic scaling you can find some great alien voices as well as some
additional techniques for scaling the frequency.

129

For example, open and try out the Sound called timewarp alien , which sounds like an alien having prob-
lems with echo-suppression on a trans-galactic phone call. In the signal flow graph, find the module
named SingleSideBandRM7 and play it. Like straight ring modulation, single sideband ring modulation
gives you the sum and the difference frequencies of its input and a sine wave — except that, in single-
sideband modulation, one of the sidebands is canceled out, leaving only the sum frequency. Click on the
name SingleSideBandRM (in the lower right corner of the parameter fields) to read a description of
how this works. Then click on the parameter names for Frequency and FreqScale. This Sound is set
up so that, at 1000 hz, it does single sideband modulation, and the further the input frequencies are from
1000 hz, the more they are like ordinary ring modulation — so different parts of the input spectrum are
being modulated differently. Frequency components of the input that are close to 1000 hz will be scaled
down by the FreqScale ratio 0.75.

Try replacing FreqScale with

!Scale * 2

and the Frequency parameter with

!Frequency * 2000 hz

and experiment with different combinations of the two parameters. As you can hear, while this method
does not give as predictable and clean results as some of the frequency scaling methods discussed earlier,
it does have some unique properties that you can use in designing new kinds of processing.

Next, play watery harp and then double-click on it to see how it works. It turns out that when you change
the length of the delay in a DelayWithFeedback (by changing DelayScale) you will, as a side-effect,
change the frequency of whatever sound is currently in the delay line. So, although you might not guess
it from its name, the DelayWithFeedback is yet another Sound you can use to scale the frequency of its
input.

Monotony
So far we have spoken only of scaling the frequency while still maintaining the original contour of the
melody or the prosody. But how about removing all that annoying melodic content in order to achieve a
completely monotonous melody or phrase? Yes, with Kyma you can do it!

Try playing you are monotonous and sing into the microphone. (If you're at a loss for what to sing, try
your national anthem). If you have a low voice, you might find that Low voice monotony will work better
for you. Next try playing along with what you are singing on the MIDI keyboard, and listen to what hap-
pens when what you play on the keyboard diverges from what you are singing. Try to sing flat, and then
use the keyboard to correct the pitch of your voice.

There are several different techniques for monotonizing but the basic idea is this: Whenever the fre-
quency of the input goes up, scale it down with the frequency scaler. Whenever the frequency of the input
goes down, scale it up by the same amount in the frequency scaler. The result is a melody or prosody that
never varies from one pitch.

In order to do this, you need some way to scale the frequency up or down, and you need some way of
tracking the input’s frequency so you know how to cancel it out. For example, look at you are monoto-
nous (kbd). This is an ADInput going into a FrequencyScaler and a FrequencyTracker. Take a look at the
parameters of the FrequencyScaler. Note that its FrequencyScale parameter is set to:

!Pitch hz / (freqTrak L * 22050.0 hz)

Let’s “deconstruct” this expression in order to understand its effect. First of all, notice that it is a ratio of
two frequencies — the frequency from the keyboard and the frequency of the input signal.

The frequency of the input is in the denominator, so whenever the frequency of the input gets larger, the
ratio of the keyboard frequency to the input frequency gets smaller and vice versa. (For example, the ratio
1/6 is smaller than the ratio 1/3). This is exactly the behavior we were looking for in order to cancel out
the changes in the input frequency.

Now to explain a few of the details. The FrequencyTracker is multiplied by 22050 hz. Why? Because the
output of the FrequencyTracker is in the range of (0,1). In order to scale that to the range of possible

130

frequencies, we have to multiply by the largest possible frequency value, which, in digital audio, is always
one half of the sampling frequency. So this expression is assuming a sampling rate of 44.1 khz. To modify
this expression to work at any sampling rate, change it to:

freqTrak L * SignalProcessor sampleRate * 0.5 hz

The other detail to notice is that !Pitch from the keyboard must be converted to frequency in hertz be-
fore taking the ratio of the two frequencies. Ratios of note numbers are not the same as the ratios of the
equivalent values in hertz! As a quick proof by example, consider the ratio of 4 a to 3 a. In note numbers,
this would be 69 / 57 or about 1.2, whereas, in hertz, the ratio would be 440.0 / 220.0 or exactly 2.

Try out you are monotonous (kbd), singing into the microphone, and playing either the same pitches or
different pitches on the keyboard. If you have a particularly low voice, you may want to try Low voice
monotony instead.

The other examples in this collection are all examples of live “monotonization” using various different
techniques. Try each of them out, so you can get an idea of the strengths and weaknesses of each ap-
proach.

If you don’t have to monotonize an audio signal in real time, you can monotonize an analysis of the sig-
nal using the Spectrum editor. First analyze the recording using the spectral analysis tool. Then open the
analysis in the Spectrum editor. Select the lowest 8 tracks, and push the filter button (third from the right
in the row of buttons across the bottom of the editor) for a list of modifications that can be performed on
the selected tracks. Choose replaceFrequencyWithAverage, and wait for it to compute and replot. Ex-
periment with selecting and monotonizing different combinations of harmonics.

F13

131

Live Analysis, Resynthesis

Using the LiveSpectralAnalysis module, you can analyze any Kyma Sound in real time and resynthesize
the sound at the same time, using an OscillatorBank.

Resynthesis with Frequency Scaling
For example, play the Sound called live analysis/resynthesis, and hit Enter when the GenericSource asks
what input to use. What you are hearing is not the sample but a bank of sine wave oscillators. The oscil-
lator frequencies are tied to the MIDI keyboard (try playing it right now to verify this).

Compile, load, start live analysis/resynthesis again, but this time choose the live input as the Generic-
Source. Speak, sing, or otherwise perform into the microphone while playing the keyboard to create
changes in the frequency of the output.

Intercepting and Modifying Selected Tracks
We didn’t come up with a way to separate the live input into hundreds of sine wave oscillators just so we
could add them all back up together again and reproduce the original sound. No, like all good sound de-
signers, we want to warp, mangle, mutate, transmogrify, and otherwise mess around with the sound
before resynthesizing it.

One way to do that is with SpectrumModifier. Despite its deceptively simple-sounding name, this is the
mangler/transmogrifier you’ve been looking for. The Sound has two stages: selecting (or rejecting) tracks
based on some criteria, and then modifying the amplitudes or frequencies of the selected tracks.

Frequency Domain Filters
Let’s start with something simple: creating a pseudo-bandpass-filter effect by rejecting tracks (oscillators)
whose frequencies fall outside a given range. Play pseudo bandpass and try adjusting !HiCutoff and
!LoCutoff in the virtual control surface.

Double-click on pseudo bandpass. Notice that it has a LiveSpectralAnalysis feeding into a Spectrum-
Modifier. Double-click the SpectrumModifier to look at its parameter settings, in particular, the following:

Parameter Setting

LoFreq !LoCutoff hz

HiFreq !HiCutoff hz

FreqHysteresis 1 hz

HearAll unchecked

By having HearAll unchecked, we are specifying that we want to hear only those tracks which meet the
criteria. Tracks satisfying the criteria in this case are those whose frequencies are above !LoCutoff hz
and below !HiCutoff hz. By setting the FreqHysteresis to 1 hz, we can avoid tracks popping in and
out because some small deviation (like vibrato) is taking it in and out of the specified range.

Track-dependent Frequency Scale & Offset
Next try playing subwoofer-ize, and try different settings for !LoTrack, !InHarm, and !Scale.

Open it up and take a look at the parameter settings for the SpectrumModifier named scale freqs of tracks
below LoTrack, in particular:

132

Parameter Setting

Select unchecked

LoTrack !LoTrack

HiTrack 1000

FreqScale !Scale

FreqOffset !InHarm

LoAmp 0

HiAmp 0.2

AmpHysteresis 0.1

HearAll checked

In this example, Select is not checked. This indicates that the criteria describe the tracks that should be
rejected, not selected. In other words, whatever the list of conditions are for selection, you should add a
“NOT” to the end of the list. So in this case, it is saying “select only the tracks above !LoTrack, NOT!” In
other words, select only the tracks below !LoTrack.

But notice that it also has the HearAll box checked. What does it mean to select some tracks if you are
still going to let all of them through? This is where FreqScale and FreqOffset come into the picture.
The selected tracks will have their frequencies multiplied by !Scale and then have !InHarm added to
them.

In short, this is a strange kind of “filter” where the “pass band” is defined by track (or oscillator) number
rather than frequency and where the tracks within the pass band have their frequencies scaled and offset.

Reducing Background Noise
Play reduce background hiss, and experiment with different settings for !LowAmp. Open it up to examine
the parameter settings of reject amps below !LowAmp, in particular:

Parameter Setting

Select checked

LoAmp !LowAmp

HiAmp 0.2

AmpHysteresis !LowAmp * 0.5

HearAll unchecked

In this example, there is some background hiss that was present in the original recording and is faithfully
reproduced in the resynthesis. The SpectrumModifier is being used to filter out tracks based on their am-
plitudes. If the noise in the original recording is consistently of lower amplitude than the desired signal,
then you can use this method to reduce or remove the noise from the resynthesis.

Probabilistic Resynthesis
Next try the Sound called spectral granulation, experimenting with different settings for the very-
scientifically named !Burbliness parameter.

The important parameter settings in this SpectrumModifier are:

Parameter Setting

Select checked

Probability 1 - !Burbliness

Seed -0.2

HearAll unchecked

Once a track has passed through all the other criteria, it still has one more test to pass before it is selected,
and, in a case of art-imitating-life, this last test is completely arbitrary, and, in fact, random. As a final

133

criterion for selection, you can assign a likelihood that any given track will be selected on any given
frame. If you set the Probability to 1, then this last test will have no effect, because any tracks that
have satisfied the other criteria have a likelihood of one — in other words, a 100% chance of being se-
lected. If you set Probability to 0, then you won’t hear anything, because all tracks have zero chance
of being selected. In this case, we have set it to 1 - !Burbliness, so the larger the value of !Burbli-
ness, the less often a track will be selected when it is tested. This explains why the sound breaks up more
and more as you increase the value of !Burbliness.

Try changing the setting of Probability to

TrackNumber / 512

This weights the higher tracks more than the lower numbered tracks, giving a kind of probabilistic high
pass filter effect, since the higher tracks are selected so much more often than the lower ones. (!Burbli-
ness still shows up in the virtual control surface because it also has an affect on the AmpScale in the
LiveSpectralAnalysis. Don’t worry about it, because it doesn’t have too much of an effect other than to
change the overall amplitude slightly).

On occasion, though, a low bloop still gets through, because the lower tracks still have a nonzero likeli-
hood of occurring. To remedy that, try changing the Probability to

TrackNumber - 32 / 512

This makes the probability of the first 32 tracks negative (effectively zero), and weights the remaining
tracks according to track number.

Skipping Harmonics
The final example in this file is called split spectrum.

Notice that the LiveSpectralAnalysis feeding into the SpectrumModifier in this example has the Har-
monic box checked. That means that, in this case, track number is synonymous with harmonic number.
(This was not true for the previous examples which did not have Harmonic checked).

Take a look at the parameters of the SpectrumModifier in this example, in particular:

Parameter Setting

FreqScale !Frequency

Probability TrackNumber rem: 3

Seed -0.2

HearAll checked

The message rem: is short for “remainder,” so this is another way of saying the remainder left over after
dividing TrackNumber by three.

In other words, the probability of the first harmonic being on is 1, for the second 2 (but the maximum
probability is 1, so anything greater than 1 is just the same as 1), for the third harmonic 0 (because the re-
mainder is zero), and so on. In other words, the pattern is two harmonics on, next harmonic off, two
harmonics on, next harmonic off.

The selected harmonics are frequency scaled, so you can split apart the spectrum of the input as it is
playing, with some harmonics going down in frequency and others continuing as they were.

Uncharted Territory
It hasn’t been possible to do this sort of thing in real time until fairly recently, so anything you develop
with these Sounds has a high probability of being something that no one has heard before. So experiment
and have fun!

134

Looping, Feedback

Several Kyma Sounds have internal feedback loops, but you can also create your own feedback loop by
writing into memory with one module and reading out of it (after an arbitrary delay) with another. In the
signal flow diagram, the writer must occur before the reader.

MemoryWriter/Reader
Take a look at the first Sound in this file, the one called write memory, read memory. This is an imple-
mentation of a basic feedback loop which you might draw as:

+Source

Delay

Output

Notice that in the Kyma Sound the last module in the diagram is a MemoryWriter. It writes the sum of
the source plus the delayed source into a delay line named, in this example, recording. Notice that the
Sound called read the memory is a Sample, one of several Kyma Sounds that can read from the sample
RAM of the Capybara. Double-click on read the memory because there is one very important parameter
setting that is easy to overlook. Any time you are reading something from memory that is being written
into memory elsewhere in the Sound structure, you must check the FromMemoryWriter box. Otherwise,
Kyma will search your hard disk looking for the sample named recording. If you check FromMemory-
Writer, then Kyma knows that it has to put the MemoryWriter on the same expansion card as the
Sample that reads the memory. Try playing write memory, read memory to verify that it does indeed
sound like a simple feedback loop.

Actually you could have done exactly the same thing in a much easier way — by feeding the source into a
DelayWithFeedback and controlling the feedback with a fader. But what if you want to insert some kind
of processing in the feedback loop? Open up process in fdbk loop to see an example of this. The fed back
portion of the signal goes through a single side band ring modulator before it is added in with the source
and fed back into the delay line — so the processing is compounded each time around the loop. Try
playing process in fdbk loop to hear the effect.

In write memory, granulate memory , you see an example of using a GrainCloud, rather than a Sample, to
read out of the delay line. The result is a kind of granulated delay line. Try playing it once with the de-
fault source chosen and then switch it over to Live source so you can try singing some long tones into it.

As you probably noticed in this example, the delay line might already have some leftover sound in it
from a previous example. Look at granular read w/zero mem for an example of how to clear the memory
in the delay line before using it. Notice that the input to the MemoryWriter is a Concatenation of a Con-
stant (with Value zero) followed by the feedback loop. This will write zeroes into the memory on all the
cards first, so the delay lines will be silent at the beginning.

FeedbackLoopInput/FeedbackLoopOutput
What if the modifications you put into the feedback loop are so extensive that they cannot all be sched-
uled on the same expansion card as the memory writer and memory reader? To implement a feedback
loop that crosses expansion cards, use the modules called FeedbackLoopInput (writes into the delay line)
and FeedbackLoopOutput (reads from the delay line). Note that these modules can only implement delay
lines of from 12 to 2048 samples long, so if you can get away with using the previous design for feedback,
you should preferentially do it that way, because that gives you a larger range of delay times (down to a
single sample).

Open up basic Feedback in/out example to see a stripped-down illustration of how to set one of these up.
Reading from left to right in the signal flow diagram, the first module is a FeedbackLoopOutput called
read from loop. Notice that its parameters are set so that it reads from a “connection” called feedback
after 128 samples of delay. This is fed into an Attenuator so you can control the amount of feedback, then
it is fed into a DelayWithFeedback to add additional delay if desired. From that point on, it should look

135

pretty familiar. The delayed feedback is added to the source in a Mixer, and the Mixer is fed into the
module that writes into the “connection” — the FeedbackLoopInput. This is a simplified example, be-
cause you could implement the same thing using a single DelayWithFeedback module.

For something a little more interesting, play slithering sibilance. This is the same basic configuration but
with a 12-pole AllPass filter in the feedback loop.

Next, try thirds rising. This one has a spectral analysis and resynthesis in the loop. The resynthesis oscil-
lators can be scaled up or down by the interval you set in the virtual control surface.

136

MIDIVoice Scripts

The MIDIVoice and MIDIMapper modules give you three choices for the source of MIDI events: the live
MIDI input stream (originating with external controllers or a sequencer or other software running in par-
allel with Kyma), a MIDI file stored on disk, or a MIDI script (which generates MIDI events
algorithmically and then emits them).

These examples illustrate some of the tools for algorithmically generating MIDI events using the Script
parameter of a MIDIVoice or MIDIMapper. For more information about MIDI event scripts, see MIDI
Scripts beginning on page 522.

Notes and Controllers

Notes
The syntax for a basic note-on event is:

self keyDownAt: aTime duration: aDur frequency: aFreq velocity: 0To1.

When you drop the velocity tag, the event defaults to a velocity of 1.

 Transcription of Short Sequences

Take a look at (and compile, load, start) machautKyrie to see a simple application of these note events:
direct transcription of written notation by hand into MIDI script events. For short note sequences, enter-
ing the events by hand is often the quickest and most straightforward way to do it. Here is an excerpt
from the Machaut example:

MM := 90.

"------------------------------------"
self keyDownAt: 0 beats duration: 3 beats frequency: 4 a.
self keyDownAt: 3 beats duration: 1 beat frequency: 4 a.
self keyDownAt: 4 beats duration: 1 beat frequency: 4 b.
self keyDownAt: 5 beats duration: 1 beat frequency: 4 g.
self keyDownAt: 6 beats duration: 2 beats frequency: 4 a.
self keyDownAt: 8 beats duration: 0.5 beats frequency: 4 f.
self keyDownAt: 8.5 beats duration: 0.5 beats frequency: 4 e.
(and so on…)

The first line of this script informs Kyma of the metronome that should be used to define the beat for the
rest of the script. The remaining lines are a transcription of each note from the piece.

 Modulo Arithmetic

The script of a MIDIVoice or MIDIMapper is actually a program written in Smalltalk; this means that you
can generate events according to an algorithm. The script in Kurt’s new rhythm method illustrates the use
of modulo arithmetic in an algorithm that creates a kind of twisted drum machine.

In this script, a subset of seven different fixed-duration fixed-frequency events is algorithmically selected
for scheduling on each beat. The following is an outline of the script:

MM := 300.
0 to: 200 do: [:i |

(a series of omitted event selection decisions)
].

The first line of the script sets the metronome. The rest of the script is a loop that counts the variable i up
from 0 to 200. Inside the loop, a series of decisions are made to determine whether each of the seven pos-
sible events should be scheduled for this beat.

The first of the seven event decisions is:

i \\ 4 = 0 ifTrue: [

137

self
keyDownAt: i beats
duration: 25 / 100 hz
frequency: 100 hz].

This part of the script causes an event (of the given frequency and duration) to be scheduled whenever
the beat counter i has no remainder when divided by four (i \\ 4 = 0). This is the same as saying that
this particular event will be scheduled on every fourth beat. The other decisions are based on whether the
current beat is a multiple of 2, of 3, of 5 (within the first 50 beats), of 13, of 7, and finally when it is not a
multiple of 7, 5, or 3 after the first 50 beats.

Here is the entire script:

MM := 300.
0 to: 200 do: [:i |

i \\ 4 = 0 ifTrue: [
self

keyDownAt: i beats
duration: 25 / 100 hz
frequency: 100 hz].

i \\ 2 = 0 ifTrue: [
self

keyDownAt: i beats
duration: 25 / 250 hz
frequency: 250 hz].

i \\ 3 = 0 ifTrue: [
self

keyDownAt: i beats
duration: 25 / 150 hz
frequency: 150 hz].

(i < 50 and: [i \\ 5 = 0]) ifTrue: [
self

keyDownAt: i beats
duration: 25 / 400 hz
frequency: 400 hz].

i \\ 13 = 0 ifTrue: [
self

keyDownAt: i beats
duration: 25 / 700 hz
frequency: 700 hz].

i \\ 7 = 0 ifTrue: [
self

keyDownAt: i beats
duration: 50 / 50 hz
frequency: 50 hz].

(i > 50 and: [i \\ 7 ~= 0 and: [i \\ 5 ~= 0 and: [i \\ 3 ~= 0]]]) ifTrue: [
self

keyDownAt: i beats
duration: 100 / 1000 hz
frequency: 1000 hz].

].

138

 Random Events

The next example generates one hundred random pitches with random durations and random placement
in the stereo field. Edit the Sound called 100 uniform random to follow along.

To generate one hundred of these events, we first create a random number generator, and then repeat the
code for the generating single event one hundred times:

| r t |
r := Random newForKymaWithSeed: 52.
t := 0.

100 timesRepeat: [
self

keyDownAt: t s
duration: (r next + 1) s
frequency: 3 c + (r next * 36 nn)
velocity: r next.

t := t + r next].
You may recognize this as a Smalltalk program (the implication being that you can use any Smalltalk ex-
pressions and control structures to algorithmically generate your MIDI events)!

Local variables are declared at the top by placing them between vertical lines. Then a random number
generator is created and stored in the variable r. Another variable, t, which will be keeping track of time,
is initially set to zero:

| r t |
r := Random newForKymaWithSeed: 52.
t := 0.

Next we repeat the statement within the square brackets one hundred times. Each time through, the du-
ration is set to some random number between 1 and 2, the frequency is set to a pitch between 3 c and 6 c
(not limited to integer note numbers), the velocity is set to a random number between 0 and 1, and the
start time of the next event is set to a random time up to 1 second after this event:

100 timesRepeat: [
self

keyDownAt: t s
duration: (r next + 1) s
frequency: 3 c + (r next * 36 nn)
velocity: r next.

t := t + r next].
To hear the results, play 100 uniform random. Take a look inside the Attenuator to see how
!KeyVelocity is really being used to control stereo placement, rather than amplitude.

Random generates random numbers that are evenly distributed between zero and one. Let’s modify our
program slightly, replacing Random as the random number generator with several OneOverF genera-
tors, one for pitch, one for duration, one for velocity, and one for the next start time:

| rPch rDur rVel rStart t |

rPch := OneOverF newForKymaWithSeed: 52 states: 128.
rDur := OneOverF newForKymaWithSeed: 52 states: 128.
rVel := OneOverF newForKymaWithSeed: 52 states: 128.
rStart := OneOverF newForKymaWithSeed: 52 states: 128.

t := 0.
200 timesRepeat: [

self
keyDownAt: t s
duration: rDur next s
frequency: 3 c + ((rPch next * 36) roundTo: 1) nn
velocity: rVel next.

t := t + (rStart next * 0.5)].

139

Like Random, OneOverF generates random numbers between zero and one, but it tends to generate
numbers that are close to one another for awhile, then make a large jump to a new number, then generate
numbers close to that one for awhile, etc. It gets its name from the shape of the distribution in the fre-
quency domain: 1/f or the inverse of the frequency; in other words, there tend to be large, slow changes
and small, fast changes. To hear what this sounds like, play 200 oneOverF . Try changing the value of the
seeds to hear a different set of events.

Controllers
Play 100 uniform + ctrl and then open it to see an example of how to specify continuous controller values
in a MIDI script. Here the controller !Morph is set to 0 at the beginning and is told to slide from its previ-
ous value to a new random value on each note taking 10 steps to get there:

| r t |

r := Random newForKymaWithSeed: 2.
t := 0.
self controller: !Morph setTo: 0 atTime: 0 s.
100 timesRepeat: [

self
keyDownAt: t s
duration: (r next + 1) s
frequency: 3 c + (r next * 36 nn)
velocity: r next.

t := t + r next.
self controller: !Morph slideTo: r next steps: 10 byTime: t s].

Next, play 200 oneOverF + ctrl and then open it to see how it works. In this script, !Morph is set to zero
initially, and then slides to a value of one over the course of 40 seconds.

Event Collections
Sometimes it is more convenient to specify the MIDI events as collections of notes and rests, without
having to specify start times for each event. The actual start times can be inferred from the duration of the
Note or Rest and where it occurs in the collection of events. This corresponds more closely to written mu-
sic notation, where note and rest symbols arranged horizontally are interpreted as a sequence of events in
time (where each event’s start time occurs right after the previous event’s duration has expired), and
notes or rests arranged vertically are interpreted as all starting at the same time.

In the MIDI script language, an EventSequence is a collection of Notes, Rests, or other EventCollections
that occur one after another in time (corresponding to horizontal placement in music notation). Since you
can also construct sequences of other collections, you can create higher level structures as well. For exam-
ple, sequences of Notes and Rests could be collected in a measure; sequences of measures could be
collected into a phrase; sequences of phrases could be collected into sections; sequences of sections could
be collected into movements, etc. until you run out of traditional musical names for the structures(!)

An EventMix is a collection of Notes, Rests, or other EventCollections that occur all at the same time
(corresponding to vertical placement in music notation). Like an EventSequence, the EventMix is recur-
sively defined (i.e. you could have an EventMix of EventMixes), allowing you to define hierarchical
structures, somewhat analogously to the way you can define Sounds.

You can also create a generic EventCollection of Notes, Rests, or other EventCollections, specifying that
you haven’t yet decided whether the events should be simultaneous or sequential but will send a mes-
sage to the object later to specify actual start times and turn it into a sequence or a mix of other events.

EventSequence
Play the Sound called re-turn of phrase, and then open it so you can study the MIDI script (by the way, in
case you missed this earlier, you can use Ctrl+L to make any parameter field larger — an essential little
feature for viewing and editing these scripts).

140

The first line is just a declaration of all the variables: measure, group, phrase, and section. Next, a
new sequence is created: a half note on 2 g, followed by a quarter note on 3 d, followed by a half note 2 d:

| measure group phrase section |

measure :=
EventSequence events: #(

{Note durationInBeats: 2 frequency: 2 g}
{Note durationInBeats: 1 frequency: 3 d}
{Note durationInBeats: 2 frequency: 2 d}).

Next, group is defined as a sequence of three measures — but not just the same measure repeated three
times; it is the original measure, followed by the measure transposed up a perfect fifth (7 half steps) and
with all its durations scaled to half their original values, followed by the original measure transposed
down a perfect fourth:

group :=
EventSequence events:

(Array
with: measure
with: ((measure dim: 0.5) trsp: 7)
with: (measure trsp: -5)).

Then, phrase is defined as a sequence of three groups — with each copy of group modified in the same
way as each copy of measure was modified to form the original group. Things are starting to look pretty
self-similar here:

phrase :=
EventSequence events:

(Array
with: group
with: ((group dim: 0.5) trsp: 7)
with: (group trsp: -5)).

By now, you can guess that section is going to be defined as a sequence of three phrases, and that each
copy of phrase is subjected to the same transformations:

section :=
EventSequence events:

(Array
with: phrase
with: (phrase inv: 3 d)
with: (phrase trsp: -5) retrograde).

The same set of transformations can be applied to Notes, Rests, EventSequences, and EventMixes, and
each will be affected in the appropriate manner; for example, if you apply trsp: to a Rest, it just remains
as is; if you apply trsp: to an EventSequence, each one of its component events is transposed. In this
example, we could have gotten by with defining a single note as our starting point and applied transfor-
mations to it to derive the remaining notes in the measure:

n := Note durationInBeats: 2 frequency: 2 g.
measure :=

EventSequence events:
(Array

with: n
with: ((n trsp: 7) dim: 0.5)
with: (n trsp: -5)).

The final statement in the script tells the EventSequence in section to play on this MIDIVoice (i.e. the
Sound for which this Script is a parameter), and sets the metronome to MM = 160.

section playOnVoice: self bpm: 160.

141

 Another Way

Re-re-turn of phrase shows a variant on this same algorithm. Rather than building up the sequences of
sequences and storing them in different variables, Re-re-turn of phrase uses the Smalltalk control struc-
ture timesRepeat: to repeatedly replace the old phrase with a new phrase:

| thing |

thing :=
EventSequence events: #(

{Note durationInBeats: 2 frequency: 3 c}
{Note durationInBeats: 1 frequency: 3 g}
{Note durationInBeats: 2 frequency: 2 g}).

6 timesRepeat: [
thing :=

EventSequence events:
(Array

with: thing
with: ((thing dim: 0.5) trsp: 7)
with: (thing trsp: -5))].

thing playOnVoice: self bpm: 160.

 Embedded Event-like Behavior

Sometimes the “instrument” itself has some event-like behavior buried within it. Play the Sound called
PnoToHrp and then open it so you can study the MIDI script.

After all the variable declarations:

| pat1 dblPat group |

the first step is to create an EventSequence and save it in the variable called pat1.

pat1 :=
EventSequence events: #(

{Note durationInBeats: 4 frequency: 4 g}
{Note durationInBeats: (8/5) frequency: 4 b flat}
{Note durationInBeats: (12/5) frequency: 5 c}).

pat1 is a sequence that lasts for 8 beats. You could think of it as a whole note in a measure by itself, fol-
lowed by a measure containing a half note followed by a dotted half note with both notes under a bracket
labeled 5:4 or “five in the time of four”.

“But,” you are thinking, “it doesn’t sound like that; it sounds more like a group of five, a group of two,
and a group of three.” The secret lies buried within the TimeIndex parameter of PNO, a FunctionGen-
erator called time index. Take a look at the Gate parameter of time index. It is saying that for as long as
the key is held down, the gate should be triggered at the rate of 160 beats per minute — scaled to be a lit-
tle bit faster so we can get five beats in the time of four. So whatever pitches this “instrument” plays, it
will play quarter note quintuplets at MM = 160 (something like the notation equivalent of a slash above
the note heads to indicate a 5:4 quarter note tremolo on each note):

!KeyDown bpm: 160 * (5/4)

The changing value of the Morph parameter in pno is not controlled by the MIDI script either. Instead, it
is embedded directly in the parameter field as a function that goes from zero to one over the course of 12
seconds (the first 1 just indicates that the ramp should start immediately and continue for 12 seconds
rather than restarting each time a key goes down; otherwise, you would replace the 1 with !KeyDown):

1 ramp: 12 s

142

EventMix
Play the example called out-o-tune, and then edit the Sound to examine its script. This is an example of
creating and using an EventMix.

First we declare the variables within vertical lines. Then we set the variable chord to an EventMix. In
this case, the chord is constructed out of perfect fourths above 3 d — and these are really perfect fourths,
because we constructed them by scaling the frequency of 3 d (obtained by sending the message hz to 3 d)
by the ratio 4/3.

| chord seq |

chord :=
EventMix events: (Array

with: (Note durationInBeats: 2 frequency: 3 d)
with: (Note durationInBeats: 2 frequency: 3 d hz * 4/3)
with: (Note durationInBeats: 2 frequency: 3 d hz * (4/3 ** 2))
with: (Note durationInBeats: 2 frequency: 3 d hz * (4/3 ** 3))
).

Next, we construct a sequence of these chords. Each chord has all of its frequencies scaled by 4/3 above
the frequencies of the previous chord. In order to do frequency scaling (multiplying the frequencies by a
value) rather than pitch transposition (adding a value to the note number), we use the transformation
freqScale: rather than the transformation trsp:.

seq :=
EventSequence events: (Array

with: chord
with: ((chord freqScale: 4/3) dim: 0.125)
with: (chord freqScale: 16/9)).

seq playOnVoice: self bpm: 60.

Finally, the controller called !Frequency is set to start out at 0 and, at the time 3 seconds, to drop down
to -36 in 60 steps over the course of one second. Notice that you can assign any values to controllers in
the MIDI script; they are not limited to a range of (0,1) or (0,127):

self controller: !Frequency setTo: 0 atTime: 0 s.
self controller: !Frequency setTo: 0 atTime: 3 s.
self controller: !Frequency slideTo: -36 steps: 60 byTime: 4 s.

TimedEventCollections
Take a look at (and have a listen to) serial time points. This script contains an example of a TimedE-
ventCollection: a set of events associated with a set of starting beats. First, we declare the variables,
define a set of intervals, and a collection of events based on those intervals:

| set evs beats prime t |

set := #(0 1 11 5 2 4 3 9 10 6 8 7).

evs :=
set collect: [:int |

Note durationInBeats: int frequency: 3 a + int nn].

Next, we derive a set of starting beats from the set. The distance from one beat to the next comes from the
set:

t := 0.
beats := set collect: [:int | t := t + int].

Here is where we create the TimedEventCollection:

prime := TimedEventCollection startingBeats: beats events: evs.

143

Then, starting on beat 0, we play the events (after scaling all the !KeyVelocity values to one quarter of
their original values; look at the Pan to see how we have twisted the meaning of !KeyVelocity to really
control stereo placement):

(prime velScale: 0.25) playOnVoice: self onBeat: 0 bpm: 400.

On beat 11, we start up another copy of the TimedEventSequence, this one inverted about 3 a and placed
in the opposite channel:

((prime inv: 3 a) velScale: 0.75) playOnVoice: self onBeat: 11 bpm: 400.

 TimedEventCollections Read from MIDI Files

You can also create a TimedEventCollection by reading in the events and starting beats from a MIDI file.
If you want to play exactly what’s in the MIDI file, it would be quicker and more straightforward to sim-
ply select MIDI file as the Source in your MIDIVoice. However, once you have read the MIDI file into a
script you can transform it, twist it, distort it, in short, do all the kinds of things composers love to do!

For example, take a look at the Script for the Sound called transform events from MIDI file:

| pat |

pat :=
TimedEventCollection

timesAndEventsFromMIDIFile: 'omino.mid'
channel: 1.

(pat inv: 60 nn) playOnVoice: self onBeat: 5 bpm: 120.
(pat trsp: 31) retrograde playOnVoice: self bpm: 120.

In this script, pat is a TimedEventCollection whose start times and events are read from channel 1 of
MIDI file omino.mid. To hear the original MIDI file, select MIDI file as the Source, and play. Then se-
lect Script as the Source and play again to hear the transformed file. Type the name of one of your own
MIDI files in place of omino.mid and try it again.

Generic EventCollections
In randomized times on event collection, you can see an example of a generic EventCollection, one that is
not yet ready to make a commitment to full seriality or simultaneity:

| pat pat2 pat1 |

pat :=
EventCollection events: (Array

with: (Note frequency: 3 d durationInBeats: 1)
with: (Note frequency: 3 f durationInBeats: 1)
with: (Note frequency: 3 a sharp durationInBeats: 1)
with: (Note frequency: 3 b sharp durationInBeats: 1)).

But the message randomizeUsing:totalBeats:quantizeTo:maxSpacing: changes the Event-
Collection into a TimedEventCollection by generating a set of random starting beats and randomly
picking a set of events from the events supplied. You specify the total duration of the result, the smallest
distance between beats (with quantizeTo:) and the longest time between beats (maxSpacing:):

pat1 :=
pat

randomizeUsing: (Random new seed: 92)
totalBeats: 16
quantizeTo: 0.5
maxSpacing: 1.

144

Markov Chain
In Kyma, the MarkovChain is a generic object, not necessarily tied to musical applications. It is a kind of
sparse, fast-food version of the classic Markov chain: instead of weighted transitions, you give it a
“training sequence” in the form of an Array, and it constructs weighted transitions based on what transi-
tions occur and how many times they occur in the training sequence. Once you have “trained” the object
this way, you can ask it to generate any number of sequences, each of which will be statistically related to
the original training sequence you gave it.

For example, if you evaluate the following, short program,

| chain seq |

chain :=
MarkovChain

trainingSequence: #(
what is your name
is it an animal name
or is your name one that would belong to a human
like my name is a name that would
belong to a very human being
)

chainLength: 2.
seq := chain newSequenceOfLength: 100 seed: 9008.

you might get something like this as the result:
OrderedCollection(your name is a name that would belong to a very human being)

Since the chain length is 2, every pair of words in the generated sequence is one that occurs in the original
training sequence. However, the entire chain is something new, not found anywhere in the sequence.
Each time you ask the MarkovChain for a new sequence, giving it a different seed, the result will be a
new sequence. Notice that we asked for a sequence that was 100 words long; when the MarkovChain
backs itself into a corner and can’t find any more legal transitions, it returns what it has been able to come
up with so far.

Now let’s look at a musical example. Here’s the script from the example called modified Markov chains:

| t chain dur pitchOffset seq |

MM := 160.

chain :=
MarkovChain

trainingSequence: #(
#(0 4) #(3 2) #(-5 2) #(2 4) #(3 2) #(-5 2) #(2 4)
#(3 2) #(-5 4) #(2 2) #(3 2) #(-5 4) #(2 2) #(-5 2)
#(5 2) #(-7 4) #(1 2) #(-2 2) #(1 4) #(0 0.5) #(12 4)
)

chainLength: 2.

t := 0.
1 to: 10 do: [:i |

seq := chain newSequenceOfLength: 100 seed: i * 26.

seq do: [:offDur |
dur := (offDur at: 2) / i.
pitchOffset := offDur at: 1.
self

keyDownAt: t beats
duration: dur beats
frequency: 1 g + pitchOffset nn + i nn
velocity: i/10.

t := t + dur]].

145

The training sequence is just an Array of Arrays, each subarray containing two numbers — nothing spe-
cifically musical yet:

chain :=
MarkovChain

trainingSequence: #(
#(0 4) #(3 2) #(-5 2) #(2 4) #(3 2) #(-5 2) #(2 4)
#(3 2) #(-5 4) #(2 2) #(3 2) #(-5 4) #(2 2) #(-5 2)
#(5 2) #(-7 4) #(1 2) #(-2 2) #(1 4) #(0 0.5) #(12 4)
)

chainLength: 2.

Next, there is a loop in which the index, i, takes on the values from 1 to 10. Each time through the loop a
new sequence is generated, using a different seed each time, and saved in the variable called seq:

1 to: 10 do: [:i |
seq := chain newSequenceOfLength: 100 seed: i * 26.

In Smalltalk, you can also create a loop by sending the do: message to an Array. The following is a loop
in which the variable offDur takes on each of the values stored in the Array called seq. Each value in
seq is a subarray containing two numbers. Take a look through this code to see if every step makes sense
to you. (If not, don’t worry, it is all explained in more verbose style in the following paragraph!)

seq do: [:offDur |
dur := (offDur at: 2) / i.
pitchOffset := offDur at: 1.
self

keyDownAt: t beats
duration: dur beats
frequency: 1 g + pitchOffset nn + i nn
velocity: i/10.

t := t + dur].

Each time through the loop, the second element of offDur is divided by i (the index of the outer loop)
and stored in dur. The first element of offDur is stored in the variable pitchOffset. Then a MIDI
event is created that starts on beat t, lasts for dur beats, and whose frequency is 1 g plus the number of
half steps stored in pitchOffset plus a number of half steps equal to the index i. Then the time counter
t is incremented by the duration of the event just created and the loop repeats. The overall effect is that
we hear several, related sequences, each one faster and at a higher pitch than the one before it.

Using MIDI Files with the MarkovChain
The longer the training sequence, the more likely the generated sequences are to sound related to the
original without being exact copies of the original. But entering long arrays by hand can be tedious, so
here is a little trick for obtaining long sequences of MIDI events for use in a MarkovChain: Create a
TimedEventSequence by reading it from a MIDI file, make sure it is monophonic, and then create a
MarkovChain using just the events from the TimedEventSequence, ignoring the starting beats.

Play fantasia bill and continue reading while it churns away on this long sequence of MIDI events. Here
is the script:

| pat chain seq |

pat :=
TimedEventCollection

timesAndEventsFromMIDIFile: 'DESAFIN1.MID'
channel: 3.

pat := pat asMonophonicEventSequence.
chain := MarkovChain trainingSequence: pat events chainLength: 3.
seq := chain newSequenceOfLength: 200 seed: 3.
(EventSequence events: seq) playOnVoice: self onBeat: 0 bpm: 90.

146

First we create a TimedEventSequence from a MIDI file.§ Then we get rid of any polyphony using the
asMonophonicEventSequence message. Then we create a MarkovChain (length 3), using the events
from the TimedEventCollection. We then ask the MarkovChain to create a new sequence. Finally, we
create a new EventSequence, supplying the Markov-generated sequence as the events. When the exam-
ple plays, you will hear one part of the original sequence, followed by the Markov-generated sequence.

Recursion
Take a look at the Sound called self similar melody . This script is an example of how you can create a
Smalltalk “block” and then call it recursively:

| pitchShape durationShape shapingFunction selfSimMel |

pitchShape := #(0 7 -12).
durationShape := #({2/5} {1/5} {2/5}).
shapingFunction := [:seq :count |

count = 0
ifTrue: [seq]
ifFalse: [

EventSequence events:
((1 to: pitchShape size) collect: [:i |

shapingFunction
value:

((seq trsp: (pitchShape at: i))
dim: (durationShape at: i))

value: count - 1])]].
selfSimMel :=

shapingFunction
value: (Note frequency: 4 c durationInBeats: 16)
value: 4.

selfSimMel playOnVoice: self onBeat: 0 bpm: 45.

As usual, we start by declaring the variables. Then we set pitchShape to an Array of intervals specified
in half steps, and we set durationShape to an Array of ratios, each of which corresponds to an amount
by which to scale a duration:

| pitchShape durationShape shapingFunction selfSimMel |

pitchShape := #(0 7 -12).
durationShape := #({2/5} {1/5} {2/5}).

Next we store an entire block of code (i.e., everything within the square brackets) in a variable called
shapingFunction. This block has two arguments (:seq and :count), and they are listed at the very
beginning of the block, separated from the rest of the block by a vertical bar. The code within the block is
not executed at this point; it is just stored in a variable so it can be executed later:

shapingFunction := [:seq :count |
count = 0

ifTrue: [seq]
ifFalse: [

EventSequence events:
((1 to: pitchShape size) collect: [:i |

shapingFunction
value:

((seq trsp: (pitchShape at: i))
dim: (durationShape at: i))

value: count - 1])]].

§ Thanks to Bill Walker (walker@taurus.apple.com) for the MIDI file DESAFIN1.MID.

147

To actually execute the block of code, we have to supply values for each of its arguments. The following
line executes the code stored in shapingFunction and stores it in the variable selfSimMel. It sets the
value of the first argument to a Note event on middle C and the second argument to the number 4:

selfSimMel :=
shapingFunction

value: (Note frequency: 4 c durationInBeats: 16)
value: 4.

Now let’s examine what the block of code will do given these values. First, it checks whether count is
equal to 0. It is not, so it chooses to execute the ifFalse: block:

count = 0
ifTrue: [seq]
ifFalse: [

EventSequence events:
((1 to: pitchShape size) collect: [:i |

shapingFunction
value:

((seq trsp: (pitchShape at: i))
dim: (durationShape at: i))

value: count - 1])]

Let’s look at what the ifFalse: block does. It uses the collect: message to create an Array of events
for a new EventSequence. For each entry in pitchShape and durationShape, it executes the block
stored in shapingFunction with the event in seq transposed by the current entry in the pitchShape
array and its duration scaled by entry in the durationShape array, and one less than the value of
count. The result is that shapingFunction is evaluated three times (because the pitchShape array is
three long) with a count value of 3. Eventually, count will be 0, and the function returns the value of
seq.

To summarize, the first time it calls the function with a single event and count is 4; then inside there it
calls itself three more times with count set to 3, and each of those calls itself three more times with
count set to 2, each one of those calls itself three more times with count set to 1, and finally it calls itself
three times with count set to 0, so each branch returns at that point and as it returns back up through all
the calls to the function, the EventSequences are collected at each step, until it gets back up to the top
with a recursive collection of EventSequences.

As the last step, the new EventSequence plays itself.

selfSimMel playOnVoice: self onBeat: 0 bpm: 45.

Of course, you could get the same result using iteration:

| c1 |

c1 := Note frequency: 4 c durationInBeats: 16.
4 timesRepeat: [

c1 :=
((1 to: 3) collect: [:i |

c1 trsp: (pitchShape at: i))
dim: (durationShape at: i))].

but doing the same thing with recursion is just a little bit more thrilling for your mind (which must be
kept entertained if you are not to lose it).

148

Morphing

Imagine a scene from your favorite science fiction movie where the character changes from flesh to mol-
ten metal or from human to saurian-faced alien. Now imagine that visual morph supported by an
analogous morph of the sound — a voice changing from human speech to metallic clanging or pitched-
down porcine screeches. Or imagine a sweetly chirping bird morphing into a wailing siren, or a lounge
singer morphing into a werewolf howling. Sound tracks have lagged behind visual morphing effects for
long enough! Let’s all get out there and create the sound morphs to match or surpass those spectacular
visual effects!

The Venerable Cross-fade (and why it is not enough)
Play Crossfade amplitudes, and open it up to take a look at it; this is a Crossfade between two Samples,
controlled by a ramp function. At the beginning you hear the female voice as the loudest and at the end
you hear the male voice at the loudest, but at all times you hear them as two separate voices.

Let’s try refining this a little, and “pitch down” the female voice to the same frequency as the male voice
while cross fading the amplitudes. You can hear the results in cross amp & freq. That’s a little more inter-
esting, though it still sounds like two voices.

Now try cross spectra, a SumOfSines Sound that cross fades between harmonic, spectral analyses of the
male and female voices. This sounds like something entirely different from crossfading. While the voice
does sound a little odd in the intermediate stages, it always sounds like one single voice that is changing
in character, not like two separate people.

Finally, try dominic-carla, to hear an example of what sounds almost like a child’s voice going through
different stages of growth.

Select cross spectra in the Sound file window, and expand it by typing Ctrl+E. Double-click on the ex-
panded version to see how the SumOfSines is put together: the Sound called interpSpect does a crossfade
between its two inputs, analysis0 and analysis1. Notice that the left channels of the two inputs can be
controlled independently of the right channels of the two inputs. The left channel of a spectral source
contains all the amplitudes and the right channel contains all the frequencies.

Variations on a Gender Bending Theme
You already know how many ways there are to do crossfades — variations on the speed of the fade, the
shape of the crossfade function, all the combinations of fading functions on the starting and ending
sounds, etc. There are even more ways to do morphing. In the first place, in crossfading you have control
over only one parameter — amplitude; in morphing, you have control over two parameters — amplitude
and frequency.§

Play, for example, synchronize & crossfade to hear a resynthesis of the two original samples used in the
subsequent morphing examples. You have control over the crossfade function using !Morph in the vir-
tual control surface (or the corresponding MIDI fader). Experiment with morphing at different points in
the phrase and at different speeds.

Now compare the following Sounds: freq first, then amp , linear morph, and morph on vowel (time will
slow down on “you”, giving you time to complete the entire morph during a vowel).

Independent Frequency and Amplitude
In freq first, then amp, the frequencies morph before the amplitudes. In other words, it gradually cross-
fades between the frequencies of the female voice to the frequencies of the male voice, until it reaches a
point when there are all male frequencies but all female amplitude envelopes. Then it quickly crossfades

§ In actuality, you have control over hundreds of pairs of amplitudes and frequencies should you choose to morph

each of the analysis tracks independently of each other. While this is impractical, it may make sense in some in-
stances to morph subsets of the harmonics independently of one another.

149

between the amplitude envelopes of the female and male voices. The left channel (the amplitude) is con-
trolled by

2 * !Morph - 1

while the right channel (the frequency) is controlled by

2 * !Morph

Because the values are limited to the range of 0 to 1, these functions clip at their low and high extremes.
In other words, 2 * !Morph will reach its maximum value of 1 when !Morph is 0.5 and will stay at its
maximum value of 1 for all larger values of !Morph. On the other hand, 2 * !Morph - 1, will remain 0
for !Morph values of 0 through 0.5, and will then climb from 0 up to 1 as !Morph increases from 0.5
up to 1.

The result sounds like a woman growing larger in size because of the lower fundamental frequency and
the shift to lower formant regions or resonances. At the last moment, it seems to “come into focus” as the
normal formant regions of the male voice take over.

Amplitude and Frequency Together
The next example, linear morph, controls both amplitudes and frequencies with a single morph parame-
ter. This gives a different impression than the last example; it sounds more continuous (although this
approach is the most sensitive to artifacts in the analysis).

I’d like to buy a vowel
In listening to the previous examples, you probably noticed that most of the artifacts occur during the
consonants, so another approach might be to morph only during vowels. morph on vowel uses War-
pedTimeIndex to stretch time during the [u] vowel in “you”, giving you enough time to complete the
morph during a vowel. This was done by adding

!Stretch s

or !Stretch number of seconds to each of the IdealTimePoints following the time point at which the
vowel occurs. (You can determine the time at which the vowel starts by locating it in the graphical spec-
trum editor).

Sound Effects
The next example, harley to lion,‡ uses a GraphicEnvelope to control the shape of the morph; double-click
on the Sound called env to see the function. This is a handy way to design your morph functions in an
interactive, yet repeatable way.

Try playing cat baby and then double-click on it to take a look at how it was constructed. This is a Con-
catenation of a resynthesized cat (to establish an unmodified, familiar sound in the listener’s mind first),
a cat-to-baby morph, a baby-to-cat morph, and finally another resynthesis of the cat. The singing were-
wolf example is similar.§

Musical Phrases
didgeri-mouth uses an Oscillator to control a morph back and forth between a didgeridoo and a mouth
harp using the Gaussian wavetable as the shape of the morph.

In drum to tubular, a TimeOffset is used to delay the ramp function that controls the amplitude morph,
so the pitch is completely morphed before the beginning of the amplitude morph.

‡ Special thanks to Frank Serafine for permission to include these analyses of sound effects samples from his CD,

Platinum Sounds for the 21st Century from L2 Sound FX. For more information on this sound library, call +1-800-
779-L2FX.

§ Special thanks to Scott Whitney at Hollywood Edge for permission to include the analyses we did of the cat, the
baby, and the dog, which are derived from samples in their CD-ROM sound library Hollywood Edge: The Edge
Edition. For more information on these sound libraries, visit their website at http://www.hollywoodedge.com.

150

Single Musical Tones
You can also morph between analyses of single tones from musical instruments. For example, harp to ah
(kbd) uses the function

1 - (!KeyDown ramp: 1.5 s)

to morph from an analysis of a harp tone to an analysis of someone singing “ah” each time a MIDI key
goes down.

You can also create more subtle morphs between different tones played on the same instrument but in
different frequency ranges. As an example, take a look at KBD morph TRB GA. This examples uses GA
synthesis to morph between three spectra; the morph is controlled by the MIDI key being played. For ex-
ample, the morph between 3 c sharp and 4 d sharp is:

(!KeyNumber - 3 c sharp removeUnits) / (4 d sharp - 3 c sharp) removeUnits

or, to describe it another way,

<distance between !KeyNumber and 3 c sharp> / <full pitch range for this morph>

or the ratio of where the current key number is relative to the low end of the pitch range to the full pitch
range.

How to do your own Morphs
But enough of these examples; what you really want is to try morphing your own samples, so here is a
step-by-step example.‡

I. Selecting and Preparing the Samples
The more characteristics the samples share, the smoother (although less dramatic) the morph will be.
Generally speaking, it is best to choose samples that are about the same length, that are normalized and
compressed to remove extreme amplitude changes, and, particularly if you are trying to morph speech,
that are extremely well synchronized with each other in time. In fact, if you have the option, you should
record one performer first and have the second performer listen to that track while recording the second
track, trying to “lip synch” (ear synch?) as closely as they can to the first performer.

In the current version of Kyma, you will be much happier if you limit your samples to about six seconds
or less in duration. If you intend to morph a long stretch of speech or music, it is best to look for the natu-
ral breaks in the speaking or singing (where the performer took a breath or paused, or the silence just
before a consonant or new attack) and to split the sample up into sections bounded by these natural
breaks. Then you can either do a string of partial morphs or morph during one of the sections in the mid-
dle.

While you would be well-advised to follow these guidelines for your first few morphs, once you have
gotten a feel for how it works, you can break with some of the guidelines and start experimenting and
discovering your own morphing techniques (the concept of morphing is still new and there is room for
innovation and invention!)

II. Analyzing the Samples
For this example, let’s use the recordings of Kurt and Carla speaking the word “morphing”. To analyze,
you can use the spectral analysis from Kyma’s Tool menu, or, if you are on the Macintosh, you can use a
third party shareware program called Lemur§ which is capable of exporting analysis files for Kyma.

1. Open the spectral analysis tool by choosing Spectral Analysis from the Tools menu.

‡ While the Spectral Analysis tool works on two-card systems, only a few sine wave oscillators can be used to audi-

tion the real-time analysis-resynthesis to test the parameters. You can still do the analysis and listen to the full
resynthesis after producing the spectrum file, or you can use Lemur to do the analyses in non-real-time. If you plan
to do a lot of analysis/resynthesis, we recommend that you use a 3-card system as the minimum configuration.

§ Lemur was written by Kelly Fitz, Bryan Holloway, Bill Walker, and Lippold Haken and is available for download-
ing from their web site at http://datura.cerl.uiuc.edu. At this web site, you can also find Lime, a music
notation program for both Macintosh and Windows written by Lippold Haken and Dorothea Blostein.

151

2. Select the first sample by clicking the Select button and using the file dialog to locate the sample
Cmorph from the speech folder of the Samples folder of the Wavetables folder. Kyma will start
playing the sample over and over with a 1 second silence between repetitions. To change the duration
of the silence between repetitions of the sample to two seconds, type in a 2 in place of the 1, and
press Enter.

 Listen to the sample and estimate the pitch range of the speech. Then click Next to continue.

3. Choose the highest analysis frequency that is still lower than the lowest frequency you hear in the
sample. In this example, the voice seems to go as low as 3 d or 3 c, so try 2 F as the setting.

 The analysis is done by a bank of band-pass filters equally spaced in frequency from 0 hz up to half of
the sampling rate; the lower the frequency you choose here, the more filters there will be, and the
closer those filters will be spaced in frequency. For 1 F, it uses 512 filters, for 2 F it uses 256 filters and
so on (divide the number of filters in half each time you go up an octave in the analysis frequency).

 Press the Audition button to hear a real-time analysis and resynthesis with the analysis parameters as
you have them currently set. Just below the Audition button, Kyma will print out the number of sine
wave oscillators being used to resynthesize the sound from the real-time analysis. This number will
vary depending on the analysis frequency you have chosen and the number of expansion cards in
your Capybara.

 Try out a different analysis frequency by choosing 5 F and then clicking the Audition button again.
Clearly this setting does not give you enough filters to adequately cover what is going on in the sig-
nal, so change it back to 2 F.

4. In the last step, you effectively chose the number of bandpass filters to be used in the analysis. This
next step controls the bandwidth of those filters. In the everpresent tradeoff between time and fre-
quency, you can choose BestFreq and get the narrowest bandwidths (and the most time smearing), or
you can choose BestTime to get the best time response (but the widest bandwidth and thus the worst
frequency resolution), or you can choose any of the intermediate settings to get intermediate band-
widths and intermediate results with respect to time smearing and frequency resolution.

 Leaving the frequency set at 2 F, try out each of BestFreq, BestTime, BetterFreq, and BetterTime,
clicking the Audition button after each choice to hear the differences. Generally speaking, you can
tell when the bandwidth is too narrow if the result sounds like it has reverb or a delay on it, and you
can tell when the bandwidth is too wide by a kind of roughness or distorted sound in the resynthesis.
When you find the best sounding analysis (or the least-strange-sounding analysis if you are feeling
negative today), click Next to continue.

5. You are ready to try the first analysis! Click the button labeled Create Spectrum File. The name of the
analysis file will be the name of the original sample followed by an s (for spectrum) and the number
of analysis filters used (or, to put it another way, the number of analysis “tracks” that can be read by
an OscillatorBank and resynthesized).

 Create your own wavetables folder called MyWavetables. In it, create a folder Spectra, and within
Spectra create a folder called speech. Save the analysis file in this speech folder. The analysis tool
automatically creates a SumOfSines Sound and places it into an untitled Sound file window for you.
Just for fun, double-click on this Sound, change the Duration to On, and multiply the OnDuration
by 10 to time-stretch the resynthesis.

 A straight spectrum is best for time-stretching or frequency-scaling, or when the two files you are
morphing have no definite pitch to them. However, if the original samples have identifiable pitches
in them, the morph will probably work better if you proceed to the next step: the quasi-harmonic
analysis.

 If your original sample has an identifiable pitch to it, you should continue with the analysis by click-
ing on Set Quasi-Harmonic Parameters. Since CMorph (and indeed human speech in general) does
have an identifiable pitch, click on that button now to continue.

6. In this next section of the analysis, Kyma asks you to help identify the fundamental frequency of the
original sample. The first step is to identify parts of the sound that do not have any identifiable pitch
to them.

152

 Adjust the fader upwards until you remove all of the pitched parts of the resynthesis. You’ll know
when the fader is in the proper position when all you can hear is the “ph” in “morphing” and a little
gasp for breath at the end. You do not want to hear any of the “ing” and you do not want to hear the
pitched parts of the sound breaking up.

 It may seem a little counterintuitive to remove the pitched parts of the signal when you are trying to
analyze just the pitched parts. The trick is that once you have removed everything except the noisy
bits, then, by process of elimination Kyma knows which parts of the sound do have a pitch to them.

 Once all you hear are clicks, air bursts or gasps, you can click Next to continue.

7. Please wait while Kyma prepares the next screen; watch the thermometer, or get yourself a glass of
water, but don’t start hitting keys until Kyma has displayed a color graph of the lower end of the
spectrum.

8. The goal for this section is to look at the spectrum, decide which track is the fundamental frequency,
and to trace the fundamental frequency track using the white line you see (now drawn straight across
the lower part of the spectrum).

 First, zoom in on what seems to be the fundamental (the orange colored line at the bottom of the
screen):

♦ Click in the black spectrum display to select it. You can tell when it is selected because you
will see the square endpoints on the white line.

♦ Hold down the Control or Command key until you see the cursor change to a magnifying
glass.

♦ Still holding down the key, draw a box around the lower fourth of the spectrum. (The plus
sign inside the magnifying glass is transparent, and the center point of the plus is where the
cursor will draw the box).

 Line up the first endpoint of the white line with the beginning of the fundamental track by clicking
on the white box and dragging it upwards. Adjust the last endpoint similarly so that the white line
draws a straight line closest to the orange fundamental.

 Now add some additional breakpoints to the white line so that it traces the fundamental more
closely. To add a new point, click the mouse while holding down the Shift key.

153

 When you get to the “ph”, the “g”, and breath at the end of the word, the fundamental seems to get
lost for a short time, and it just looks like crazy random green dots during that segment. Just put a
breakpoint where the fundamental picks up again following the “ph”; in other words, always draw a
straight line right through the ambiguous segments.

 Once you have traced the fundamental with the white line, let things settle for one repetition of the
sample and then listen. This is an oscillator whose frequency follows the estimated fundamental fre-
quency curve you have drawn with the white line.

 Now click where it says Original Sample to remind yourself of what it sounds like, and then click on
All Harmonics to compare the resynthesized version with the original. If it sounds OK, click Next.
Otherwise, you may have to trace the fundamental a little better or go back and try different analysis
parameters. If you have been following along though, everything should sound pretty good at this
point.

9. Click the button for Create Quasi-Harmonic Analysis, and leave the pitch set to its default 60 nn. 60
nn is the default pitch for any analysis that has more than one pitch in it or that has no definite pitch.
The only time it makes sense to set this to anything other than 60 nn is for single instrument tones or
isolated sung tones.

10. Click New Sample to go back through the entire process, this time selecting KMorph as the sample to
analyze.

 Follow the directions on the pages of the tool itself this time (referring back through steps 1-9 if nec-
essary to refresh your memory). There are a few things that should be done differently for KMorph:

♦ Set the analysis frequency to 1F (because his voice is about an octave lower)

♦ Set the time/bandwidth response to BetterFreq

♦ Set the level to about 0.75 to avoid clipping

♦ When you get to the part where you trace the fundamental, you can draw the zooming box
around the white line, because it is pretty close to the real fundamental. Once you have
zoomed in, it should be easy to see where the fundamental is and trace it out as you did be-
fore.

Once you have saved the four analysis files on disk (CMorph h, CMorph s256, KMorph h, and KMorph
s512) close the spectral analysis tool window.

154

III. Synchronizing the Analyses
At this point, you could do a morph, but because this is a speech example, there is one more step that can
make the morph work much better — that is to refine the time synchronization by looking at features in
the analysis itself. You can probably skip this step if you are analyzing single instrument tones or if the
two original samples are so different from each other that they don’t really have any corresponding fea-
tures that could be lined up. But in instances like this one, where you have two people speaking or
singing the same word or words, the synchronization step is essential.

1. Choose Synchronizing Spectra from the Tools menu. Read the instructions, and then click the Con-
tinue button to start.

2. First, pick the guide spectrum, the one whose timing will not be warped. Click the Guide button, and
locate the analysis file called CMorph h.

3. Once the spectrum is displayed, scrub through it to get an idea of the time at which each phoneme
occurs. To scrub, you can either drag the yellow vertical line across the display with the mouse or use
pitch bend on your MIDI keyboard to move the yellow line. To make fine adjustments in the position
of the yellow line, use the left and right arrow keys on your computer keyboard. To remove a marker,
select it and press Delete.

4. The next step is to put a marker at the time point at which each “feature” occurs in the guide spec-
trum. To put in a marker, position the scrub bar at the time when the feature occurs, and press the m
key on your computer keyboard.

♦ First scrub all the way to the left edge of the spectrum, and press m to put in a marker at the
very beginning of the file

♦ Scrub until you hear where the “m” first opens up into an “o”. Get close to the point, and
then use the right-arrow key to move right, frame-by-frame until you hear the “m” change.
Then press the m key.

♦ Scrub over to the “r”, which looks like the point at which the spectrum gets a little wider. Hit
m.

♦ Scrub over to the “ph”, and use the arrow key to find the point at which the pitch seems to
disappear. Put a marker here to mark the “ph”.

♦ Scrub to the end of the “ph” visually. Use the right-arrow to determine which frame makes
the transition from “unvoiced” to “voiced”. Mark it.

♦ Scrub to the end of the “i” and beginning of “ng”. Mark it.

♦ Mark the end of ‘ng”. You can see this one visually and also use the arrow key to find where
the voice disappears.

♦ Scrub all the way to the right edge, and mark the end of the file.

5. To save your work, press the s key. This will save the markers in the spectrum file. The cursor will
change to the pen to show that it is writing to the file, and the resynthesis will play at the end to show
that it has finished.

6. Now click the Warped button. Select the spectrum file whose timing will be warped such that all its
marked features line up with the marked features in the guide file. In this instance, we want the file
called KMorph h.

7. Mark all the same phonemes in KMorph that you marked in CMorph in step 4. Once you have fin-
ished, double check that the markers on corresponding phonemes are of the same color in both the
guide spectrum and the warped spectrum. In other words, if the last marker is red in the guide, it
should also be red in the warped.

155

8. Once all the markers are in KMorph, press the s key to save the markers into the spectrum file.

9. Click the Mix button. This produces a Mixer of the two resynthesized spectra. Select the Mixer and
play it. Pan between the left and right outputs on your amp or mixer to assess how well the signals in
the right and left channels line up in time. Double-click on the Mix and look at the WarpedTimeIndex
that feeds into KMorph. Notice how the ideal time points (upper parameter field) are different from
the actual time points (lower parameter field). The WarpedTimeIndex takes the real time points
(where you placed the markers) and stretches or compresses time between those markers such that
they line up with the ideal time points.

10. Click the Morph button. This creates an OscillatorBank that is ready to morph. Play it, and use the
!Morph fader on the virtual control surface or MIDI faders to morph from one voice to the other.

11. Edit crossSpects, setting LeftInterp to !Volume and RightInterp to !Frequency. Play morph,
and experiment with different settings of !Volume and !Frequency. Try morphing with
!Frequency first, and then !Volume. Then try !Volume first, followed by !Frequency, and all the
other combinations. This will give you a feel for what will make good morphing functions.

12. Copy and paste a GraphicalEnvelope into the !LeftInterp field. Experiment with drawing differ-
ent amplitude morph shapes in the GraphicalEnvelope editor.

 Alternatives to the Synchronizing Tool

You can, if you prefer, try to synchronize the two samples in a wave editor before doing the spectral
analyses (for instance, you could cut out silences or cut/repeat cycles of vowels to make the phonemes of
the two samples line up in time), or you can try using a TDM Plug-In called VocAlign™ from Synchro
Arts Ltd in Surrey UK. Or you can use these techniques to get fairly closely synchronized samples in the
time domain, and do the final synchronization tweaks in the synchronize spectra tool.

IV. Invent your own Morph
Every pair of samples will suggest a different kind of morphing technique. Some will work best with
straight spectra, some work best as quasi-harmonic spectra, some work best synchronized, some work
best without synchronization. Experiment, get a feel for what the tools do, and then go wild!

156

Output MIDI

These examples illustrate how you can generate MIDI events in Kyma and send them out to control ex-
ternal MIDI devices like synthesizers and samplers. You can use this to synchronize external devices to
Kyma Sounds, to extract parameters from audio signals and send them out as MIDI events, or to algo-
rithmically generate and process MIDI events in Kyma before sending them to your other sound
modules.

Getting Wired
If you don’t have any MIDI-controlled sound modules other than Kyma, then you can skip this section. If
you do have a synthesizer/sampler, then hook everything up as follows:

♦ Capybara MIDI output connected to synthesizer MIDI input

♦ If you have a mixer, mix the outputs of the Capybara and the synthesizer

♦ If you do not have a mixer, then patch synthesizer audio output into Capybara audio input

♦ If your synthesizer/sampler has pitch bend, set it to ±12 semitones

MIDI Notes Off
The quickest way to send an “all MIDI notes off” command in Kyma is to use Ctrl+M or else to choose
MIDI notes off from the DSP menu.

Sending Out MIDI Note Events
Double-click simple MIDI out to see its structure and parameters:

Then double-click output MIDI events. This is a MIDIOutputEvent. You supply the three elements of a
MIDI note event: a frequency, a gate, and an amplitude, and this Sound puts together a MIDI note event
and sends it to the MIDI output of the Capybara. In this instance, we have set these parameters to come
from the corresponding values from the MIDI input: Frequency to !Pitch, Gate to !KeyDown, and
Amplitude to !KeyVelocity. So this Sound is performing the redundant but illustrative task of read-
ing note events sent to the Capybara’s MIDI input, splitting them into !Pitch, !KeyDown and
!KeyVelocity, and then giving them to the MIDIOutputEvent Sound which puts them back together
into a MIDI note-on event which it sends to the Capybara’s MIDI output. Obviously you didn’t need
Kyma to do that; you could have just connected the keyboard to the synthesizer directly. But wait, there’s
more…

But first just a quick note about the structure of this Sound: notice that external MIDI device and output
MIDI events are both feeding into a Mixer. This is not a Mixer in the usual sense, but in the broader,

157

Kyma sense of “simultaneity”. Unlike most Kyma Sounds, a MIDIOutputEvent does not produce an
audio signal; it simply sends note events to the MIDI output port. Nevertheless, you can schedule it to
occur at the same time as the ADInput (which, in this case, is the audio signal from an external synthe-
sizer) by placing both Sounds in the same Mixer. (If you are mixing the external synthesizer with Kyma
through your actual physical mixer, you can delete the Mixer Sound, replacing it with the MIDIOutput-
Event, since you can hear the synthesizer through your mixer and do not need to bring it into Kyma in
order to be able to hear it).

What happens if you send out a MIDI note whose pitch is not in 12-tone equal-tempered tuning? Try it
out by entering the following into the Frequency field of the MIDIOutputEvent:

!Pitch * 0.5 + 48 nn

Select and load simple MIDI out and try playing half steps on the MIDI keyboard. Because the note num-
bers are being scaled by one half, you get a quarter-tone scale. Kyma computes the difference between the
nearest equal-tempered note number and the note number you are requesting and sends the difference as
pitch bend. In order for this to work correctly, you must have your synthesizer’s pitch bend set for ±12
half steps.

Synchronizing and Doubling
Select synchronizing and Compile, load, start it. When you play the MIDI keyboard, you hear both a
Kyma Sound and whatever patch is loaded into your external synthesizer, both controlled by the same
MIDI keyboard events. This is one way to synchronize and blend timbres from Kyma with timbres from
other sources.

Open up synchronizing to take a look at the signal flow diagram. filt noise+atk is a Mixer whose inputs
are: VCA (a MIDI-controlled subtractive synthesis Sound), FM ATK (an attack synthesized using fre-
quency modulation), and send MIDI out (a MIDIOutputEvent that forwards all your incoming MIDI
keyboards events to the MIDI output on the Capybara).

Instead of mirroring the Kyma Sound, let’s change the MIDIOutputEvent so that the synthesizer doubles
the Kyma Sound in fourths. Double-click send MIDI out, and change the Frequency parameter to read

!Pitch + 5 nn

Compile, load, start synchrony again and play some nice quartal harmonies on the MIDI keyboard.

Now let’s further modify the MIDIOutputEvent so as to trigger a little burst of repeated notes that die
away over two seconds each time you hit a MIDI key. Change the Gate to

!KeyDown bpm: 250

to send MIDI notes out (repeating the same pitch) at a rate of 250 beats per minute. Change the Ampli-
tude parameter to

1 - (!KeyDown ramp: 2 s)

so that each time you hit a key, it will start out at full amplitude and then linearly fade out to zero over
the course of 1 second. Compile, load, start synchrony using Ctrl+Space Bar, and try playing the MIDI
keyboard.

Processing MIDI
Take a look at the signal flow graph for the Sound called MIDI as Sound. This sound illustrates a little
trick by which you can change MIDI data into a fake signal and then treat it as part of the signal flow
path. If you take a Constant, and paste a MIDI event into the Value field, you can then feed that Con-
stant into a chain of processing modules — thus treating MIDI as if it were an audio signal.

For instance, find the module called KeyDown as Sound in the open example. Its Value is set to
!KeyDown. Then the Constant is fed into a DelayWithFeedback (called keydown del&fdbk). Look at the
parameter fields of send MIDI out. Notice that keydown del&fdbk has been pasted into the Gate field.
(To use a Sound to control a parameter, select the Sound, copy it, and paste it into the parameter field).

Compile, load, start MIDI as Sound and play the MIDI keyboard. Once you have a feel for what it is do-
ing, try cautiously adjusting !Delay and !Feedback to hear how this affects the results.

158

If you want to turn MIDI key number into a signal, you have to divide it by 127 in the Value field of the
Constant (because the Constant takes values between -1 and 1), and then multiply by 127 nn in the pa-
rameter field where you actually use the result. For example, look at the way MIDI pitch is turned into a
signal and then mapped to a pentatonic scale using a Waveshaper in the Sound called double pentatonic.

Generating MIDI
Try playing the Sound called output random MIDI events and adjust the faders in the virtual control
surface. Double-click on it to edit and look at the parameters of events. The Gate parameter is:

1 bpm: (!Rate * 1000)

which generates a trigger at a rate of (!Rate * 1000) beats per minute. The Frequency parameter
!Pitch + ((((1 bpm: (!Rate * 1000)) nextRandom * !Jitter * 7)) of: #(0 1 2 3 5 8 13)) nn

is a bit more complicated, so let’s break it down into sub-parts. We can paraphrase it as

!Pitch + <Something> nn

and then break down <Something> as

<anIndex> of: #(0 1 2 3 5 8 13)

In other words, we compute an index, and then use it to look up the value stored at that position in the
array: #(0 1 2 3 5 8 13).

The result is that we will add 0, 1, 2, … or 13 half steps to whatever pitch is being played on the key-
board.

Now, how do we come up with <anIndex>? We can look at <anIndex> as

<aMetronome> nextRandom * !Jitter * 7

In other words, at some number of beats per minute, generate random numbers between -1 and 1 and
multiply them by !Jitter * 7. We multiply by 7 because there are seven entries in the array. Multiply-
ing by !Jitter allows us to control how much variation there is in the random index generator.

Finally, <aMetronome> is

1 bpm: (!Rate * 1000)

The first number is the trigger or gate for turning on and off the metronome. Since it is a constant 1, the
metronome will stay on all the time. The rate of the metronome is going to be between 0 and 1000 beats
per minute, depending upon how you have set !Rate in the virtual control surface.

Extracting Parameters from Audio Signals
Once you have started down the path of pasting Sounds into the parameter fields of the MIDIOutput-
Event, another idea immediately suggests itself: what about taking some of the “analysis” Sounds, the
ones that track various parameters of audio input, and converting those to MIDI output events?

Tracking Amplitude Envelope
For example, play the Sound called track the pulse, and listen to the effect of different settings for
!Thresh in the virtual control surface. (This works best with a staccato or percussive patch setting on
your external synthesizer).

159

Double-click track the pulse to see how it works:

Look at the parameter settings for trigger MIDI out when thresh exceeded. Notice that Gate is set so that
it triggers the MIDI output event each time a threshold is exceeded (we will take a close look at the
Threshold Sound in a moment), and that Frequency is set to:

((Threshold2 L nextRandom * 6) of: #(0 2 4 7 9 12)) nn + !Pitch

In other words, each time the threshold is exceeded, it picks a new random index into an array of inter-
vals and adds that number of half steps the to the current pitch from the keyboard.

Now let’s take a closer look at Threshold2 (double-click on it to show its parameters). The output of this
Sound is zero except when its input exceeds the Threshold at which point the output becomes one.
Hysteresis is like inertia or a tendency for the Sound to prefer to stay in its current state of either one or
zero. To switch from zero to one, the input actually has to exceed the Threshold plus the Hysteresis;
once it is at one, it has to dip below the Threshold minus the Hysteresis before it gives up and goes
back to zero. This protects the Sound against clicking on and off rapidly if the Input is wavering just
around the Threshold.

The input to the Threshold is an AmplitudeFollower on a GenericSource which, in its default setting, is
playing back a drum loop from a sample CD called Sample Material from Sounds Good.‡ Notice that the
AmplitudeEnvelope Sound has a parameter called TimeConstant which we have set to !Tc * 0.1 s, so
that it will be one tenth of its setting in the virtual control surface. This is a kind of responsiveness factor
or averaging time. If it is too short, the output will react to every minute change in the input and you will
just hear the original waveform; on the other hand, if it is too long, then you will lose some of the fast
transients in the input that should be reflected in the amplitude envelope.

Notice that the GenericSource is also fed through a DelayWithFeedback and into a Mixer with the output
of the synthesizer and the MIDIOutputEvent. If you look at the delay parameters, you can verify that the
GenericSource is delayed by the same amount of time as the TimeConstant in the AmplitudeEnvelope,
because an amplitude envelope follower is, by definition, a little “sluggish”, because it is ignoring in-
stantaneous changes in amplitude in the waveform in favor of getting an overall picture of how the
amplitude is changing over time. Delaying the original audio signal by about the same amount as the
delay introduced by the envelope follower makes the audio line up more exactly with the MIDI events
that are being triggered by the original’s amplitude envelope.

‡ Special thanks to Thomas Tibert for permission to include some of the samples from his Sounds Good collection.

Thomas (a fellow Kyma user) has an interesting ear and has gathered together an intriguing selection of sounds on
several CDs including samples of instruments from all over the world, hilarious outtakes from old documentaries,
analog synths, and excellent performances and recordings of more traditional instrument tones and loops. See his
web site for more information http://www.ivo.se/sounds.good/.

160

Note that if you decide to switch the GenericSource from reading a sample to reading the live input, re-
member that you may have your external synthesizer plugged into the Capybara’s audio inputs. If so,
you will have to unplug at least one of the inputs and replace it with the output of the microphone pre-
amplifier. You should also edit external MIDI device and set the right or left check boxes so you will hear
only the external synthesizer and not the microphone input.

Tracking Frequency
Find a sustaining, less percussive patch on your synthesizer and try playing pch to MIDI (> 3F). It starts
out by controlling a sine wave oscillator with the fundamental frequency of the input. To listen to the ex-
ternal MIDI synthesizer, bring the !OscilOrMIDI fader all the way down to zero. This example is
designed for tracking inputs whose fundamental pitch is third octave F or higher. Next try Pch to MIDI
(>2F). This is set up to track inputs whose fundamental pitch is 2 F or higher.

In the virtual control surface, you can adjust !High and !Low to the highest and lowest MIDI note num-
bers you expect in the input, so you can modify either of these Sounds to track the frequency of different
samples or of the live input.

The technique behind these two Sounds is likely to change by the time of the next release, so it does not
make sense to describe it in too much detail now. In the meantime, though, these may be useful Sounds if
you ever have need to track the pitch of live inputs or recorded samples.

161

Sampling

Kyma is not a “sampler” per se , but it does provide several ways for you to use samples and digital audio
tracks as raw material for further processing and modification.

Sampling to Disk
If you haven’t already read Disk Recording, Playback on page 112, you should read through it at this
point, because it details several ways in which you can record your own samples to disk. It also covers
some techniques for playing back recordings from the disk, including how you can trigger disk playbacks
with MIDI events.

Playing Back Samples from Disk
Suppose you have a large number of sound effects and you need a quick way to synchronize them to
picture. Or suppose that you have a piece for live performers and “tape”, but you would like one of the
performers to have control over when to trigger different sections of the pre-recorded sounds so the per-
formers are not slaved to the tape. The KeyMappedMultisample could be used in either of these
situations to make it possible for you to trigger long disk tracks or a large number of smaller disk re-
cordings directly from your MIDI keyboard.

For example, try playing sound fx from disk, and triggering the animal sounds from a MIDI keyboard.
Open it up to see what it is — a MIDIVoice on a KeyMappedMultiSample. The KeyMappedMultiSample
takes the samples within a folder and maps them to MIDI key numbers or ranges of key numbers.

Notice that in this example, the FirstSample is flamingos — meaning that all samples in the same
folder as flamingos are to be mapped to MIDI key numbers. Notice also that FromDisk is checked,
meaning that these samples will be triggered directly from disk and not read into the Capybara RAM
first.

The list of options under the Mapping are the different policies you can choose for mapping samples to
key numbers. In this case, the mapping policy is OnePerHalfStep, meaning that the first sample is
mapped to key number 1, the next sample is mapped to key number 2, and so on. The pattern repeats if
there are fewer samples than there are MIDI keys.

Finally, notice that the NoTransposition box is also checked. This lets you use different keys to trigger
different recordings without changing the pitch of those recordings.

Click on the disk button next to the FirstSample field and find another folder containing samples files
(for example, the Water folder in the Samples folder of the More wavetables folder). Play sound fx
from disk again, and trigger this different set of samples from your MIDI keyboard.

For an example of a different mapping policy, take a look at trb from disk. This one maps samples§ to
ranges of key numbers based upon the base pitch stored in the header of an AIFF sample. Compile, load,
start trb from disk and try playing some idiomatically trombone-like passages on the MIDI keyboard.
You can hear where it switches over from one sample to the next.

Playing samples directly from disk is especially useful when any one of your samples is too long to fit
into the sample RAM of one Capybara card (about 20 seconds at 44.1 khz if you have 3 megabytes per
card, and about 90 seconds if you have 12 megabytes per card), and when you do not require more than
four-voice polyphony (the current limit on simultaneous, random-access disk tracks).

§ These samples were contributed by fellow Kyma user Lippold Haken, who is working with trombonist and electri-

cal engineering student Patrick Wolf to do spectral analyses of trombone and cello tones using Lemur. These
analyses are then resynthesized in real time using Kyma and controlled and performed using the Continuum — a
multidimensional controller that Lippold is developing. Patrick Wolf played the trombone and the recordings were
made at Pogo Records in Champaign, Illinois.

162

Playing Back Samples from the Capybara RAM
If you read the samples from Capybara RAM, rather than from disk, you can get greater polyphony at the
expense of a slightly longer wait during the compile step while Kyma loads the samples from disk into
the Capybara RAM. For an instrumental-sounding example, try out 20-harp subset in RAM.

If there are too many samples to fit into the RAM of one expansion card, you can split the samples up into
separate folders and assign a different KeyMappedMultisample to each folder. For example, open the
Sound called hrp on two exp cards:

Feeding into the Mixer called fullharp sampler are two MIDIVoices: 3 e - 6 e and 2 c - 3 d sharp. Double-
click 3 e - 6 e and notice how LowPitch and HighPitch are set in the parameter fields. This restricts the
range of MIDI key numbers that can trigger the KeyMappedMultisample. The KeyMappedMultisample
has celthrp 3 e as its FirstSample.

Compare this to the lower branch of the signal flow graph. The lower MIDIVoice has a different range of
key numbers and a different FirstSample (from a different folder) for its KeyMappedMultisample.

Choosing Samples other than by MIDI Key Number
velocity violin is an example of a MultiSample. The MultiSample takes a list of samples file names and
an Index. The index selects which of the samples should be read the next time the MultiSample is gated.
This allows you to select samples using something other than MIDI key numbers. This example uses

!KeyVelocity * 7

to index into the array of seven samples files.

But why stop with MIDI events? Double-click on live input selects samples and look at the parameter
settings of MultiSample9. This MultiSample is triggered when the input from the GenericSource exceeds
an amplitude threshold. Its Frequency is derived from a frequency tracker on the GenericSource, and it
is scaled by an AmplitudeFollower on the GenericSource. The Index selecting which sample to trigger is
determined by the expression:

(freq L * SignalProcessor sampleRate * 0.5 hz) nn removeUnits mod: 5

In other words, it is the frequency of the input in hertz, converted into units of half steps (nn stands for
note number). The units of half steps are removed, because this is just an index, not a frequency. Then the
number is taken modulo 5,‡ so that each half step should trigger a different sample up until the 5th half
step when it starts to repeat the pattern.

‡ Just as a refresher, modulo arithmetic is a kind of circular arithmetic similar to arithmetic you perform every day

when you are figuring out time. Time on a circular clock is usually numbered modulo 12. For example, if it is 9
o’clock and you want to know what the time will be in two hours, you can think (9 + 2 = 11). At 11 o’clock if you
were asked what the time would be in two hours, you would think (11 + 2 = 13) if you were in the military, but as a

163

Sampling On-the-fly
You can record live sounds in to the Capybara RAM with one Sound and play them back with another.
For example, play the Sound called live scrambulation. When the GenericSource asks for the source,
press Enter to use the default source (a recording stored on the disk). This Sound writes the recording
into Capybara RAM and then reads out of Capybara RAM using four Samples with random loop starts.
Try different settings for !Length — the length of the Sample loops.

Now play live scrambulation again, but this time, set the GenericSource to use the live input and try
singing, speaking, whistling, and making other mouth noises into the microphone. Whenever you exceed
the !Threshold amplitude, six seconds of the microphone input is captured in RAM. You can see how
long you have to record by watching the !TimeLeft fader. Then if you remain quiet enough not to trig-
ger another recording, the Samples will continue to loop on whatever was captured the first time. Each
time you exceed the threshold, it will record over the previous six second recording. Play with this for a
while, trying different length settings and different kinds of vocal noises.

Then double-click live scrambulation to see how it is put together: After the Annotation and Preset (the
sine qua non of any well-documented Kyma example!) there is a Mixer called record live input & chop.
True to its name, one branch of this Mixer records the input into RAM, and the other branch of the Mixer
reads out of that same RAM with random loop points.

Double-click on record when threshold exceeded to see its parameters. Its RecordingName is set to re-
cording, its CaptureDuration is 6 s, and it is triggered by a Sound called TimeLeftAndTrigger (which
we will examine more closely in a moment).

Compare that to the parameters of one of the four Samples called ReadMem that feed into the StereoMix4
called 4 chopped samples. This is a Sample that reads out of the same memory that the MemoryWriter
writes into. Its Sample is set to recording (the same name as the RecordingName parameter in the
MemoryWriter). Whenever you want to read out of the RAM that is being written into by a different
Sound, you must check the FromMemoryWriter box in the Sound that is reading the memory; that way,
Kyma knows not to bother looking for that sample or wavetable on disk but to look for it in another part
of the same Sound. Notice also that the LoopStart of the sample comes from Noise and that the
LoopEnd comes from that same Noise generator plus one tenth the value of !Length. Notice that we
had to take the absolute value of the Noise because the output of Noise is in the range of (-1,1) and
LoopStart expects values in the range of (0,1).

Now take a look at the Sound called TimeLeft & Trigger, the trigger for the MemoryWriter. This is a
SoundToEvent module — a Sound that generates Event Values. The Event Values generated by a
SoundToEvent look, to all the other Sounds, the same as if they had come in from the MIDI input. In this
particular instance, the value to be generated is given by the expression:

| inputTrigger outputTriggerDuration |

"The trigger to start our trigger and how long it should be on."
inputTrigger := env follower L threshold: (!Threshold * 0.1).
outputTriggerDuration := 6 s.

1 - (inputTrigger * (1 - !TimeLeft asLogicValue)
ramp: outputTriggerDuration)

This is a somewhat twisted way of saying that the MemoryWriter should be triggered when the ampli-
tude envelope of the GenericSource exceeds some threshold, and that it should record for six seconds
without allowing another triggering during that time.

By the way, this is an advanced example of how one can combine Event Values and expressions, so if it
doesn’t make total sense to you immediately, don’t feel discouraged at this early stage. Just come back to
look at it again later after you have had more experience with Event Values and Smalltalk programming.
If you do understand it at this early stage then call us up and tell us so, because we are impressed!

civilian you would probably continue with (13 mod 12 = 1) before answering.

164

OK, now for a verbal explanation of what this expression does. A six second ramp is triggered whenever
both inputTrigger and (1 - !TimeLeft asLogicValue) are greater than zero. This only happens
when the amplitude envelope exceeds the threshold and the ramp has not been triggered within the last
six seconds. The actual output (and the value of !TimeLeft which gets fed back into this expression) is
one minus the ramp function. So !TimeLeft goes from 1 down to 0 over the course of six seconds. And
it cannot be triggered again until two conditions are met: one condition is that the ramp has had a chance
to get to 0, and the other is that the amplitude of the input exceeds the threshold amplitude.

Scripts

See the tutorial called Algorithmic Sound Construction: Your Computer is your Slave on page 194.

165

Shepard’s Tone

Compile, load, start (Ctrl+Space Bar) the Sound called trick keyboard. Play an ascending chromatic
scale on the MIDI keyboard. Then play some arpeggios. Most people hear the chromatic scale as ascend-
ing in pitch, but the arpeggios are ambiguous; they seem to be going up in pitch sometimes, down in
pitch at other times. Now try playing the first five notes of a C major scale: C D E F G. So far so good.
Now alternate between playing C and G as an ascending perfect fifth. Despite the fact that it sounds like
each step of the 5 note scale was getting higher in pitch, when you play the ascending perfect fifth, the C
and the G sound as if they could be the same pitch. Now invert the interval, playing a descending perfect
fourth from C down to G. Sounds as if the pitch is going up instead of down.

Named for perceptual psychologist Roger Shepard, these tones exhibit a property called “circular pitch”,
that is, when used in a scale or glissando they can be perceived both as moving and remaining stationary
in pitch, something like the optical illusion of the spirals on a rotating barber pole.

The effect is created by first synthesizing a complex tone consisting only of partials that are equally
spaced in pitch (i.e. log frequency). Most commonly, the components are spaced one octave apart, but any
equally spaced interval will work.

The amplitude of each component in the complex tone is determined by a fixed spectral envelope. The
spectral envelope associates an amplitude with each frequency. As the components of the complex tone
change in pitch, they “slide under” this fixed, unchanging spectral envelope, changing in amplitude as
they change in pitch. The envelope should be a raised cosine or Hanning window shape in log frequency
(pitch) space.

Continuous
Play continous shepard’s and experiment with different intervals and glide speeds, listening to the effect.
Then, double-click continous shepard’s to see how it is constructed. Starting with the rightmost module,
double click on each one in order to examine its parameters.

The rightmost Sound is a Preset, and it is there to preserve the last settings of the Event Values !Glide,
!Int, and !Volume.

The next module, a MIDIMapper, is used to set the range of !Glide and !Int to more interesting ranges
of values for glide speed and interval in half steps (ranging from 2 half steps as a minimum to 24 half
steps or two octaves at the maximum):

!Glide is: (`Glide min: -0.01 max: 0.01).
!Int is: (`Int min: 2 max: 24)

Feeding into the MIDIMapper is the source of all the sound: an OscillatorBank. You can see that there
are 256 oscillators, and that 56 of them are scheduled on each card (the BankSize).

How are all these 256 oscillators controlled? The amplitude and frequency envelopes for the Oscillator-
Bank come from the next module to the left, a SyntheticSpectrumFromSounds. A SyntheticSpectrum-
FromSounds, like all spectral source Sounds, outputs a stream of linear amplitude values on the left
channel and a stream of frequency values on the right channel. In this particular case, LogScale in the
SyntheticSpectrumFromSounds has been checked, meaning that the frequency values output to the right
channel are in log frequency, rather than linear frequency, space. Each stream, in this case, is generated
by a Sound: one Sound for the amplitudes, and one for the pitches. Let’s look at the Sound that generates
the pitches first.

Skip over to the leftmost Sound, the one called freq ramp. This is a Sample with looping that reads a ramp
function over and over. Its Frequency is:

256 samp inverse + (!Glide/!Int) hz + 0.002036 hz

Why the 256 samp inverse? Recall that the OscillatorBank and the SyntheticSpectrumFromSounds
both said there were 256 partials in the spectrum. The OscillatorBank expects to receive the spectrum as
a stream of partials, one per sample, in order: 1, 2, … 256, after which it expects to receive the next frame,
starting over again with partial number 1. So a spectrum source has a repetition period of 256 samples;

166

every 256 samples, it outputs the spectrum for the next frame. We are trying to make a synthetic set of
pitches for the spectrum. Since we know they should be evenly spaced in log frequency, we have set the
SyntheticSpectrumFromSounds to LogScale, and we are using a ramp wave (i.e. a linear function from
zero to one) that repeats every 256 samples to specify the pitches — assuming that the first partial is the
lowest, then the next partial, and so on linearly until reaching the highest pitch when the ramp reaches its
highest value. Why did we use a Sample with loop rather than an Oscillator? Because the Sample, unlike
the Oscillator, does not interpolate between the last value before the loop and the beginning of the loop.
For waveform generation, the Oscillator would be better, but for this specific application, we want
something that drops immediately from one back to zero, without interpolation.

OK, so far, with a 256 sample period of repetition, we have a static spectrum that does not change from
frame to frame and that gives us components whose frequencies are evenly spaced in pitch space.

What is the effect of increasing or decreasing the frequency of the Ramp wave?

Increasing the frequency of the ramp wave effectively increases its slope. So each corresponding point
along the line is a little larger than it would have been at the original repetition rate. The effect is that the
pitches of all the components go up.

Decreasing the repetition rate gives the ramp a shallower slope. So corresponding points are smaller than
they were in the original ramp wave, and the pitches of all components are correspondingly lower.

So far, so good. But we don’t have just a single ramp wave, we have a repeating ramp wave controlling the
pitches of the components. A change in the repetition rate of the ramp means that it no longer lines up
with the 256 sample-long frames. If we increase the repetition rate, the ramp will wrap around to zero
before the end of each frame. In a sense, the repeating ramp is “rolling” with respect to the frame rate.
Think of two identical tapes being played at very slightly different rates; they slowly move out of syn-
chronization until they are so far out of synchronization that they line back up again. Or think of two sine
waves that are 2 or 3 hertz apart in frequency; they gradually move out of phase with one another until
they are fully 180 degrees out of phase at which point they line back up (causing a beating effect as they
reinforce or cancel each other during the “roll”).

It turns out that this “roll” is exactly what we want to get the circular pitch effect. Think of one point on
the ramp wave. If we increase the slope of the ramp, then on each frame, this point is higher than it was
on the last. This is true until it reaches the maximum value. Then on the next frame, it returns to the low-
est value again. This is the result we are after: that each component increase in pitch until reaching the
highest frequency and then that it wrap around and sneak back in at a subaudio frequency.

The Gain called 256 scales the ramp so that its range is (0,256). The Attenuator called interval density
reduces that range to achieve the actual pitch interval that you specify with !Int. The log frequencies are
set up so that one is the half sample rate and each decrease of 1/15 is a decrease of one octave from that
maximum frequency. The Attenuator turns your interval into a fraction of an octave and uses that to
scale the range of the ramp function.

Now for the really cool part! How to specify a spectral envelope? It would be tempting to just take an Os-
cillator on the Hann wavetable and use that as the Amplitude input to the SyntheticSpectrum-
FromSounds. But it would be wrong! Actually for a static spectrum, it would be OK. But each amplitude
is matched with its corresponding partial number, not necessarily with any particular pitch. And we have
partials that are changing frequency on each frame. So we need some way to associate specific amplitude
values with specific pitches. One way to do this would be to have a table of values that list the amplitude
value for each possible frequency, and use the current frequency value to look into the table for the cor-
rect amplitude value to use.

This concept — that of a table where you can use one value as an index into the table and output the
value found at that index — immediately suggests the Waveshaper.

The Waveshaper is a nonlinear transfer function that maps values between -1 and 1 to arbitrary values
stored in an arbitrary-sized table. So the first task is to get our all-positive frequencies to lie between -1
and 1. This is accomplished by the ScaleAndOffset called -1 to 1. It simply multiplies by two and sub-
tracts one.

This scaled value is then used as an index into a Hann function (forced to zero on the first and last entries
of the table) by means of the Waveshaper called pch->amp.

167

After passing through overall vol for controlling the overall amplitude level, it is finally fed in as the am-
plitude stream for the SyntheticSpectrumFromSounds.

Now that you fully understand how this Sound works, play it once more and experiment with different
parameter settings.

Discrete
Now Compile, load, start the trick keyboard example. Play a chromatic scale of one octave on the MIDI
keyboard. Then play the first note of the scale followed by the last note of the scale; it sounds identical.
Use !Int to specify which interval should be the “equivalence” interval. Besides having fun turning your
own mind inside out, you can also have some fun showing it to your friends.

John Platt, fellow Kyma user and professor of psychoacoustics at McMaster University, explains the effect
as follows:

Each tone is ambiguous because the partials are one octave apart. So, for example, when you play
a half step from 4 c to 4 c sharp, your brain has a choice of interpreting it as either a half step up,
13 half steps up, or 11 half steps down. Prior experience tells you that the smallest change is
probably the correct interpretation so you hear it as one half step up. For larger intervals, though,
things become more ambiguous. For example if you play a tritone (which is one half of an oc-
tave), your brain will sometimes interpret it as going up and sometimes hear it as going down. If
you try playing various different tritone intervals on the trick keyboard, you can sometimes hear
them as ascending and sometimes as descending; sometimes you can even hear them flip in di-
rection in your mind in the same way that a 2 dimensional drawing of a cube can flip from one
orientation to another.

Rigor
By the way, while these examples are useful for musical purposes and for demonstrating the auditory
illusion of circular pitch, Professor Platt has made some refinements to give more precise control over
these Sounds for psychoacoustic experimentation. If you are contemplating using these Sounds for re-
search purposes, please contact Symbolic Sound so we can put you in touch with Professor Platt.

168

Stereo Placement

If a sound source is to your right or left, it is going to reach one of your ears before it reaches the other
and by the time it reaches the second ear it will have lost energy — both because it has traveled further by
then and because your head is probably blocking some of the energy. The bigger your head is, the more
extreme the differences will be between the signal that reaches your left ear and the signal reaching your
right ear.

Amplitude vs Energy
Play the Sound Pan amplitude and use the on-screen fader or a MIDI fader to control !Pan.§ Compare
that to energy pan1 and energy pan2. Do you hear a difference in the loudness or position as you pan
across the speakers?

That Space between your Ears
Now try Pan phase only. The only difference between the left and right channels is the relative delay.
There is no amplitude difference between the left and right outputs. Double-click Pan phase only to take
a look at what modules were used to construct it.

You can see that a GenericSource is being fed into two different delays. Then the delays are fed into a
ChannelJoiner: one into the left input of the ChannelJoiner, the other into the right input. A Chan-
nelJoiner creates a stereo pair out of two inputs: the left channel of the one is routed entirely to the left
side of the stereo pair, the right channel of the other is routed entirely to the right side of the stereo pair.
(Since the right and left channels of the delay output are the same, it is immaterial which channel is read
by the ChannelJoiner in this particular instance).

Double-click on the Sound called RIGHT. Its Delay parameter specifies the maximum delay; De-
layScale determines how much of that maximum delay time you want at any given moment. The
strange message normCos stands for normalized cosine. Since so many expressions involving cosine in-
clude a factor of π, that is automatically added when you ask for the normCos. In other words

x normCos = (Float pi * x) cos

So the expression

 (0.5 * !Pan) normCos

yields the following delays for the right and left channels relative to the value of !Pan:

!Pan (0.5 * !Pan) normCos Right Delay (0.5 * !Pan) normSin Left Delay

0 1 800 usec 0 0 usec

0.5 0.5 sqrt 565.6 usec 0.5 sqrt 565.6 usec

1 0 0 usec 1 800 usec

The only thing that you really hear is the difference between the two delays, so the effective interaural
difference is 800 microseconds at the two extremes and zero when the sound source is directly in front of
you (since it takes the same amount of time to get to both ears).

Do a side-by-side (i.e. one-after-another) comparison of pan (phase & energy) against energy pan1 . What,
if any, effect does adding phase delays add to the pan?

By the way, if you are interested in where the numbers come from, you can find papers on “interaural
time differences” in the Journal of the Acoustical Society of America that explain how they come up with
these time differences based on the diameter of a typical head, the speed of sound, and the assumption
that the sound source is far enough away that you can consider lines drawn from the source to the two
ears to be parallel.

169

Doppler
Imagine a sound source moving towards you. As it gets closer and closer, the delay between when the
sound is produced and when the sound gets to you is getting shorter and shorter. At the moment the
sound source passes directly in front of you, the delay is zero. Then as it recedes from you, the delay
grows longer and longer.

You can model this phenomenon using a variable delay line with an inverted-triangle-shaped function
controlling the length of the delay. In other words, the delay gets shorter and shorter, reaches zero at the
apex of the triangle, and then grows longer and longer again. Try playing moving source to hear this ef-
fect.

Mystery Effect
Finally, try out the Sound called phase Flipper . You may be able to use this effect to bring one sound out
from the background.

170

Tap Tempo

This file contains examples of Sounds that can, in various ways, match a tempo that you establish by tap-
ping on the MIDI keyboard (or other MIDI controllers). You can use these Sounds as examples of how to
set up your own Sounds for live performances with more than one performer (or for that matter, in any
situation where you might have a need to measure the time it takes for someone to tap one key or switch
followed by another).

For example, select and play the Sound called tap tempo sample. As per the instructions that appear on
the virtual control surface, tap the 2 C on your MIDI keyboard followed by the 2 D. The sample is trig-
gered at the same rate at which you play the two keys on the keyboard. Listen to the tempo, and try
playing something twice as fast or twice as slow.

The Heart of the Clock
Double-click the Sound called stop watch to see how you can use Kyma Sounds to measure time.

The rightmost Sound is an Annotation; double-click it so you can read the explanation in the Text pa-
rameter:

Play 2 c to start the clock, and 2 d to stop it. Its value is one tenth
of the number of seconds between start and stop. 2 c triggers a Func-
tionGenerator to start a ramp that takes 10 s. 2 d triggers a
TriggeredSampleAndHold on that ramp.

In other words, suppose you have a friend who can run at an unerringly constant speed of 10 kilometers
per hour. Imagine that you look at your watch, and at exactly 11:30 am, you yell, “Start!” Your friend
starts running, and you follow alongside driving a car (not because you are lazy, just because the car has
an odometer). After a while you yell “Stop,” slam on the brakes and read from the odometer that you
have traveled 5 km. If your friend can really maintain a constant rate of 10 km per hour, then you know
exactly how much time has passed without even looking at your watch. Since 5 km is one half of 10 km, it
must have taken half an hour to run that far. So you let your friend get in the car and you go out to have
lunch together.

In this Sound, the FunctionGenerator is the person running. Double-click on it. The Wavetable is Ramp
(a straight line from zero up to one) and the OnDuration is 10 s. The way to trigger this Sound is not by
yelling “Start!” but by pressing MIDI key number 36, as you can see in the Trigger field:

!KeyNumber eq: 36

The way to yell “Stop!” and measure how far the ramp function got is seen in the next Sound to the right,
the TriggeredSampleAndHold. Its Trigger

!KeyNumber eq: 38

171

becomes one when you press MIDI key number 38. When the trigger becomes one, the Triggered-
SampleAndHold measures the value of its input and holds onto it until the next time it is triggered (even
if the Input continues to change).

Try playing display duration of tap . This is similar to stopwatch except that it converts the output of the
duration measurement into an Event Value. This Event Value then shows up in the virtual control surface
as a fader, and you can read its value in the numeric display at the top of the fader. Look at your watch
and experiment with tapping out different durations in seconds (up to a maximum duration of 10 sec-
onds).

Watching the Clock
You can use this basic clock to control parameters having to do with the tempo, the rate, the duration, or
other aspects of the Sound giving a sense of time or tempo.

Sequencer Rate and Delay Time
In tap sequencer & delay for example, the tap controls the rate of an AnalogSequencer. One third of the
tap time is also used as the delay time of a DelayWithFeedback, giving a sense of triplets in the delay
time.

Loop Points
Look at tap tempo loop. It is a mixer of a MemoryWriter and a memory reader (in the form of a Sample).

When you tap the 2 C, not only does the clock start ticking, but the MemoryWriter starts recording into
the sample RAM. When you tap 2 D, not only is the clock stopped and measured by the TriggeredSam-
pleAndHold, the 2 D also triggers the Sample to begin playing.

The length of the loop is the same as the duration between taps. Why? Because the CaptureDuration of
the MemoryWriter is 10 seconds — exactly the same as the OnDuration of the ramp FunctionGenerator.
So the proportion of the tap duration to the total ramp duration is the same as the proportion of the tap
duration to the total duration of the recording that is being read by the Sample.

172

Time Scaling

This section is the dual of Frequency Scaling on page 124; you cannot change the duration of a disk track
or sample without also changing its frequency and vice versa. For example, try playing disk file rate
chipmunks & monsters and twice as long = octave lower. Not only does changing the rate also change
the frequency, it also seems to shift the formant regions up or down, giving the impression that a larger
or smaller source produced the sound (the chipmunk or monster effect).

Granular Time Stretching
Many of the same modeling techniques used in the Frequency Scaling section can also be used to scale the
duration of a recording without affecting its frequency. For example, if we assume that the sound was
produced by a train of impulses hitting a filter, we can use granular time-stretching (see for example
time-stretched virtue and time-stretched speech) which slows down the rate without affecting either the
fundamental frequency or the formant frequencies.

In sample cloud stretch dur, two SampleClouds are used to granulate a speech sample. Experiment with
different values for !Rate, !TJitter, and !GrainDur in the virtual control surface, and then open up
the Sound to see how it works.

Try playing granular time/freq antonio, triggering a repetition of the poem using MIDI key down. This
uses several TimeFrequencyScaler Sounds on the same sample‡ but once a second randomly chooses a
new rate and a new frequency scale. Each time you trigger it from the keyboard it will choose different
rates and different frequencies. live random granular time/freq is the same idea, except that you can
choose the live input as the GenericSource and granulate the live input.

Controlling the TimeIndex of a Resynthesis
If you analyze the spectrum of a sample, you can resynthesize it using an OscillatorBank or a GAOscil-
lators. Unlike sample playback, an oscillator gives you independent control over duration and frequency.

The TimeIndex of a GAOscillators, SumOfSines, or REResonator resynthesis is normally a linear ramp
function that starts at -1 at the beginning, grows to 0 by the middle, and reaches a value of 1 by the end.

In rate control on GA, the TimeIndex OnDuration is set to:

2.39415 s + ((1 - !Rate) * 10)

If !Rate is 1, then the time index has its normal duration and the GA reads through its envelopes at the
normal rate. However, if !Rate is less than 1, the OnDuration is larger, and the time index takes longer
to get through the amplitude envelopes, thus increasing the duration. (Try playing this Sound and ad-
justing!Rate in the virtual control surface). This technique is not without its artifacts; if you try dur
scaled FL GA, you can hear features like vibrato and tremolo slow down when you slow down the rate.

The same technique can be applied to the time index that controls the amplitude and frequency envelope
rate of a full-blown additive resynthesis using the SumOfSines or a spectral source and an Oscillator-
Bank. For example, play Kurdish dur scale§ and adjust the !Rate from the virtual control surface.

tantalizing celthrpGliss uses

exp L * 100 s + 2 s

as its OnDuration. Since exp has an exponential function shape, the value of OnDuration gets larger as
time goes on. The result is a resynthesis of a harp glissando that never seems to reach the top.

In bass-keydown slows time,‡ the OnDuration is set to

5 s + (100 * !KeyDown) s

‡ This is a fragment of a poem written and performed by composer and fellow Kyma user Antonio Barata.
§ Analysis of sample from Thomas Tibert’s New World Order sample collection.
‡ Analysis of sample from Thomas Tibert’s Methods of Mayham sample collection.

173

so that when a MIDI key is down, the duration jumps from 5 seconds to 105 seconds. Play this Sound and
try to hit a MIDI key just at the start of one of the notes.

Play and then take a look at warped time index. Instead of using a FunctionGenerator to generate a full
ramp from -1 to 1, this example uses a WarpedTimeIndex to control the rate of the envelopes. The War-
pedTimeIndex takes two arrays, each containing the same number of time points: the ideal time points
and the actual time points. It creates a multi-segment envelope with different slopes corresponding to
different rates of time: steeper slopes go through the envelopes faster, and shallower slopes go through
the envelopes more slowly. The WarpedTimeIndex slows down or speeds up the resynthesis such that the
actual times occur at the specified ideal times.

Along these same lines, multiseg env on time index uses a MultiSegmentEnvelope generator to generate
the time index. The total duration is broken down into ten segments, and the duration of each segment is
hot, so you can control how long each segment should last using the faders in the virtual control surface
or a MIDI fader box.

Take a look at live freeze frame on key down(4). Look at the parameters of the Sound called capture frame
and loop left. This is a DelayWithFeedback with the Feedback set to !KeyDown and the Scale set to 1
- !KeyDown. Scale is an attenuator on the Input, so this means that when no key is being held down,
the Input amplitude will be at the maximum of 1, and when a key is held down, the Input amplitude
will be cut to zero. Notice, however, that whenever the Input amplitude is set to zero, the Feedback
amplitude will be at its maximum (and vice versa); they are the opposites of one another. So when a key is
held down, there is no new input, and the delay line is recirculating with no loss of amplitude on each
feedback loop. In a way, the DelayWithFeedback is acting as an oscillator whose wavetable is whatever
was captured in the delay line, and whose period is 256 samples — the size of one frame when the analy-
sis frequency is 2 F (see the parameter settings in nonharmonic analysis). The length of the delay can be
any multiple of the frame length (for example 4096 samp would also work). The left and right have to be
delayed separately, because DelayWithFeedback does a mono mix if it gets a stereo input.

Vocoder & RE Time Scaling
Try the Sound called vocoder time-stretch, and then double-click on it to see how it is put together. First,
look at the GenericSource. Its Frequency is set to

60 nn hz * !Rate

60 nn or middle C is the default frequency given to samples that do not have a single, identifiable pitch.
60 nn (a pitch) is being converted to a frequency (by giving it units of hz). Scaling the frequency of a
sample is the same as scaling its duration: a lower frequency means that you read through the sample at a
slower rate, so the duration is longer.

As you know, however, slowing down a sample also lowers the frequencies of its formants. So this Sound
uses a Vocoder to compensate for that. Double-click on the Vocoder to see its parameters. Notice that
SideFreq is set to !Rate. So whenever !Rate is made smaller (making the sample frequency and for-
mant lower in frequency), the analysis filter bank is also shifted lower in frequency. However, the
resynthesis filter bank stays at its original frequency (because InFreq is set to 1). Thus, when the sound
is “resynthesized” by passing noise through the Input filters, the formants are at the normal frequencies,
even though the sample is being played back more slowly.

Note also, that the TimeConstant is also scaled by !Rate, because when the sample is slowed down,
any changes in it happen more slowly, so the time constant controlling the amplitude follower can also be
longer.

Try playing 22-vocoder rate & freq scale, and experiment with the fader settings in the virtual control
surface. This is similar to the previous example except that, instead of using Noise as the Input, this ex-
ample uses an Oscillator on a buzz waveform with 64 equal-amplitude harmonics.

electric shaver mouth also uses a buzz-waveform Oscillator, but this time as the Input to an RE filter. In
this example !Rate controls the OnDuration of the TimeIndex controlling the rate at which the RE filter
coefficients are updated.

174

Timing Clock, MTC

When you use Kyma in conjunction with other audio hardware and software, you need some way to syn-
chronize Kyma with the rest of the world.

Audio Sequencers and DAWs
Kyma can generate audio tracks in AIFF, SD I, SD II, WAVE, and IRCAM/MTU formats, making it easy
to import audio tracks into Kyma for further processing and to use the audio tracks generated in Kyma
with your other software. If you import a Kyma-generated track into your audio sequencer, for example,
you can adjust it graphically until it is perfectly synchronized with the other audio or MIDI tracks.

Audio Signals
Using the ADInput or GenericSource, you can bring live or recorded audio signals into Kyma, and use
them to control the timing of Kyma Sounds (which would then, as a result, be synchronized to the audio
signal). In general, the idea is to:

1. Get the amplitude envelope of the audio signal (by feeding it into an AmplitudeFollower, PeakDetec-
tor, or RMSSquared).

2. Output a trigger whenever the amplitude exceeds a certain threshold or minimum value (by feeding
the amplitude envelope into a Threshold).

3. Use this to trigger a Kyma Sound (by pasting the Threshold into a Trigger, Gate, or Step field).

For example, try playing the Sound called audio signal ctrl sequencer, and then open it up to take a look
at how it works. Once you have a Sound editor open on the Sound, drag the GenericSource further to the
right to get a clearer picture of what’s going on.

The GenericSource is being fed into an AmplitudeFollower which extracts an amplitude envelope from
the signal. This envelope is then fed into a Threshold whose output is 1 when the envelope exceeds the
threshold and 0 otherwise. Select thresh, and choose Oscilloscope from the Info menu. Adjust the time
constant !Tc to 0.1, and !Thresh to 0.5. You should see and hear some clicks whenever the threshold
is exceeded (actually you will hear a click when it is exceeded and another one when the amplitude drops

175

below the threshold and the output of the Threshold returns to zero). Try increasing !Thresh until
nothing in the input exceeds it anymore.

Now look at the parameters of the AnalogSequencer. Notice that thresh has been pasted into the Step
field. Each time the amplitude envelope on the audio signal exceeds the threshold, the sequencer will
read the next set of values in its sequences. Notice that the Durations field is set to 0.1. This means that
all notes in the sequence are of equal duration — 0.1 seconds. It also places an upper limit on the speed of
the sequence. No matter how fast the Step triggers come in, the sequencer will never go faster than one
note every 0.1 seconds. This means that you can use the Durations field as a kind of mask, protecting
the basic rhythm against any spurious triggers that might come from the audio signal.

Try playing audio signal ctrl sequencer again, this time adjusting !Thresh to different values, and
checking/unchecking the boxes in the row along the bottom of the virtual control surface (which set the
velocity values to 1 or 0 depending on whether they are checked or unchecked).

This example used the amplitude of the signal as a trigger in Kyma. You could, alternatively, use some
other parameter as a trigger; for example, you could use a FrequencyTracker in place of the Amplitude-
Follower and trigger whenever the frequency exceeds a threshold.

MIDI Note Events
If you are using a MIDI sequencer, you can synchronize Kyma with your other MIDI devices through
MIDI note events. For example, take a look at KeyDown steps sequencer. This is similar to audio signal
ctrl sequencer except that a !KeyDown event is used in place of the Threshold on the envelope of the
audio signal. You could create a timing track on one channel of your sequencer that is never actually
heard — just supplies triggers to Kyma — so that when the tempo changes in the sequencer, Kyma will
adapt along everything else that is being controlled by the sequencer.

MIDI Timing Clock
If one of your MIDI devices can output a MIDI timing clock signal, you can synchronize your Kyma
Sounds to changes in the rate of the MIDI clock through the judicious use of two Event Values in Kyma:
!TimingClock and !TimingClockDuration. !TimingClock is a trigger that repeats at a rate of 24
times per beat. !TimingClockDuration is the duration in seconds of one !TimingClock trigger. In
other words, if you multiply !TimingClockDuration by 24, you will get the duration in seconds of one
beat at the current tempo.

Take a look at MIDI Timing clock ctrl seq & del for an example using !TimingClock and
!TimingClockDuration. This Sound synchronizes both the AnalogSequencer and the length of a delay
to an external MIDI clock.

Look first at the DelayWithFeedback. Its maximum Delay is set to 1 s — the same as the duration of a
beat in the AnalogSequencer. If you change the value of Delay, you should also change the Durations
field of the sequencer so they are equal to each other.

The DelayScale is set to

!TimingClockDuration * 24

This expression is equal to the duration of one beat in terms of seconds. So, for example, if the tempo is
120, the beat is one-half second long, and this number will be 0.5. DelayScale is a multiplier on the
value in Delay, so the delay will be 0.5 seconds long. If the tempo is 60, then !TimingClockDuration
* 24 will equal 1, and the delay will be one second long.

Now look at the AnalogSequencer. First, notice that Step is set to the value

!TimingClock

This means that it is triggered 24 times per beat. But notice that Durations is set to

1

This acts as a mask, meaning that the sequencer cannot be triggered any faster than once per second, even
if the triggers are coming in faster than that. But wait! Almost certainly you will want to trigger this at a

176

faster rate than once per second! Don’t worry about that, because the durations are scalable — according
to the Rate.

Notice that the Rate is set to

 (!TimingClockDuration * 24) inverse

What does this imply? We know that rates and durations are the inverses of each other, so if
(!TimingClockDuration * 24) is the duration of one beat in seconds, then the inverse of that value
would be the frequency or the number of beats per second. Let’s say the tempo of the MIDI clock were 120
bpm. That’s two beats per second. That means the Rate would be equal to 2, so the duration of each beat
will be scaled to one half second.

The Sounds in the next row of the file (MIDI clock ctrl MIDI file rate, MIDI clock ctrl MIDIVoice script,
etc.) are other examples of how you can use !TimingClock and !TimingClockDuration to synchro-
nize various Kyma Sounds to an external MIDI clock.

MIDI Time Code (and SMPTE)
You can also use MIDI Time Code (or SMPTE if it is first translated to MTC) as a trigger in a Kyma
Sound. In the trigger or gate field, enter the time when the trigger should occur, followed by the message
triggerAtTimeCode or gateOnAtTimeCodeForDuration: followed by the length of time the gate
should stay on.

For example, look at trigger at time code 00:00:12.00. This is a DiskPlayer whose Trigger field is set to

12 s triggerAtTimeCode

meaning that it will not be heard until Kyma receives the MIDI time code for 12 seconds. If you prefer,
you can also specify the time in SMPTE format, for example,

00:00:12.00 SMPTE triggerAtTimeCode

In other words, 0 hours, 0 minutes, 12 seconds, and 0 frames.

To send a gate with a specific duration (rather than sending a single trigger) use gateOnAtTimeCode-
ForDuration:. For example, look at the Gate field of the ADSR in the Sound gate on at 20 s for
duration 1 s. It is set to

20 s gateOnAtTimeCodeForDuration: 1 s

meaning that the ADSR will be triggered when the time 20 s is received and will stay on for 1 second be-
fore going into the release of the envelope.

177

Tracking Live Input

One of the most exciting aspects of real-time signal processing is that you can control synthesis and proc-
essing parameters in a very direct way, with your voice or with an instrument. This is an even more
direct way of making music or of tweaking sound designs than moving MIDI faders, because you have
years of experience in using your voice and/or playing your instrument, you have incredibly refined and
almost subconscious control over minute aspects of its timbre and timing, and you don’t have to break
that concentrated and sophisticated feedback loop to push a button or move a fader (unless of course, the
mixing console is your instrument in which case you have the same relationship to it as musicians have to
their instruments of wood and skin).

This is an exciting area to explore, and it is also one of the most difficult. (Let’s face it, if it were easy, it
would have been done and perfected already, and you wouldn’t be so interested in it anymore, because
you have already implicated yourself as an inveterate innovator by having read this far into the Kyma
manual in the first place).

The basic idea is that we want to use an audio signal to control a parameter (or parameters) of Kyma
Sounds. What is an audio signal? Basically it is a time-varying amplitude. So let’s start with a simple case
— controlling the amplitude of a Kyma Sound with the amplitude of a live audio signal.

Amplitude
As you recall from having done the Envelopes tutorial on page 120, one way to impose an amplitude en-
velope onto any other Sound is to multiply the envelope and the Sound. Try this right now. Drag a
Product into a new Sound file window (the Product is in the Arithmetic category of the prototype strip).
Open it up, and replace the FunctionGenerator with a GenericSource (from the Sources category of the
prototype strip). Change the GenericSource to use the Live source (or set it to auto-loop on the sample
called Electron). Then play the Product. Sounds like ring modulation, right? That's because it is ring
modulation. So we have uncovered a way to do ring modulation, but that is not what we had in mind; we
wanted to control the amplitude of the oscillator with the amplitude of the source.

The problem is that when we think of the “amplitude” of a sound, we usually mean the amplitude enve-
lope, that is a kind of averaged, slowly changing, overall amplitude, not the instantaneous amplitude that
changes on every sample tick.

Look in the prototype strip under Analysis. Find AmplitudeFollower and drag it onto the line between
the GenericSource and the Product. An AmplitudeFollower does two things: it makes all of the ampli-
tudes positive (greater than zero) and it does a kind of averaging over several instantaneous amplitudes
so as to smooth out some of the faster, smaller changes in amplitude. The TimeConstant parameter of
the AmplitudeFollower gives you some control over this averaging time: the shorter the TimeConstant,
the faster the envelope responds to changes in its input, but the less smooth it will be. Select the Ampli-
tudeFollower and choose Full waveform from the Info menu, asking to plot only 3 seconds of the
waveform. Then select the Product and listen to the amplitude envelope multiplied with the oscillator.

This immediately begs the question, what about controlling the frequency of the oscillator as well as its
amplitude? How can you tell the frequency of an audio signal when all you have to work with is a stream
of instantaneous amplitudes?

Frequency
If you look in a textbook for the definition of frequency, you will most likely be treated to a drawing of a
perfect, endless-duration sine wave with vertical lines indicating the start and end of one cycle and a
definition having to do with the number of cycles that transpire within one second. Fortunately for our
sanity (but unfortunately for pitch tracking algorithms), real-life signals rarely have perfectly repeating
waveforms at an unchanging frequency.

One module that can help identify frequency and track how it changes over time is the FrequencyTracker
(in the Analysis category of the prototype strip). Its takes a Sound as its input and outputs an estimate of
the frequency of that Sound as a number between zero and one (which you can then scale up to the range
of DC to one half of the sampling rate if you want to use it in a Frequency field).

178

Like an amplitude envelope, a pitch envelope is a feature that takes the human auditory system some
amount of time to integrate and identify. The FrequencyTracker uses an algorithm called autocorrelation,
which, as its name implies, is a measure of how correlated a signal is with itself at different delay times.
Imagine that textbook sine wave again. If you were to delay that sine wave by one cycle and then com-
pare it against itself with no delay, you would have to say that the two signals were extremely well
correlated, if not identical. But if you compared them after a delay time of, say, one-tenth of one cycle,
they would not be as correlated. The FrequencyTracker compares the signal against itself at several differ-
ent delay times and picks the one delay time at which the original and delayed waveforms are the most
similar. It reasons that this delay is probably the period of one cycle of the waveform, so it can then make
a guess as to the frequency of the signal.

As you can tell from this description, frequency tracking is not a fool-proof or easy task, so the more clues
you can give the FrequencyTracker, the better. If you have some idea of the frequency range of the input,
you should enter that in the MinFrequency and MaxFrequency fields of the FrequencyTracker. The
more you can narrow-in on the range, the better the FrequencyTracker will do.

Try playing the Sound called oscil tracks voice, and then open it up to see how the AmplitudeFollower
and the FrequencyTracker are used to control an oscillator. Notice that there is a Gain on the Amplitude-
Follower (because it tends to have low-amplitude output), and notice that the Frequency field of the
Oscillator is set to:

FreqTrk L * SignalProcessor sampleRate * 0.5 hz

This expression scales the (0,1) output of the FrequencyTracker to the range of DC to one half of the
current sample rate.

Try using your own voice as a source. If the FrequencyTracker has trouble tracking your voice, adjust the
MinFrequency and MaxFrequency to more closely match the range of your speaking or singing voice.

In mouth-controlled filter, the amplitude envelope of the input controls the center frequency of a low
pass filter, and the frequency of the input controls the frequency of a sawtooth oscillator that is fed into
the filter. Listen to the default source, and then switch it over to Live, so you can try controlling it with
your voice. Notice that this Sound uses a PeakDetector to follow the amplitude envelope of the source.
Double-click the PeakDetector to look at its parameters. You can think of the PeakDetector as having two
time constants: one for reacting to increases in the amplitude of the input, and the other that reacts to de-
creases in the amplitude. You can create, for example, an amplitude envelope that jumps immediately
upward in response to attacks or onsets in the input, but that decays slowly when the input amplitude
goes to zero.

A PeakDetector is also used in amplitude filter, LFO on attack. Try playing this Sound. It is set up as a
drum loop processed by a low pass filter. The amplitude envelope of the drum loop controls the cutoff
frequency of the low pass filter. Notice that the attack time of the PeakDetector is modulated, in this case,
by a low frequency oscillator. You could, alternatively, choose two different sources for this Sound: one
as input to the filter and another to control the cutoff frequency of the filter. Look at the parameters of the
two GenericSources in this Sound. One is set to read the right channel and the other is set to read the left
channel of the source, so you could use the two input channels of the Capybara for two different audio
signal inputs to this Sound, listening to one through the filter and using the other signal to control the
cutoff of that filter.

Timbre
So far, we have looked at modules for tracking the amplitude and the frequency of the signal. What other
parameters does an audio signal have? Some books actually define timbre as those characteristics of a
signal that are not pitch or loudness — sort of a “none of the above” definition. A slightly more useful
(though still insufficient) definition might be: the spectrum, or the time-varying strengths of upper par-
tials relative to the fundamental. Admittedly this is still vague, but it gives us something to work with.

We know we want to somehow differentiate between the "highs", the "mid-range" and the "lows" or at
least to monitor them independently of one another. So the first thing that springs to mind is filters. We
can use filters to separate a single signal into several frequency bands.

179

Take a look at Highs to lows — an example that splits the signal into two parts: frequencies above 6000
hz and frequencies below 4000 hz, using a high-pass and a low-pass filter respectively.

The Sound takes the output of each of these filters and feeds it into an AmplitudeFollower. Next, it com-
pares the energy in the high frequencies against the energy in the low frequencies by taking the ratio of
the high frequencies envelope to the low frequencies in high/low. This ratio is smoothed by a PeakDetec-
tor and then used as an amplitude envelope on some pink noise. The result is that you hear a little burst
of noise anytime there is a phoneme with lots of high frequency energy in the input. It is especially no-
ticeable on the words “so”, “essence”, and “fact”.

We can take this idea of using filters to split the spectrum even further, using a bank of bandpass filters to
split the spectrum into 22 to 88 bands using a Vocoder. This is similar to amplitude following, but on sev-
eral, independent frequency bands. So the spectral characteristics of the SideChain signal are
controlling the filters on the Input signal.

As an example, try stressed out cartoon . In this example, the spectral characteristics of the speech sample
control the filtering on an oscillator input. Since the oscillator has a complex waveform, it has a relatively
rich spectrum that can be shaped by the filters, resulting in intelligible speech. At the same time, the am-
plitude envelope of the speech is being used to control the frequency of the oscillator (nothing says you
can’t cross-map amplitude to frequency or vice versa). Try playing this again and choosing the Live
source. The louder you speak into the microphone, the higher and more stressed-out your voice sounds.

An Alternative Pitch Tracker
It turns out that there is another way, albeit more computationally expensive, to track the frequency be-
sides the FrequencyTracker module. If you perform a LiveSpectralAnalysis on a signal and then use the
right channel of the fundamental track, you have an estimate of the fundamental frequency of the signal.
Take a look at harm analysis ctrl oscil freq for an example of how to do this.‡

Notice that the GenericSource is fed into a LiveSpectralAnalysis called HarmonicAnalysis-(3a - 5c). Dou-
ble-click the LiveSpectralAnalysis to see its parameters. The Harmonic box must be checked for this to
work. LoFreq and HighFreq should be set to the expected frequency range of the input. Also, take note
of the value of LowestAnalyzedFreq, because we will use this information in the next module, which
is, believe it or not a SampleAndHold.

Double-click freq track to see its parameters. This is a SampleAndHold whose HoldTime is 256 samp.
Why 256 samp? Because when you select 2 F as the LowestAnalyzedFreq, the LiveSpectralAnalysis

‡ Keep in mind, however, that this is a temporary and somewhat kludgy way to do this, and that it will become much

easier to do in the next software release. So if you feel disgusted by the explanation that follows, you may just want
to defer your use of this feature until the next release.

180

will output 256 tracks on each frame.§ We want to sample only one of those tracks and we want to do it
once per frame. So we sample one value and hold onto it for the next 255 samples until the corresponding
value on the next frame. The only remaining piece of the puzzle is which of the tracks to read and how to
offset the SampleAndHold to pick that track on each frame. The formula for this is

(256 - 3) samp

where you would substitute a different number for 256 if you were using a different LowestAnalyzed-
Freq.

Finally, double-click track voice to see the parameters of this Oscillator. Notice that the Frequency pa-
rameter is set to

freq track R * SignalProcessor sampleRate * 0.5 hz

This is one of the few examples that uses an R to get the right channel of a pasted Sound rather than the
left channel. That’s because the frequency envelopes are on the right output channel of the LiveSpec-
tralAnalysis, and the amplitude envelopes are on the left channel.

The rest of the Sounds in this row and the next use the harmonic analysis method for tracking the fre-
quency of the input (but could just as well have used the FrequencyTracker module). Try playing some
(or all) of them and take a look at the ones that interest you in order to see how they were put together.

Decision Thresholds and Logical Comparisons
So far, we have been using parameters extracted from the audio signal as something like continuous con-
trollers. It’s also possible to use them in a way analogous to discrete switches or gates. The key to turning
the continuous envelopes into gates or switches is to use a Threshold or one of the comparison operators.

For an example of using the Threshold on an amplitude, look at trigger a sample on S. This Sound is the
same as the Highs to lows example, except that it feeds the ratio of high to low energy into a Threshold.
When the ratio of highs to lows gets above a selected value, the Threshold output is one. At all other
times, the output of a Threshold is zero. By pasting the Threshold into the trigger field of a Sample, you
can trigger the sample whenever the ratio of highs to lows exceeds the selected threshold. In this case the
threshold is set such that it triggers on the “S” sounds at the beginning of “so” and the ending of
“essence”, but does not trigger at any other time.

You can also make decisions based on the frequency of the input. For example, take a look at pch selects
eq. This is a StereoMix2 with two GraphicEQ inputs. The scale on the first input is

((22050 * freq L) gt: !Freq nn hz removeUnits) smoothed

and the scale on the second input is

((22050 * freq L) le: !Freq nn hz removeUnits) smoothed

First the FrequencyTracker is scaled to the full range of frequencies using

(22050 * freq L)

You probably noticed that it is missing the units of hz. Since this is not a frequency field, we don’t need to
include the units.

The second half of the expression

 !Freq nn hz removeUnits

allows you to set a pitch in terms of note number using !Freq, converts the note number value to hertz,
and then removes the units from the number, since we want to compare this number to another number
that does not have units. (The MIDIMapper is scaling the range of !Freq to between 12 and 127 in this
example).

§ The number of tracks per frame associated with each LowestAnalyzedFreq value are:

1F: 512 2F: 256 3F: 128 4F: 64 5F: 32

181

The two frequencies are compared using

le:

an operator that stands for less than or equal to . This means that the entire expression will be one when the
input pitch is less than or equal to the pitch that you set using the !Freq fader in the virtual control sur-
face. If the pitch is higher than the note number you set in the virtual control surface, then the value of the
entire expression will be zero. To avoid the clicks you get from sudden changes, the message

smoothed

is added to the end of the expression. Now take a look at the expression in Scale1 again:

((22050 * freq L) gt: !Freq nn hz removeUnits) smoothed

Compare it carefully against the expression in Scale2. What is the only difference between the two ex-
pressions? What does gt: stand for?

Try playing pch selects eq with the default settings and source. Then play it again using the Live source
to see if you can trigger it with your voice.

For a different example of using the input frequency as a control, look at time stops until 4 f#.

In this example, a TimeStopper has its Resume condition set to

(22050 * freq L gt: 4 f hz removeUnits)

* (22050 * freq L lt: 4 g hz removeUnits)

You probably recognize the basic form of the each half of this expression

(22050 * freq L gt: 4 f hz removeUnits)

and

(22050 * freq L lt: 4 g hz removeUnits)

from the previous example. But why are they being multiplied together? In a system where false is repre-
sented by zero and true is represented by one, multiplying is the same as a logical AND. In other words,
both of these expressions must be true in order for the entire expression to evaluate to one (true).

This expression will only be true if the incoming pitch is between 4 f and 4 g. Try playing time stops until
4 f# with the default source. Then play it again with the Live source and try singing into it. The MIDI-
Voice will play its first note and stop. It won’t continue until you sing something close to a 4 f# into the
microphone. So the pitch of your voice controls when the MIDIVoice can finish.

They're Everywhere
There are other examples of audio signals used as continuous controllers (or in decisions based on
thresholds) scattered throughout the examples. Look, for instance, in the Output MIDI and Cross syn-
thesis files.

182

Tuning

In Kyma, the smallest change in frequency is about 0.0026 hz.§ This degree of frequency resolution means
that you can use Kyma to implement microtonal tunings or other tuning systems outside the standard 12-
tone equal temperament associated with most keyboard instruments.

In any Frequency field, you can enter a constant value directly in hertz or note number; Kyma will use
that value directly to control the synthesis or processing algorithm. Additionally, you can enter an arbi-
trary real-time expression that maps Event Values (like !Pitch, !KeyNumber, or !Frequency) into a
frequency value in hertz or note number.

Compute Frequency Directly from !Pitch
Try playing the Sound called play celesta in the Tuning Sound file (found in the Examples folder), and
play a chromatic scale on your MIDI keyboard starting at middle C. Double-click on this Sound, and look
at the Frequency parameter of the Sound called celesta . It is set to the value !Pitch, meaning that it
gets its frequency from incoming MIDI note events. Thus, it is currently playing from the standard, equal-
tempered scale.

Now change the value in the Frequency field to

(!Pitch * 0.5) + 30 nn

Compile, load, start the Sound and, once more, play a chromatic scale on the MIDI keyboard. This ex-
pression is taking the MIDI pitch and dividing it in half, so it changes half steps into quarter steps. At
middle C, the MIDI note number is 60; since multiplying that by 0.5 gives us note number 30, we added
30 nn back in, so that middle C would still be middle C.

Next, try using

(!Pitch * 0.25) + 45 nn

in other words, we are going to multiply incoming MIDI note numbers by 1/4 to get eighth-step changes
for every half step change on the keyboard, and we are adding 45 nn back in so that middle C is still note
number 60. Now it should take 4 keyboard octaves to equal 1 octave in pitch.

The Frequency parameter value can also be calculated directly in hertz. Change the Frequency field to
read

(!KeyNumber / 12) twoExp * 8.176 hz

This takes the frequency of the lowest MIDI note number and multiplies it by a ratio that is the number of
half steps above note number 0, i.e. the definition for a the 12-tone equal tempered scale. Try the follow-
ing expression to create a 10-tone scale:

(!KeyNumber / 10) twoExp * 8.176 hz

Creating Tuning Expressions using the Tuning Tool
You can use the Tuning Tool to prepare expressions to use in Frequency fields. Choose Design Alter-
nate Tunings from the Tools menu to start up the tool. (See Tools menu: Design Alternate Tunings on
page 451 for a complete description of this tool.)

§ This number is derived from the fact that all Kyma Sounds keep at least 12 fractional bits of phase information in-

ternally (some of them, like Sample, keep an even larger fractional part, providing even greater accuracy, but you
are always guaranteed at least that accuracy). At the pitch 4 a (440 hz), a change of 0.0026 hz is equal to a change in
pitch of 1/100th of a cent. At 4000 hz, it would be 1/880th of a cent, and at 30 hz it is 1/6th of a cent.

183

On the main page of the tuning tool, you can choose a reference MIDI key number and the corresponding
frequency, and how you want to audition the scale you are designing. After the tool has started, try
playing your MIDI keyboard.

Let’s use the tool to create an expression to tune the play celesta Sound to a just scale.

Click the Ratio Scale button. This part of the tool lets you specify each of the twelve scale degrees in
terms of a ratio to the tonic. You can enter the ratios into the fields for each scale degree, and interactively
try out the scale.

A just scale is built in to the tool; click the Just button to load it. Try playing the keyboard.

184

Click the Create Example button; Kyma will then create an example Sound using this scale. Double click
on the example Sound and edit the parameters of SampleExample:

Kyma has placed an expression for the just scale that we designed into the Frequency parameter of this
Sound. To tune the celeste GA Sound to this just scale, copy the expression from the Frequency pa-
rameter and paste it into the Frequency parameter of the celeste Sound.

You can use any of the tuning methods in the tool to create an example, and either use the example di-
rectly, or copy the tuning expression from Frequency parameter for use in other Sounds of your own
design.

A Retunable Scale
Scales based on the ratios between frequencies must be derived from a particular tonic and, thus, cannot
be valid for all keys. The Sound called tunable kbd is an example of a just diatonic scale with a selectable
tonic, so you can tune the keyboard on the fly. On MIDI channel 1, the keyboard is tuned to a just dia-
tonic scale; switch to MIDI channel 2 and select a new tonic by playing one of the keys (it doesn’t matter
which octave you play; it is just looking for the pitch class), and then switch back to MIDI channel 1 to
play the keyboard tuned relative to that new tonic. Alternatively, you could use two keyboards or two
sequencer tracks, each on a different MIDI channel: one to set the tonic, and the other to play in the “key”
of that new tonic.

Other Tuning Examples
The other tuning examples illustrate different ways to obtain the pitches of the notes in the alternate tun-
ing system. Half steps -> whole steps, just horns, and 13-tone linear scale all use expressions to calculate
the pitch in the scale from the MIDI key number. The examples in using a script use the Script Sound to
play an “instrument” in alternate tunings (see Scripting on page 522 for more information about scripts).
The examples in using tuning tables use the Waveshaper Sound to look up the frequency for a given key
number by using a wavetable that contains the scale (a “tuning table”).

185

Wavetable Synthesis

If you look at the waveform of a sample that has an identifiable pitch and is harmonic, you immediately
notice that it is (fairly) periodic — that you can identify patterns that repeat. Imagine taking one of these
cycles, saving it as a wavetable, and using an oscillator to repeat it. This would take up a lot less memory
than a sample and should sound the same, right? Not exactly. Musical sounds are not usually strictly pe-
riodic; they change over time in interesting and lively ways. That’s why most oscillator-based synthesis
techniques include some way to change the waveform over time: the examples in Analog used the
phasing effects of detuning, the amplitude-dependent waveform changes of distortion, and variable low
pass filters to create waveforms that evolve over time.

Classic Waveform Distortion Techniques
Many of the textbook “computer music” sound synthesis techniques you read about are based on the idea
of wavetable synthesis with some form of controllable distortion. Distortion introduces harmonic distor-
tion products, yielding a broader spectrum than the spectrum of the original, undistorted oscillator. Even
more importantly, though, you can control how much distortion you want to add at any one time, so you
can create timbres that evolve over time (all at relatively small computation costs).

Waveshaping
Imagine a sine wave shape. Then imagine what happens when you turn up the gain on it so much that it
clips. It changes from a smooth sine wave to something closer to a sharp-edged square wave, and this
change is reflected in the spectrum as well. Using waveshaping, you can get a similar effect, but with
more control over the results. Try playing the Sound called WS:cosine->square. This Sound takes a cosine
and uses it as the argument to a polynomial designed to distort the shape of the cosine waveform and
thus add harmonics to its spectrum. Notice that the higher you put !Volume, the more the cosine shape
begins to approach a square wave shape.

Next try the Sound called batman head . This Sound uses the same polynomial in the Waveshaper, but
instead of using !Volume to control the amplitude of the cosine oscillator, it uses an ADSR envelope,
triggered by the MIDI keyboard. When you first hit the key, the amplitude is at its maximum, the sound
is a little brighter than when it dies away. This corresponds to the behavior of a lot of acoustic instru-
ments, which have a broad, almost noisy spectrum during the attack, and which turn almost to sine
waves as they decay.

Amplitude Modulation & Ring Modulation
Compile, load, start the Sound called AM & RM, and experiment with the fader settings for the modu-
lator frequency and the carrier amplitude. Like the other distortion techniques, amplitude modulation
can give you more frequencies out than you put in (as you can see by playing around with the amplitude
of the carrier).

When you amplitude modulate a complex carrier, each sine wave component of the carrier generates sum
and difference frequencies with the modulator. Try modulating a digital recording or your own voice
coming in from the microphone using AM&RM on a complex carrier.

Frequency Modulation
This is probably the most familiar of all the classical synthesis techniques. It turns out that by simply
modulating the phase of a sine wave oscillator, you can, in theory, generate an infinite number of addi-
tional frequencies (well, all right, most of them are at vanishingly small amplitudes, so you don’t really
get an infinite number of them, but you can easily generate more than you care to hear). Try experiment-
ing with the fader settings in FM lab.

Sound designer, and fellow Kyma user Francois Blaignan contributed all of the FM Sounds across the top
of this Sound file window (i.e. the ones that say ‘francois’ as part of their names). Try these Sounds out
and then open them up to see how they are put together. Most of them use more than one frequency
modulated oscillator, where each of the oscillators contributes one sub-part of the total spectrum — a
kind of cross between frequency modulation and additive synthesis.

186

Group-additive Synthesis
In additive synthesis, you add the outputs of hundreds of sine wave oscillators together to produce a
complex waveform. In GA synthesis, you add the outputs of 3 to 5 oscillators, each with a complex wave-
form and amplitude envelope, together to produce a complex waveform.

Imagine that you are looking at a spectrum with hundreds of sine wave components. Most of the time,
you will be able to identify several components whose amplitude envelope shapes are almost identical;
imagine grouping those sine waves together (forming a more complex waveform) and having them share
a single amplitude envelope. That’s where the name “group additive” synthesis comes from.

Try out trombone GA on KBD, Fowels vlute, graphic env chopper, and GA vlns from MIDI file. These are
all examples of synthesis using the GAOscillators Sound.

Creating your own GA Wavetables
GA synthesis works best when your original sample is a single tone with an identifiable pitch and a fairly
harmonic spectrum. For instance, it can work well on a single tone from a musical instrument, whereas it
will probably not work well on a recording of an explosion or sample of human speech (although it can
work well on sung vowels).

GA wavetables are created from spectrum files, not directly from samples. So the first step is to use the
Spectral Analysis Tool to create a quasi-harmonic spectrum file (i.e. the ones with an “h” after the name, not
the ones with an “s”), and then to use the GA Analysis Tool to generate a GA wavetable from that quasi-
harmonic file.

Let’s assume you already have a suitable quasi-harmonic spectral analysis file and proceed to the second
step of generating GA wavetables based on that spectrum:

1. From the Tools menu, choose GA Analysis From Spectrum.

2. Click the Browse… button and locate the quasi-harmonic spectrum file called aou-carla h from
the singing folder of the Spectra folder of the Wavetables folder. Remember, you must start
with a quasi-harmonic spectrum (one with an “h” tacked onto the end of the name) or it will not
work correctly.

 Once you have selected a quasi-harmonic spectrum file, the tool will resynthesize it using sine waves
so you that can verify that it is indeed the file you had intended to select.

3. By default, the number of harmonics will be set to 124 and the number of wavetables to 3. When you
set these numbers, keep in mind that the analysis time grows larger when you request more har-
monics or more wavetables. Three wavetables ought to be enough to represent the three vowels in
this spectrum. Since the upper harmonics don’t contribute as much to defining vowels as they do the
consonants, it is safe to change Number of harmonics to 64, so you should change the 124 to a 64.

4. Click the button labeled Create GA file. It will ask you for a name for the GA file and ask where you
want to save it. To be consistent with other GA files, tack the name of the base pitch onto the end of
the name followed by “GA”; in this case it would be aou-carla 3A GA and save it in your own
Wavetables folder in a subfolder named GA.

 Now you have to wait while the Tool to performs the analysis. First it will display Reading enve-
lopes from the SOS analysis and show you a progress thermometer.

 Then it will display Determining waveforms and corresponding envelopes….

 Before you know it, you will be startled by a synthetic voice singing “aou” when the analysis is fin-
ished.

5. The Tool creates a GAOscillators Sound for you with the newly created file already specified in the
parameter fields. Open the Sound in the untitled window and set its parameters as follows:

 Parameter Value

 Frequency !Pitch

 Duration on

187

 Then double-click timeIndex and change its parameters to:

 Parameter Value

 Duration on

 Trigger !KeyDown

 Compile, load, start aou-carla 3A GA and play a 3 A on the MIDI keyboard.

 To get more polyphony, drag a MIDIVoice between the GAOscillators and the output icon. Double-
click the MIDIVoice, set Polyphony to 6, and change Left and Right to 0.25. Compile, load, start
the MIDIVoice and try this on the keyboard in the range around middle C.

 Double-click the GAOscillators again, and edit the parameters to:

 Parameter Value

 Morph !Morph

 Analysis1 hrn 3A GA

 Compile, load, start the MIDIVoice and try playing some quartal harmonies and using !Morph to
change the timbre.

188

Whooshes, Hits, Bys

These are some example Sounds you may be able to use as the basis for sound effects processing. There
are examples of adding subharmonic rumbling to give a sense of a large, massive object, examples of
doppler and movement from left to right, and examples of flanging or whoosing sounds that can be used
to give a sense of propulsion or movement.

Part II: Advanced Features

Variables: What are those Green Question Marks?
In this tutorial, we will replace the constant parameter values of a Sound with variables. Drag an At-
tenuator from the system prototypes window (Mixers & Attenuators category) into a Sound file window.
Double-click on it in order to edit its parameters. Experiment with different values between zero and one
for the left and right scales.

By adjusting the values of Left and Right, you can “place” the sound between the left and right speak-
ers. For example, if you set Left to 1 and Right to 0, the sound seems to emanate from the left, and if
you set Left to 0.2 and Right to 0.8, the sound seems to come from right of center.

One way of specifying the stereo location of a Sound is to specify how much of that Sound should come
from the left speaker, and specifying that the remainder should come from the right speaker. In other
words, if the portion of the Sound that comes from the left speaker is L, then the portion that comes from
the right speaker is 1 - L, since scale values can range from zero to one. This specifies a relationship be-
tween two parameters that is true no matter what the specific value of L. It requires the use of a symbolic
representation for the parameters, in this case the letter L to represent some number between zero and
one.

In Kyma, you can use variables to serve as symbolic representations. To specify a Kyma variable, choose
a memorable name for the variable and precede it with a question mark. In the Attenuator Sound, enter

?left

for the value of Left and

1 - ?left

for Right.

The parameter fields should now look like this:

Now that you have entered a variable and an expression containing a variable as the values for Left and
Right, play the Attenuator.

190

You have defined a general stereo locator Sound, but in order to play it you must supply a specific value
for ?left. A dialog box (like the one shown below) requests a value for the variable; enter a value be-
tween zero and one (be sure to use a leading zero before any decimal points).

Then click Value (or simply press Enter). Play once more. The Sound editor remembers the value that
you supplied for ?left, so you don’t have to type it in each time you play.

The mappings from variables to the values you have supplied in this Sound editor are called the envi-
ronment of the Sound editor. Most of the Action and Info menu operations take place within this
environment. To view the current environment, select Environment from the Info menu.

To clear the values in the environment and choose new values, select Reset environment from the Info
menu. Play the Attenuator again.

Now save the Attenuator to the Sound file window. Play it a couple of times. Unlike the Sound editor, the
Sound file window does not save the environment; you have to define an environment each time you
play a Sound that has variable parameters.

Now let’s make this stereo location Sound even more general by replacing the Input with a Variable
Sound. Open a Sound editor on the Attenuator. Replace the Attenuator’s Input with a Variable from the
system prototypes window.

Now select Compile, load, start from the Action menu. Kyma will prompt you for a value for ?left as
before, and it will also prompt you for a value for ?Variable. When Kyma asks you to supply a value
for ?Variable, you can’t type in a value as you did for ?left. Instead, select the button labeled Default
Sound. (If this had been a SoundCollectionVariable, e.g. a variable representing all of the inputs of Con-
catenation or Sum, you should select Default collection.)

191

This associates the variable name ?Variable with Kyma’s default Sound. To change the default Sound,
select one of the Sounds in the system prototypes window and select Set default Sound from the Action
menu. Return to the Sound editor and reset the environment. Now try playing the Attenuator again.

Change the name of Attenuator to StereoLocator, and save it in your Sound file window for future
reference (i.e. the next tutorial!)

Creating and Editing Sound Classes: Upward Mobility
This tutorial describes how you can use the class editor to create a new Sound class with its own icon,
help messages, and Sound editor.

Double-click on StereoLocator, the Sound that you constructed in the previous tutorial.

Recall that this Sound’s Left is the variable ?left, its Right is the expression 1 - ?left, and its Input is
Variable. Each of the variable parameters can take on an infinite number of potential values. In a sense,
StereoLocator represents an infinite set of Sounds, all sharing a single characteristic: the portion of the
Sound coming from the right speaker is one minus the portion of the Sound coming from the left speaker.
StereoLocator actually represents a whole class of specific instances of Sounds having that characteristic.

You can create a new class of Sounds based upon the example of StereoLocator. Close the Sound editor.
Select StereoLocator, then, under the Action menu, select New class from example. Kyma will prompt
you to provide values for ?left and ?Variable. Set ?left to 0.75 and click the Default Sound but-
ton for ?Variable.

Kyma then opens a class editor on this example.

Replace newClassFromExample with a more memorable name, like Stereo. Kyma’s convention is to
begin class names with uppercase letters.

Drag an AbsoluteValue from the Arithmetic category of the system prototypes window into the Icon
field of the class editor. Use this starting point for designing a new icon that represents the stereo place-
ment of a Sound between the left and right speakers.

192

Click in a light area to draw a dark dot, and click in a dark area to draw a light dot. If you keep holding
the mouse button down while you move the mouse around, you can draw dots continuously. Sometimes
it helps to click in the zoom box of the class editor window, expanding the class editor size of the screen
in order to get a larger area for editing. Design both the large and the small icon.

Read the names listed in the Parameter field. Where have you seen these before? Apart from the name
parameter, which is shared by all Sound classes, each parameter name corresponds to the name of a vari-
able in the original example Sound: ?left, and Variable.

Click on Variable in the Parameter field. This is the input of the new Stereo class. To ensure that only
Sounds can be used for this parameter, select sound in the Type field. The types are listed alphabetically,
and you can use the scroll bar to scroll through the list of types.

You may have noticed that after you selected sound, the list of possible parameter field types changed.
Try selecting a different Type temporarily and watch the Field field. Only those fields that are legal for
the selected parameter type are displayed in the Field field. Make sure that you have re-selected sound
as the type for Variable.

Now modify the location for Variable in the Field Rectangle field:

0.5 @ 0 corner: 1 @ 0.8

and press Enter. This places the field in a rectangle whose upper left corner is in the middle of the editor
and flush with the top. The lower right corner is flush against the right edge and with the top of the class
name field.

The first pair of numbers is the x @ y location of the upper left of the rectangle, and the second pair of
numbers is the x @ y location of its lower right. The point 0 @ 0 is the upper left corner of the right half of
the Sound editor, and its lower right is 1 @ 1.

These numbers don’t represent specific units like pixels or centimeters; they represent the relative pro-
portions of a rectangle within a unit (1 by 1) rectangle. Thus, if you wanted a parameter field to take up
the bottom half of the entire area, you would specify an upper left corner of 0 @ 0.5 and a lower right
corner of 1 @ 1.

Return to the Parameter field, and select left. The value of left must lie within the range of zero to
one, so select positiveScale in the Type field. (The range for each variable type is shown in Parameter
Types and Ranges on page 540). For the Field Rectangle, enter

0 @ 0 corner: 0.5 @ 0.25

Notice how Field Layout is updated when you press the Enter key.

Select Variable in the Parameter field, and take note of how the Field Layout changes. Alternate
between selecting name, Variable, and left.

193

The Field Layout shows a miniature version of the Sound editor for this new class. Whenever you se-
lect a parameter, its position in the parameter fields is highlighted.

Double check that Expand has a check mark in it. When checked, the Expand option will cause this new
kind of Sound to expand before any transformations are applied to it. The significance of this will be ex-
plained in Parameter Transformers: Symbolic Sounds on page 198.

Close the class editor and save an instance of this new class. The instance of your new class should appear
highlighted in the file window; its name will be Stereo.

Edit the new instance of class Stereo by double-clicking on it. Note the positions of the parameter fields
on the bottom half of the Sound editor.

Play the Sound. From the Modifiers category of the system prototypes window, drag Chopper into the
Variable field. Play Stereo. Try entering different values for the Left parameter and play again. Click
on the parameter label of the Left field. It will tell you that no help is available, but we will soon fix that.

Close the Sound editor, saving the changes that you have just made. With Stereo still selected, choose Ex-
pand from the Action menu. Double-click on the new Sound, called StereoLocator, that appears in the
Sound file window. Notice that this Sound is like the original Attenuator that we made the class out of,
but this Sound has specific values assigned for the Left, Right, and Input parameters. When you play
a Sound, it is first expanded to its most primitive components and then sent to the Capybara. You can use
Expand from the Action menu to see how complex Sounds are actually constructed out of simpler com-
ponent Sounds.

Close the Sound editor. Select Stereo again, and choose Edit class from the Action menu. Edit class lets
you edit an already existing class. From the Action menu, choose Retrieve example from class. This
saves your original example Sound in the Sound file window. Go to the Sound file window and double-
click on the Sound that was just retrieved. Notice that Retrieve example from class , unlike Expand, saves
the original example Sound with the variables still in it. Close the example Sound, and go back to the
class editor, so we can add some on-line help messages to the new class.

194

First, in the Class Description field, enter a short description of what this class does. Then select
left in the Parameter list. In the Comment field, remind the user (and yourself many months in the
future when you try to use this Sound again but have forgotten how you set it up) that this is the level of
the left channel, and that the level on the right channel is one minus this value. With left still selected,
change the Field from positiveScale to hotPositiveScale.

Select Variable and enter a comment for this variable as well.

Close the class editor, and save the changes to the edited class. Try out opening Stereo again and paste
the Event Value !Pan into the Left parameter field. Try playing Stereo and controlling the value of
!Pan from the virtual control surface (or MIDI controller). Once you have finished experimenting, close
the Sound editor.

Now let’s improve the stereo placement function. Find the example you retrieved (it should be called
StereoLocator and should have variables in it). Edit it and replace its right parameter with

(1 - ?left squared) sqrt

You may have to choose Large window… (Ctrl+L) from the Edit menu to make the field large enough to
see what you are doing. Close the Sound editor and keep the changes you have made.

Choose New class from example from the Action menu, supply a value for ?left and click on Default
Sound for Variable. This time we don’t have to start from scratch. Drag Stereo from the Sound file win-
dow into the Icon field, and then drag it again into the Parameter field. This sets the icon, parameter
types, and locations to those specified in class Stereo.

Type in ImprovedStereo for the name of this new class. Tab over to the Class Description field
and enter a new description. Close the class editor and save an instance of the new class. Compare the
panning of ImprovedStereo to that of Stereo.

Algorithmic Sound Construction: Your Computer is your Slave
You have by now seen multiple examples of how to construct Sounds in the graphical editor. In those
cases where you can systematically describe the relationships between Sounds and parameters, you can
use the Script Sound to construct complex Sounds for you automatically, according to an algorithm that
you specify in the Smalltalk-80 programming language. Your program can be as simple as a series of
events, saying when each Sound should start, or as elaborate as a new system for music composition. To
specify events, all you have to learn is how to specify the start time of a Sound. For more elaborate proj-
ects, you have the power of a full programming language — Smalltalk-80 — to work with.

Let’s start with simple event script and, step-by-step, develop it into a short program. Find Script in the
Algorithms category of the system prototypes window, drag a copy into your Sound file window, and
open a Sound editor by double-clicking on it. Replace its input wavelet with Attenuator from the system

195

prototypes window category Mixers & Attenuators. Change Attenuator’s name to instr (by selecting it,
pressing Enter, and entering the new name).

In order to be able to set the parameters of instr, replace some of its constant values with variables. Dou-
ble-click on instr, and replace its Left parameter with the variable ?left, press the Tab key, and
replace its Right parameter with the expression 1 - ?left. Then edit its Input, replacing its Fre-
quency with the variable ?freq and its Duration by the variable ?dur.

The Script parameter of a Script Sound consists of Smalltalk-80 expressions and events that assign start
times and other parameters to its inputs. To write your own script, first double-click on Script. Delete the
current contents of the Script field of the prototype. (Click once in the field to select all, and then press
the Delete key). Now, create a simple event by setting the start time of an instance of instr. Type

instr start: 0 s.

into the parameter field. Play Script. The Sound instr still has variable parameters, so Kyma will ask you
to provide specific values for those parameters before playing the Sound. Be sure to specify the units of
the frequency and duration parameters (try 440 hz for ?freq, 1.5 s for ?dur, and 1 for ?left). If you
make a mistake in supplying these values; select Reset environment from the Info menu and play Script
again. You should hear one of the Celtic harp samples at 440 hz in the left speaker.

You can set the value of a variable parameter from the Script by typing the name of the variable, a co-
lon, and then a value for that parameter. For example, to create an event that starts instr at 0 s with a
frequency of 500 hz, a duration of 2 s, and a position centered between the two speakers, type Ctrl+L to
enlarge the field, and then type the following:

instr
start: 0 s
freq: 500 hz
dur: 2 s
left: 0.5.

Click the Accept button to accept this new Script.

There can be any number of spaces or carriage returns separating each parameter:value pair; the set of
parameter:value pairs should be terminated by a period. There should be no spaces between the pa-
rameter name and the colon; there must be a space between the colon and the parameter value.

Play the Sound as it now stands. Then try changing some of the parameter values specified in the
Script, playing the Script after each change.

Add another event to the script. Copy the first event, and paste it after the original event. Start the second
event at 1 s and give it the same duration and stereo position. The frequency should be one whole step
higher than that of the previous event. To compute this convert 500 hz to a nn (note number) and then to
add 2 half steps to it.

196

Now your script should look like this:

instr
start: 0 s
freq: 500 hz
dur: 2 s
left: 0.5.

instr
start: 1 s
freq: 500 hz nn + 2 nn
dur: 2 s
left: 0.5.

Try playing the Sound now.

Suppose you want to specify a whole-tone scale using the script language. We can define the pitch of any
event in the whole-tone scale as being the pitch of the previous event plus 2 half steps. Let’s encode this
as a Smalltalk loop. Type Ctrl+L to enlarge the Script field and replace the existing script with the fol-
lowing:

| p |
p := 3 c.
1 to: 5 do: [:i |

instr
start: (i - 1) s
freq: p
dur: 1 s
left: i / 5.

p := p + 2 nn].
Click the Accept button to accept this new Script, and play the Sound.

In this example, the Smalltalk variable p is declared at the beginning of the script between vertical bars.
Then it is initialized to the value 3 c (once octave below middle C). Notice that there must always be
spaces before and after the := in an assignment statement. The code within the square brackets is exe-
cuted five times; in the first iteration, i takes on the value 1, in the second iteration it takes on the value 2,
etc., until the last iteration when it takes on the value 5. An event is specified for each of the five itera-
tions. After the event specification, p is incremented by two half steps, and the loop begins again.

Now try the Sound again with the following changes (and explain in words what is going on):

| p |
p := 3 c.
1 to: 5 do: [:i |

instr
start: (i - 1 * 0.5) s
freq: p
dur: 1 s
left: i / 5.

p := p + 3 nn].

The starting pitch is a variable, p; now let’s make the number of notes a variable as well. Let’s call that
variable n. Since n is the number of times through the event loop, we can substitute n for 5 in the previ-
ous program, making sure that n is assigned an initial value.

| p n |
n := 5.
p := 3 c.
1 to: n do: [:i |

instr
start: (i - 1 * 0.5) s
freq: p
dur: 1 s
left: (i - 1) / n.

p := p + 3 nn].

197

Experiment with different values for p and n.

This is an adequate solution, except that we have to edit the Script every time we want to change the
values of p and n. Let’s make one final alteration to the Script that will enable us to control its parame-
ters.

Replace the Smalltalk variables, which are known only within Script, with Kyma variables, which can be
set from outside of Script. Now the script should look like this:

| p |
p := ?startPch.
1 to: ?nbrNotes do: [:i |

instr
start: (i - 1 * 0.5) s
freq: p
dur: 1 s
left: (i - 1) / ?nbrNotes.

p := p + 3 nn].

Play the Sound. Kyma will request values for ?startPch and ?nbrNotes. Type 3c for ?startPch and
10 for ?nbrNotes. Change the name of Script to pattern, and close the Sound editor, saving the changes
that you have made. Save your Sound file as well.

Duplicate pattern, and then edit duplicateOfPattern by double-clicking on it. First, change its name to
patternMaker. Then replace instr with pattern by dragging pattern from the Sound file window onto
instr in the signal flow diagram of patternMaker. Then modify the Script of patternMaker to read:

| p |
p := 4 c.
1 to: 5 do: [:i |

pattern
start: (i - 1) s
startPch: p
nbrNotes: 5.

p := p - 2 nn].

Play this Sound. What was a script in pattern is now being treated as an instrument in patternMaker .
There is a blurring of the distinctions between the definitions of “instrument” and “score” in Kyma. In
their place are structures built up out of other structures; how you choose to name these structures and
how you choose to define “high-level” versus “low-level” is up to you.

Now change the initial pitch value to 0 nn,

| p |
p := 0 nn.
1 to: 20 do: [:i |

pattern
start: (i - 1) s
startPch: p + !Pitch
nbrNotes: 5.

p := p - 2 nn].

Play patternMaker and play trills on the MIDI keyboard. Use Ctrl+R to restart the Sound on the Capy-
bara without having to load it again. At compile time, fixed values of p plus the Event Value !Pitch are
substituted into copies of the Sample. Since the fixed values of p are so small, they are like offsets to the
pitches that you are supply from the MIDI keyboard.

198

Now use a continuous control on the frequency. Since the continuous controllers are in the range from 0
to 1, multiply the value of the controller by the full range for MIDI notes: 127 nn

| p |
p := 0 nn.
1 to: 20 do: [:i |

pattern
start: (i - 1) s
startPch: p + (!Frequency * 127 nn)
nbrNotes: 5.

p := p - 2 nn].

As a final modification to patternMaker, let’s add a random offset to each starting pitch. Change the ini-
tial value of p back into the audible range and add a random value between minus two half steps and
plus two half steps. To do this, multiply the random number (that lies in the range of (0,1)) by 4 (so that
it lies in the range from (0,4)). Then subtract 2 (so that it lies in the range of (-2,2)). Make sure to in-
clude the units of nn so that the number is interpreted as the number of half steps.

| p rando |
rando := Random newForKymaWithSeed: 2967.
p := 5 c.
1 to: 20 do: [:i |

pattern
start: (i - 1) s
startPch: p + (rando next * 4 - 2) nn
nbrNotes: 5.

p := p - 2 nn].

Now that you have a basic loop structure, you can start experimenting with other ways to construct com-
plex Sounds algorithmically.

Other examples of using Scripts to construct Sound structures can be found in the Sound files that came
with Kyma (for example, the Sound called homemade reverb in the file called delays, chorusing, re-
verb).

Remember that a Script constructs a Sound first and then plays it. The Smalltalk code is not executed
while the Sound is playing.

Parameter Transformers: Symbolic Sounds
In the last tutorial, we used a Script to generate multiple copies of a Sound that had variable parameters.
This tutorial demonstrates how to use a ParameterTransformer to modify the parameters of a Sound that
already exists.

199

Drag a ParameterTransformer from the Algorithms category of the system prototypes window into your
Sound file window. Edit it by double-clicking on it, and replace its Input with a LimeInterpreter. A
LimeInterpreter reads binary files generated by Lippold Haken’s Lime music notation program§ and
“plays” them using Kyma Sounds. Try playing the LimeInterpreter. If Kyma asks you to locate a Lime
binary called waterbirds, you can find it in a folder called Others within the Examples folder.

Now modify the Transformation parameter of ParameterTransformer to:

snd frequency: 100 hz.

Play ParameterTransformer. What is the effect of this Transformation? The ParameterTransformer
looks through the entire Sound structure and sets any parameters named Frequency to 100 hz. The
value of any named parameter can be changed by a ParameterTransformer. For example, try the follow-
ing Transformation:

snd sample: 'celtHrp2a'.

The ParameterTransformer reaches into all the Sounds to the left of it in the signal flow diagram and
changes any parameters named Sample to 'celtHrp2a'.

Now try changing all the durations. Change the Transformation to:

snd duration: 0.1 s.

Suppose you wanted to shift all the frequencies down by three half steps. The new frequency is a function
of the old frequency; to access the current value of a parameter, type snd followed by the name of the
parameter. In the following example,

snd frequency isNil ifFalse: [
snd frequency: (snd frequency nn - 3 nn)].

the ParameterTransformer steps through each Sound in the structure, gets its Frequency, converts it to a
note number, subtracts three from it, and sets the frequency parameter to the new value. If any Sound in
the structure does not have Frequency as a parameter, it will return nil as its frequency. To assure that
only non-nil values for frequency are used, the transformation is only executed when snd frequency is
not nil.

All of these transformations are symbolic, based only on the name of the parameters. So, for example, this
last transformation would have no effect on a Sound that did not have Frequency as a parameter. The
transformation changes the values of parameters in the same way that you might edit the values in the
parameter fields in the Sound editor before playing the Sound. A ParameterTransformer changes the ini-
tial values of the parameters before the Sound is played; it does not operate on the audio output of a
Sound.

§ Lime is available at http://datura.cerl.uiuc.edu.

200

Now let’s make a transformation that depends on the start time of the Sound being transformed. The re-
served word time always contains the time offset of snd in microseconds. The reserved word
totalDuration contains the total duration of the ParameterTransformer’s immediate input; it too is
given in microseconds. Try the following Transformation:

snd frequency isNil ifFalse: [
snd frequency:

(snd frequency nn -
(3 * (time / totalDuration)) nn)].

As time progresses from zero up to the number of microseconds in the total duration, the value of (time
/ totalDuration) progresses from zero up to one. The frequency of the first note has zero half steps
subtracted from it: no change at all; however, as time goes on, each subsequent note has larger and larger
fractions of 3 half steps subtracted from its pitch.

Not only can a new parameter value depend on time and its current value, it can also depend on the val-
ues of other parameters or combinations of parameter values. Try the following Transformation:

snd duration isNil ifFalse: [
snd frequency: snd duration inverse * 100].

This transformation sets the Frequency to 100 times the inverse of whatever the Duration happens to
be.

Next, open the Sound file ParameterTransformer from the Advanced folder. Try playing the Sound
independent partials ; when it asks for a frequency, enter 100 hz. Inspect independent partials ; by dou-
ble-clicking on it and looking at the Frequency field of each Oscillator. The first Oscillator’s frequency
is ?frequency, the second one is ?frequency * 2, the third is ?frequency * 3, etc. When you play
independent partials, it sounds like a single, harmonic tone.

Edit the Sound called transformIndependentPartials by double-clicking on it. The Transformation
parameter has a long comment, after which it should read:

snd frequency isNil ifFalse: [
snd frequency:

snd frequency nn + (110.0 hz * time / totalDuration)].

Reading this, we would expect that each repetition of independent partials will be at a higher frequency.
When you play transform independent partials you hear, as expected, the frequencies getting higher with
each repetition. What you may not have expected is that the sound starts out harmonic and becomes in-
harmonic with subsequent repetitions. Why is that?

The sequence of events is:

1. Kyma sets the Oscillator frequencies to 100 hz, 200 hz, etc.

2. The ParameterTransformer adds a multiple of 110 hz to each repetition of independent partials.

Since it adds a fixed amount to each frequency, the harmonic relationship is no longer maintained. For
example, if you start out with 100, 200, and 300 hz and then you add 110 to each frequency, the result is:
210, 310, and 410 hz. Since 410 hz is not a multiple of the lowest frequency, 210 hz, it is not a harmonic of
210 hz.

Is it possible to transform the frequencies in such a way as to maintain the harmonic relationship? One
way would be to multiply the frequencies by a constant rather than adding a constant value to them. An-
other way is to create a new Sound class that maintains the harmonic relationship no matter what.

Select independent partials in the Sound file window and choose New class from example from the Ac-
tion menu. When Kyma asks for a value for ?frequency, enter 100 hz. Change the name of the new
class from newClassFromExample to HarmonicPartials. Then uncheck Expand; this tells the
Sound: Apply the transformation to yourself before you expand. If you leave Expand checked, then the
Sound will expand first and then apply the transformation to the expanded version of itself.

Close the class editor and answer that you want to save an instance of the new class; you should see a
new Sound called HarmonicPartials in your Sound file window. In the open Sound editor, replace inde-

201

pendent partials with HarmonicPartials. Now play transform independent partials. The frequencies in-
crease with each repetition, as before, but this time, the partials stay harmonic. Why does your new class
behave differently from independent partials? It’s because your new class has only one parameter: Fre-
quency. You apply a transformation to the frequency, adding something to it. Then, your Sound
computes its other frequencies based on that transformed frequency (by multiplying it by 2, 3, 4, etc.).

Part III: Exercises

Time/frequency Scaling using Additive Resynthesis and the Spectrum Editor
The first section is a step-by-step example of how you can use spectral analysis and resynthesis to scale
the duration or frequency of your own voice.

Part I: Record your Voice
1. Use the Tape Recorder tool to record your own speaking voice. Come up with a short, meaningful or

humorous phrase (or grab the nearest book or magazine and read a few lines).

2. Use the Spectral Analysis tool to create two spectral analyses (both the straight and the harmonic ver-
sion) of your recorded speaking voice. The analysis tool also gives you a Sound for each analysis
which you can transfer into a Sound file window. Save the Sound file window to disk before pro-
ceeding.

Part II: Time/frequency Alterations
1. Double-click on one of the SumOfSines created by the spectral analysis tool. Change the Duration to

on. Set up the sound to be triggered by the MIDI keyboard. To do this, click in the Gate field, press
Escape, and play two keys simultaneously on the MIDI keyboard. Gate should now have
!KeyDown in it. Now play the sound (using Ctrl+Space Bar).

 Try playing the MIDI keyboard to make sure the trigger works.

2. Time-stretch the resynthesis to ten times its original duration without changing its frequency. To do
this, multiply the value in the OnDuration field by 10, for example, it might look something like this

 5 s * 10

 Load the Sound using Ctrl+Space Bar and trigger it using the MIDI keyboard.

3. Experiment with different time-stretching factors. Then set the OnDuration back to what it was
originally in preparation for doing frequency scaling.

4. Control the frequency of the speech from the MIDI keyboard without changing its duration. To do
this, click in the Frequency field, press Escape, and play one key on the MIDI keyboard. This
should set Frequency to !Pitch. Load the Sound using Ctrl+Space Bar. Then play different keys
on the MIDI keyboard. Which one gives you the original recording back without frequency altera-
tions?

Part III: Spectrum Editor
By opening a spectrum editor on an analysis, you can see a graphic representation of the spectrum, listen
to individual harmonics, and modify the frequency or amplitude of selected harmonics.

1. Open a spectrum editor on the harmonic analysis you did in the first part of this exercise. You can do
this in several ways:

♦ choose Open… from the File menu, set the file type to Spectrum file, and select the name of
the file in the file dialog

♦ double-click on the name of the spectrum file in the File Organizer

♦ edit the SumOfSines, then click the disk button next to Analysis0 while holding down the
Command or Control key.

2. Once the spectrum editor opens, use the leftmost button to play a resynthesis based on this analysis.
Then use the mouse to grab the yellow scrub bar and move it back and forth across the display. Next,
try controlling the scrub bar by using pitch bend on the MIDI keyboard.

3. Press 1 on the computer keyboard to select and play track 1, the fundamental. Then try track 2, 3, etc.

 Click the selection criteria button (it is the fourth one from the right and looks like a bunch of tracks
with one selected). This lets you select several tracks at once according to some criteria. Try listening
to different selection criteria.

F1

F12

203

4. Now, “monotonize” all of the octave harmonics. Click on the track filter button (the third one from
the right). These operate on whatever harmonics are currently selected. Choose Replace Frequency
with average. This will replace the time-varying frequency of each track with a single frequency: the
average frequency the track had over the entire length of the analysis.

5. Compare the sound of all harmonics against the octave harmonics alone using the leftmost play but-
ton and the one right next to it, the play-selection button.

6. Now save the monotonized octave harmonics in another analysis file. The octave harmonics should
still be selected. “Copy” these harmonics using Ctrl+C. Kyma will ask you to name the new analysis
file and save it somewhere (name it something like “oct harm only”).

 Click in your Sound file window to bring it to the front and use Ctrl+V to paste a new SumOfSines
based on the octave harmonics file into the window. Then you can close the spectrum editor without
saving the changes.

7. Our next task is to try to create an endless glissando effect based on the Shepard’s tones audio illu-
sion.

 The idea is that we want to change the Frequency of the SumOfSines so that it repeatedly does a
smooth glissando from a very low to a very high frequency. Double-click the SumOfSines. Set its Du-
ration to on, and check the Loop box. Paste an Oscillator from the prototype strip into the
Frequency field and scale and offset it as follows:

 Oscillator L * (300 - 30) hz + 30 hz

 This will scale the Oscillator to the range of 30 to 300 hz.

 Now we have to change the Oscillator so that it repeats once every 15 seconds and so that it uses
Ramp rather than Sine as its wavetable. That will give us the repeating glissando function. Double-
click in a white space of the signal flow diagram. Edit the Oscillator parameters, changing the Wave-
table to Ramp and the Frequency to 15 s inverse (because the period of repetition in seconds is
the inverse of frequency in hertz).

 Listen to the SumOfSines so far. In order to avoid the discontinuity when the ramp goes back to zero
every 15 seconds, let’s put a repeating amplitude envelope on the whole thing, so it fades in and
fades out on each repetition.

8. To make the envelope, paste another Oscillator from the prototypes into the Envelope field. Edit
the Oscillator, changing its Wavetable to LinearEnvelope and its Frequency to 15 s inverse.

 Now play the SumOfSines again. This time, it should fade in and fade out on each repetition.

9. The next step is to add another SumOfSines. This one should have the same kind of glissando but it
should start halfway through the first SumOfSine’s glissando. The idea is to gradually fade in a new
glissando, just as the first glissando is reaching its top and it is fading out.

 To add another Sound, we have to use a Mixer. Drag one from the prototypes and place it on the line
between the SumOfSines and the speaker. Replace its default inputs with the SumOfSines. Then drag
the SumOfSines from the signal flow area into the Mixer’s Inputs field. You should end up with a
Mixer of two SumsOfSines. Change the Mixer Left and Right attenuators to 1, rather than the de-
fault 0.5.

 So far we have two identical SumOfSines. But we need to delay both the glissando and the envelope
Oscillators that control the frequency and amplitude of the second SumOfSines. Click on the tab on
the left edge of the second SumOfSines while holding down the Command or Control key so it
shows all of its inputs.

 Insert a TimeOffset between the envelope oscillator and the SumOfSines. Then insert another
TimeOffset between the glissando oscillator and the SumOfSines. We want to set the delay to half the
duration of the glissando. So set the SilentTime in each of the TimeOffsets to 7.5 s.

10. Try listening to the Mixer. It should give at least something of the illusion of an endlessly rising pitch,
because as the higher octaves fade out, some lower octaves are fading in below them.

F13

F1 F2

204

Creating a Wavetable using the Sample Editor

In this exercise, you will create a wavetable that contains an impulse response, useful for making percus-
sive sounds.

First, open the sample editor. Choose New… from the File menu, set the file type to Samples file , and
press Enter.

The upper half of the sample editor lets you do the usual kinds of cut, copy, and paste operations (see
Sample Editor on page 501 for full details), and the lower half provides templates for generating new
wavetables or segments of wavetables.

Scroll in the template list until you find the Impulse Response template. Select all of the waveform in the
graphic waveform editor (the upper half) by clicking once in the waveform area and then by choosing
Select all from the Edit menu. Now click the Insert button. Insert replaces the selection in the upper half
with whatever you have specified in the template.

The Impulse Response template takes the specified center frequencies, bandwidths, and amplitudes of
several formants, and it constructs a filter that matches your specification; when you click Insert, it inserts
the response of that filter to a single impulse. This can be an interesting template to play with for creating
wavetables for percussive sounds.

Try changing some of the center frequencies and then click Insert again. If the waveform is clipped or
very small in amplitude, you may have to adjust the value of Gain as well. To hear the result, click on the
play button above the graphic editor.

205

Continue experimenting with different values until you are satisfied with your percussive sound. Then
close the editor, and confirm that you want to save your new wavetable. Choose the file type, the number
of channels, and the number of bits per sample, press Enter, then enter a name for your wavetable.

From the system prototypes, drag a Sample into a Sound file window and double-click it to edit it. Set
Duration to on, Frequency to !Pitch, Gate to !KeyDown, and use the disk button next to the Sam-
ple parameter to locate your newly created impulse response. Try playing the Sample. Try inserting a
Waveshaper between the Sample and output speaker icon to make the audio output louder through dis-
tortion.

Now substitute an Oscillator for the Sample; set its Duration to on and its Frequency to !Frequency
* 50 hz and its Wavetable to your impulse response wavetable. Play the Oscillator and control
!Frequency using the virtual control surface.

Unlike a Sample, which plays through its wavetable once each time you trigger it, an Oscillator reads
through its wavetable cyclically, over and over again. Depending on the Frequency you specify, an Os-
cillator will step through the wavetable using larger or smaller increments; this increases or decreases the
rate at which you hear the waveform repeating, thus changing the perceived pitch of the oscillator.

Kyma Quick Reference

System Prototypes Window

The prototypes are categorized by function.
Clicking on a category name here changes the list
of prototypes that appears at the right.

Some Sounds appear in more than one category.

Select a prototype by clicking on its icon.

This Sound prototype is selected. The Action and
Info menu operations refer to this Sound.

Press the Control or Command key along with
the Space Bar to compile, load and start this pro-
totype.

Sound File Window

This Sound is selected.
The Action and Info menu
operations refer to this
Sound.
Press the Control or
Command key along with
the Space Bar to compile,
load and start the selected
Sound.

This Sound is being edited.

Double-click any Sound’s
icon to edit its structure
and parameters.

Click any Sound icon to select it. Press En-
ter to change the name of the Sound.

A Sound can be dragged
from any window into
this window.

207

Sound Editor Window

These are the parame-
ters of the Sound dou-
ble-clicked in the signal
flow diagram.

Double-clicking a Sound in the signal
flow diagram causes the Sound’s pa-
rameters to be shown below, and causes
its icon to be replaced with this pattern.

This is the signal flow
diagram of the Sound
being edited.
A stereo signal travels
along each line from left
to right.
A thick line with a
number along it indi-
cates that a signal is
used more than once.

The Action and Info menu
operations refer to the se-
lected Sound.
Control or Command with
Space Bar compiles, loads,
starts the selected Sound.

Drag this line up or
down to control the
space devoted to the
signal flow relative to
the parameters.

Click any Sound’s icon
to select it. Press Enter
to change the name of
the Sound.

Click the close box to close
the editor. Use Save from the
File menu to save to disk
changes made in this editor.

Working with the Signal Flow Diagram

To replace a Sound with a copy of another Sound, drag
the other Sound on top of an icon. Hold down the Con-
trol or Option key to replace a Sound with the other
Sound without making a copy. Alternatively, use Paste
or Paste special… from the Edit menu.

Click and drag an icon
to reposition it. Hold
down the Shift key to
move the Sound’s inputs
at the same time.

To delete a Sound, click on
its icon to select it, then
press Delete or choose
Clear from the Edit menu.
Undo from the Edit menu
will undo the deletion.

Click on the icon’s tab
to show hidden inputs.
Clicking again will hide
the inputs.

To insert a Sound into
the signal flow, drag the
Sound onto a line con-
necting two Sounds.

The black border added
to this field indicates
that it is the active field.
The Edit menu opera-
tions always refer to
the active field. Click in
a field to make it active.

208

Working with the Parameter Fields of a Sound

This Sound is being edited.
Double-click a different Sound
to edit its parameters.

A parameter field with a
cyan background and italic
name is a hot parameter. Hot
parameters can be altered
while the Sound is playing.

This is the kind of Sound being edited.
Click here for a description of the Sound
type and its parameters.

This the name of one of the Sound’s pa-
rameters. Click on the name for help on
how to set the parameter.

A parameter field with a
white background and
non-italic name is a con-
stant parameter. Con-
stant parameters have a
fixed value for the dura-
tion of the Sound.

The duration of a Sound
is how long it runs on
the Capybara, and is
found by taking the
longest duration of any
input or parameter of the
Sound.
Many Sounds have a
Duration parameter.
Use ON (or on) to keep a
Sound turned on indefi-
nitely. Or, use a value
with units, for example,
10 s or 1.5 h.

Hot parameter fields can contain
Sounds. To insert a Sound into a
hot parameter field, Copy the
Sound, and then Paste it into the
field. Use L for left, R for right, or M
for mono mix of the channels.

Click this button to
choose a file from a
standard file dialog.
Hold down the Control
or Command key while
clicking the button to
open an editor on the
file.

Hot parameter fields can
contain Event Values
controlled by MIDI or
the Virtual Control Sur-
face. Event Values can
be inserted by hitting the
Escape key and moving
a MIDI controller or
playing the MIDI key-
board, choosing Paste
hot… from the Edit
menu, or by typing an
exclamation point (!) fol-
lowed by the name of the
Event Value.

If a parameter field flashes when you try to play
the Sound, it indicates an error in the value or
expression in the field.

209

Signal inputs to a Sound appear in both the signal flow diagram and in the Sound’s parameters.
To change the input, Cut, Copy , Paste, or drag Sounds into the parameter field, or onto the icon
of the old input in the signal flow diagram.
The signal flow diagram will not be updated until you double-click a different Sound or double-
click in the background of the signal flow diagram.

A parameter field can be set to
!Pitch, !KeyDown, or !KeyVel-
ocity by hitting Escape and
playing 1, 2, or 3 keys simultane-
ously on the MIDI keyboard.

The black border added to this
field indicates that it is the active
field. The Edit menu operations
always refer to the active field.
Click in a field to make it active.
Alternatively, press Tab to ad-
vance the active field through each
of the fields.

Can’t see everything in a parame-
ter field? Choose Large win-
dow… from the Edit menu to ex-
pand the field to full screen size.

210

Specifying Units in Parameter Fields
Example Meaning

on about 2 years

3 days 3 days (4320 minutes)

2.1 h 2.1 hours (126 minutes)

3 m 3 minutes

4.7 s 4.7 seconds

100 ms 100 milliseconds (0.1 seconds)

100 usec 100 microseconds (0.0001 seconds)

5 samp 5 samples

4 beats 4 beats at current value of MM

01:37:42.7 SMPTE 1 hour, 37 minutes, 42 seconds, and 7 frames

440 hz 440 hertz

60 nn MIDI note number 60 (middle C)

4 c note number 60

4 c sharp note number 61

4 c flat note number 59

4 do note 60 (from solfege scale: do, re , mi, fa , so, la , ti)

default “natural” duration or frequency of sample file

4 c removeUnits 60, the value with units removed

Time Functions in Parameter Fields
Message Explanation Example

ramp ramp from 0 to 1 over 1 second when triggered !KeyDown ramp

ramp: same as ramp:, except use given duration !KeyDown ramp: 10 s

repeatingRamp same as ramp, except repeats until trigger turns off !KeyDown repeatingRamp

repeatingRamp: same as ramp:, except repeats until trigger off !KeyDown repeatingRamp: 2.3 s

fullRamp ramp from -1 to 1 over 1 second when triggered !KeyDown fullRamp

fullRamp: same as fullRamp:, except use given duration !KeyDown fullRamp: 10 s

repeatingFullRamp same as fullRamp, except repeats until trigger off !KeyDown repeatingFullRamp

repeatingFullRamp: same as fullRamp:, except repeats until trigger off !KeyDown repeatingFullRamp: 2.3 s

bpm: periodic trigger output at given rate when trigger on !KeyDown bpm: 60

bpm:dutyCycle: same as bpm:, except output duty cycle is given !KeyDown bpm: 30 dutyCycle: 0.60

random random numbers generated at given time intervals 1 s random

nextRandom random number generated on each trigger !KeyDown nextRandom

smooth: linearly ramp to new value over the given duration !cc01 smooth: 0.5 s

smoothed same as smooth: with an argument of 100 ms !cc01 smoothed

211

Real-Time Expressions in Parameter Fields
Message Explanation Example Value

+ addition 3.0 + 2.0 5.0

- subtraction 3.0 - 2.0 1.0

* multiplication 3.0 * 2.0 6.0

/ division 3.0 / 2.0 1.5

// truncating division 3.0 // 2.0 1

mod: modulo 3.0 mod: 2.0 1

negated additive inverse 3.0 negated -3.0

inverse multiplicative inverse 3.0 inverse 0.3333333

** exponentiation 3.0 ** 2.0 9.0

sqrt square root 2.0 sqrt 1.4142

exp powers of e 1 exp 2.71828

twoExp powers of 2 3 twoExp 8

log logarithm base 10 100 log 2.0

twoLog logarithm base 2 8 twoLog 3.0

db decibel conversion -20 db, -6 db 0.1, 0.5

inSOSPitch SOS pitch conversion 11025.0 inSOSPitch 0.5

truncated truncation 3.2 truncated, -3.6 truncated 3, 4

rounded round to nearest integer 3.2 rounded, 3.6 rounded 3, 4

abs absolute value -3.0 abs, 3 abs 3, 3

sign sign -10 sign, 0 sign, 10 sign -1, 0, 1

clipTo01 clip to lie in (0, 1) interval -5 clipTo01, 0.5 clipTo01, 1.2 clipTo01 0, 0.5, 1

vmin: select minimum value 3 vmin: 2 2

vmax: select maximum value 3 vmax: 2 3

cos cosine in radians 3.14159 cos -1

normCos cos(πx) 1 normCos -1

sin sine in radians 3.14159 sin 0

normSin sin(πx) 1 normSin 0

asLogicValue 0 is false, 1 is true -1 asLogicValue, 2 asLogicValue 0, 1

eq: equal 2 eq: 3 0

ne: not equal 2 ne: 3 1

gt: greater than 2 gt: 3 0

lt: less than 2 lt: 3 1

ge: greater or equal 2 ge: 3 0

le: less or equal 2 le: 3 1

neg:zero:pos: choose value -3 neg: 0.1 zero: 0.2 pos: 0.3 0.1

true:false: conditional evaluation 0 true: 2 twoExp false: 3 twoExp 8

of: array indexing 3 of: #(0.1 0.2 0.3 0.4 0.5 0.6) 0.4

212

Virtual Control Surface

Explanatory text comes from
Annotation Sound.

Spectrum and Waveform
come from SpectrumAnalyzer-
Display and Oscilloscope-
Display Sounds or by choosing
Spectrum analyzer or Oscil-
loscope from the Info menu.

All other controls come from
Event Values in the Sound (for
instance, !Amp or !Reset). If a
MIDI device is mapped to the
Event Value, it can be con-
trolled through MIDI or by ma-
nipulating the graphic control.
Event values can be displayed
as faders, small faders, gates, or
toggles.
For faders, use mouse to move,
or enter text in box and press
Enter. Tab cycles through en-
tries.

This is an example of a gate.

This is an example of a toggle.

The axes of the spectrum are linear frequency
and dB magnitude. Magnitude and frequency of
the mouse location is displayed in upper right.

The axes of the oscilloscope are time and
amplitude. The amplitude of the mouse
location is displayed in upper right.

Horizontal zoom in/out Vertical zoom in/out

Global and Local Maps

!EventValue is: `EventSource. Use EventValue as the name of EventSource.

!EventValue is: (`EventSource channel: 2). Specify that EventSource comes from MIDI
channel 2. The channel must be between 1 and
16. If this option is omitted, the default MIDI
channel will be used.

!EventValue is: (`EventSource min: 100 max: 500). Scale the (0,1) range of EventSource to
(100,500).

!EventValue is: (`EventSource min: 0 max: 10 grid: 2). Constrain the allowable values of EventSource
to multiples of 2 between 0 and 10.

!EventValue is: (`EventSource taper: #log). Map the (0,1) range of EventSource with a
log taper. Either #log or #linear can be used.
If this option is omitted, #linear will be used.

!EventValue is: (`EventSource displayAs: #smallFader). Show EventValue as a small fader in the virtual
control surface. The possible display types are
#fader, #smallFader, #gate, #toggle, or
#nothing. If this option is omitted, #fader will
be used.

!EventValue is:
(`EventSource

channel: 2;
min: 100 max: 500 grid: 0.1;
taper: #log;
displayAs: #smallFader).

Combine any of the above by separating them
with a semicolon.

See Sources of Event Values on page 473 for a list of allowable event sources.

213

MIDI Script Messages

Example Remarks

self keyDownAt: 1 s duration: 0.25 s frequency: 100 hz velocity: 0.8. Fully specified note event: !Key-
Down is 1 at 1 s and 0 at 1.25 s,
!KeyNumber is set to 100 hz nn
removeUnits, !KeyVelocity is
set to 0.8

self keyDownAt: 1 s duration: 0.25 s frequency: 4 c sharp. !KeyVelocity defaults to 1

self keyDownAt: 1 s frequency: 60.2 nn duration: 0.25 s. Alternate order of line above

self keyDownAt: 1 s duration: 0.25 s velocity: 0.8. !KeyNumber defaults to mapper’s
LowPitch parameter

self keyDownAt: 1 s duration: 0.25 s. !KeyNumber defaults to mapper’s
LowPitch parameter, !Key-
Velocity defaults to 1

self keyDownAt: 1 s. !KeyNumber defaults to mapper’s
LowPitch parameter, !Key–
Velocity defaults to 1, duration
defaults to 10 ms

self controller: !Volume setTo: 0.5 atTime: 5 s. !Volume jumps to 0.5 at 5 s

self controller: !Volume slideTo: 1 byTime: 6 s. !Volume slides to 1 by 6 s in 10
steps

self controller: !Volume slideTo: 0.75 steps: 100 byTime: 10 s. !Volume slides to 0.75 by 10 s in
100 steps

self controller: !Volume slideTo: 0 stepSize: 0.01 byTime: 20 s. !Volume slides to 0 by 20 s in
steps of size 0.01

See MIDI Scripts on page 522 for information about EventCollections.

File Organizer

Click file to select it.
Use arrow keys to move
selection up and down
within the window.

Double-click file to edit
it. Press Control or
Command along with
Space Bar to hear the
file. Drag the file into a
Sound file window to
create a Sound that uses
this file.

Information on the se-
lected file or folder.

Files and folders are listed
here with color coding.

Underline: open folder

Gray: unopened folder

Turquoise: sample file

Purple: spectrum file

Red-brown: GA file

Yellow-orange: RE file

Green: MIDI file

Double-click a folder to
show or hide the contents of
the folder.

214

Spectrum Editor

Overview

Gray tracks have zeroed
(cleared) amplitudes.

Each line represents a sine
wave track . Color indicates
the amplitude, vertical po-
sition indicates the fre-
quency.

Brightly colored tracks are
selected.

Scrub bar can be moved
with the mouse, with pitch-
bend from MIDI, or left or
right arrow keys.

Markers indicate labeled
time points, and time seg-
ments for cutting or audi-
tioning.

Navigating and Selecting

Select by clicking on indi-
vidual tracks, or by draw-
ing a box around a region
to select.
Hold the shift key to add to
or remove from the current
selection.

Zoom all the way out.

Hold down the Control or
Command key while
drawing a box to zoom in
on a specific region.

Information is displayed
here about the track under
the crosshair cursor.

Switches between time-
frequency and time- ampli-
tude display modes.

Switches between isolated-
dot and connected-dot be-
tween spectral frames.

Plays entire spectrum.

Plays selection.

Plays selection between
start and end markers.

Plays selection outside of
start and end markers.

Select track between
1 and 10 by pressing
a number key (1-9, 0).
Up and down arrow
keys select next larger
or smaller track.

215

Markers

Click marker to select it.
Scrub bar moves to marker
when selected. Press Enter
to rename marker; use De-
lete or Cut from Edit menu
to remove marker.

Selected marker’s time and
name are displayed here.

Creates marker at scrub
bar location.

Creates start marker at
scrub bar location.

Creates end marker at
scrub bar location.

Sets pre- and post-roll play
times.

Start and end markers.

Editing

Select tracks and frames
based on various criteria.

Modify the selection in
various ways.

Cut the time between the
start and end markers.

Switch in and out of draw-
ing mode .

Zero the amplitude of the
selection by choosing
Clear from Edit menu.
Create a Sound to play the
selection by choosing Copy
from Edit menu, then Paste
into Sound file window or
Sound editor.

216

Sample File Editor

This section is used to
generate new samples al-
gorithmically.

This is the waveform of
the entire file. Two chan-
nels are displayed, even
when editing single chan-
nel files.

This box indicates the region of the
file that is visible in the middle sec-
tion.
Clicking and dragging with the mouse
will change the visible region.

These marks indicate the
current selection.

Top shows peak displayable
level in the middle section.
Bottom shows the duration,
start and end of the selection.

The samples between
these lines are selected.
Click and drag with the
mouse in this area to
change the selection.

Time zoom out Time zoom in

Selection zoom in Level zoom out

Move one page to left

Paste sample from disk

Play selection

Level zoom out

Options…

Move one page to right

Evaluate template with
the given parameters and
replace selection with the
result.

Selected template for al-
gorithmic sample creation.
Use arrow button to se-
lect from the list of tem-
plates.

Parameters for template

Edit menu Cut, Copy ,
Paste, Trim, and Clear
selection when this is ac-
tive field (indicated by
black border).

217

Compiled Sound Grid

Drag Sound into square to
associate it with the MIDI
program number in upper
left. Double-click to edit the
Sound. Press Enter to rename
the Sound.

Enter MIDI channel on which
to receive program change
messages and press Enter.

Choose Compile to disk…
from the Action menu to
precompile the Sounds in the
grid. Use On to start and stop
the grid.
When On is checked, click in
a square or send a MIDI
program change message to
load and start the Sound.

Status from the File Menu

Indicates amount of memory in use.

Indicates global map, A/D usage,
the MIDI channels and Event Val-
ues in use by last Sound loaded.

Click Recycle if Memory Use gets
too high (bar is colored red).

Status from the DSP Menu

Time since last Sound was
started. Does not update after
Sound ends or when DSP is
stopped.

Last time received in MIDI
time code messages received
by DSP MIDI input.

Choose a sample rate from
the pull down list.

Choose analog or digital
audio interface from the pull
down list.

Click this button to configure
the equalizer on the analog
output.

Approximate measure of cur-
rent computational load on
each expansion card. Each
line indicates approximately
20% usage.

Input and output level indi-
cators. Each line is 10 dB.

Output peak level indicator.
Click mouse in window to
clear. Possible clipping if it
shows >0<. Input has a peak
level indicator as well.

Prototypes Reference

AbsoluteValue

Math Category
The output of an AbsoluteValue is the absolute value of its Input. (Choose Full waveform from the Info
menu to see that the output waveform contains only positive values, rather than values above and below
zero).

Input
This is the Sound whose absolute value is taken.

219

ADSR

Envelopes & Control Signals Category
Generates a traditional four-segment envelope with attack, initial decay, sustain, and release segments.
As long as Gate is 0, no envelope is generated. When Gate becomes positive, the attack and decay are
generated. The envelope continues to decay towards the SustainLevel until the Gate value returns to
zero at which time the envelope enters its release portion.

In a prototype with an Envelope parameter field (Oscillator, for example) you can use the ADSR as the
Envelope parameter. Envelope generators can also be used to control other parameters (such as
Frequency or OnDuration). To apply an envelope to any Sound, use the Sound and an envelope
generator as Inputs to the VCA prototype. (The VCA simply multiplies its two inputs by each other).

AttackTime
Time for the envelope to reach the maximum amplitude (attenuated by Scale) once it has been triggered.

DecayTime
Time for the envelope to decay from the maximum level down to the SustainLevel.

SustainLevel
Level that will be sustained for as long as Gate remains nonzero.

ReleaseTime
Time for envelope to decay from SustainLevel down to 0.

Type
Choose between linear envelope segments or exponential segments.

Scale
Overall level for the envelope. IF you have the Linear box checked, you can set Scale to a negative
value to generate envelopes that go from 0 down to a negative value. (Note that this makes most sense
when using the ADSR to control parameters other than amplitude, e.g. when using this as a pitch
envelope).

Gate
Enter a 1 in this field to make the envelope last exactly as long as the Sound is on.

If you use an EventValue (for example, !KeyDown) in this field, the envelope can be retriggered as often
as you like for as long as this Sound is on.

When Gate becomes positive, the envelope is started; when Gate becomes zero, the envelope is
released.

Legato
Legato affects the behavior of the envelope when triggered by the Gate field.

When Legato has a zero or negative value, the envelope will rapidly reset to zero before beginning the
re-attack. When Legato has a positive value, the attack will begin from the current envelope value
(without first resetting to zero).

220

AmplitudeFollower

Tracking Live Input Category
Follows the amplitude of the Input by taking an average of the absolute values of individual input
samples. This is similar to the RMS but requires less computation. TimeConstant controls how long the
average runs; thus, the longer the TimeConstant, the smoother the output (but the less quickly it can
respond to transients in the Input).

Input
This is the Sound whose amplitude is tracked.

TimeConstant
This controls the response time. Longer timeConstants result in smoother outputs at a cost of losing
some of the detail in the attacks. Short timeConstants result in outputs that respond more immediately to
attack transients but that may not be as smooth for the steady state portions. For a constant input at
maximum amplitude, this is the time required for the output to reach 60% of the full output amplitude.
(Note that the output may never reach the maximum possible amplitude since it is the average of the
squares of the amplitudes).

Scale
Attenuates the input amplitude.

221

AnalogSequencer

Sequencers Category
Generates sequences of note events and continuous controller values for EventValues in parameters of
the Input. There is a sequence of MIDI notenumbers, durations, duty cycles and velocities to supply MIDI
note events to the Input, and ExtraValues lets you supply a sequence of values for any continuous
controller EventValues in the Input’s parameters.

The length of all sequences is the length of the longest sequence; any shorter sequences will repeat their
final values in order to be as long as the longest sequence. For example, if you want all values in a
sequence to be 0.5, you need only enter the number a single time, because it will be repeated for as
many times as necessary to make it as long as the other sequences.

If Step is a constant 1, then the Durations and the DutyCycles are used to determine when !KeyDown
events should be generated and how long each key should remain down. If no other units of time are
used and if the value of Rate is 1, the numbers in the Durations sequence are interpreted in seconds.
Rate is a divisor on the length of each duration, so if Rate is greater than 1, the durations will be shorter,
and if Rate is less than 1, they will be longer.

Use Step to step through the sequences one by one, according to a trigger. For example, you could use
!KeyDown to control the step rate from a MIDI sequencer, or you could use 1 bpm: (!Speed * 1024) to
control it with an internal metronome, or you could paste in an audio signal that has been passed through
an amplitude follower and a threshold to trigger each element of the sequences in synch with an audio
signal, or you could use !TimingClock to step using the MIDI clock from a software sequencer or external
synthesizer.

To trigger using the Step field, you should set all Durations to the same value; this value (taken along with
the value of DutyCycle and Rate) will determine the duration of each note, and the Step trigger will
specify the onset time of the note. The value you pick for the Durations will act as a kind of "mask" on the
speed of the step triggers. Notes cannot be triggered any more often than the minimum values specified
in the Durations field. This can be helpful if you are triggering from the !TimingClock (24 triggers per
beat) or an audio signal with lots of peaks in it, because it will force the sequencer to ignore triggers that
occur faster than at the desired rate.

Input
EventValues anywhere in this Sound can be controlled by the arrays of key events or continuous
controller values sequenced by this AnalogSequencer.

Left
Attenuator on the left channel amplitude.

Right
Attenuator on the right channel amplitude.

Gate
When this value changes from 0 to 1, it restarts the sequences. If Loop is checked, the sequences will
repeat for as long as Trigger is nonzero.

Use a constant value of 1 to get an infinitely repeating sequence. Use an EventValue such as !KeyDown
to restart and stop the sequence interactively.

222

Step
Step to the next set of values in the sequence when this value changes from a zero to a number greater
than zero. If Step is changing faster than the specified durations, some of the steps will be ignored. In
other words, you can use the sequence of durations as a kind of mask, constraining the minimum
durations to be at least those specified in the duration sequence.

Rate
This is the rate at which the sequences are traversed. When Rate is 1, all Durations are interpreted as
seconds, when Rate is 2, the Durations are half as long, and when Rate is 0.5 the Durations are twice as
long.

Loop
Check this box to loop back to the StartIndex once the EndIndex has been reached.

StartIndex
This is the starting position of the sequence. Each position in the sequence is numbered from 0 up to the
length of the sequence minus 1.

EndIndex
This is the ending position of the sequence. Each position in the sequence is numbered from 0 up to the
length of the sequence minus 1.

Polyphony
The sequencer is monophonic, but this allows some overlap between the release of one event and the
attack of the next. Polyphony specifies how many events can be heard overlapping each other at any
one time.

Durations
A sequence of durations. If no units are used, the numbers are assumed to be in seconds. Each
Duration, in conjunction with the corresponding DutyCycle, is used to determine when to send each
!KeyDown and how long to keep it down.

DutyCycles
A sequence of duty cycles where the duty cycle is the fraction of the beat during which the note is on.
For example, a duty cycle of 0.5 means that the note is on for half the beat and off for the second half of
the beat. A duty cycle of 0 would mean that the note is never on, and a duty cycle of 1 would mean that
the note is continuously on and never turns off.

Pitches
A sequence of MIDI notenumbers that will supply the pitches to any !Pitch or !KeyNumber EventValues in
the parameters of the Input.

Velocities
A sequence of values between 0 and 1 that will supply the values to any !KeyVelocity EventValues in the
parameters of the Input.

ExtraValues
Use this field to specify a sequence of changes for any non-keyboard EventValues in the Input. The
syntax is:

#(<!EventValue> <val1> <val2>, .., <valn>)

For example, to send a sequence of 3 values for !Morph and for !Pan, you would use something like the
following:

223

#(!Morph 0 0.25 1)
#(!Pan 0 0.5 1)

224

AnalysisFilter

Tracking Live Input Category
Bandpass filter designed to isolate the individual harmonics of its Input. It has quadrature output (i.e. the
left channel output is the cosine part of the Input signal at that frequency; the right channel is the sine part
of the Input at that frequency); thus you can use a QuadratureOscillator to frequency shift this harmonic
using single side band ring modulation.

The filter is designed such that, if you were to add together the output of filters set at each harmonic from
0 to the harmonic closest to half the sampling rate, the amplitude of that sum would be 1.

Input
This is the Sound that gets filtered.

Fundamental
This is the assumed fundamental frequency. In most cases, you should set it to be the same as the Input
frequency.

Harmonic
This is the number of the harmonic that the filter will try to isolate. In other words, the center frequency of
the filter will be the Fundamental * this Harmonic.

225

Annotation

Variables & Annotation Category
An Annotation contains a Text commenting on its Input. It does not affect the sound of the Input in any
way; it is just a comment. The Text of an Annotation shows up in the Virtual control surface whenever the
Sound is loaded. (The text of any Annotations that occur in Sounds to the left of this one will appear
below this one’s Text in the Virtual control surface).

Input
The Text refers to this Sound.

Text
This is a textual description of the Input.

226

AR

Envelopes & Control Signals Category
Generates an envelope with the specified attack and release times with either linear or exponential
segments.

In a prototype with an Envelope parameter field (Oscillator, for example) you can use an envelope
generator directly as the Envelope parameter. Envelope generators can also be used to control other
parameters (such as Frequency or OnDuration). To apply an envelope to any Sound, use the Sound and
an envelope generator as Inputs to the VCA prototype. (The VCA simply multiplies its two inputs by each
other).

AttackTime
Time required for the envelope to reach its maximum value (as attenuated by Scale) whenever its Gate
value becomes positive.

ReleaseTime
Time it takes for the envelope to return to 0 once Gate changes from a positive number back to zero.

Type
Choose between linear and exponential segment shapes.

Scale
Overall attenuation on the envelope generator values.

Gate
Enter a 1 in this field to play the Sound exactly once for the duration you have specified in the Duration
field.

If you use an EventValue (for example, !KeyDown) in this field, the Sound can be retriggered as often as
you like within the duration specified in the Duration field.

When Gate becomes positive, the Sound is heard; when Gate becomes zero, the Sound is released.

227

ArcTan

Math Category
The output of ArcTan is the four-quadrant arctangent of the ratio of the right channel input to the left
channel input.

Input
This is the Sound whose arctangent is taken.

228

Attenuator

Level, Compression, Expansion Category
An Attenuator multiplies the left and right channels of its Input by the values in Left and Right. It can be
used to "place" the Input between the speakers; for example, if the Input is multiplied by 1.0 in the right
channel and by 0 in the left channel, it will seem as if the source of the Input is located to the right of the
listener.

Input
This is the Sound whose left and right channels will be attenuated.

Left
This controls the level of the left input channel. The maximum value is 1 and the minimum is -1. The left
channel of the input is multiplied by the value of this parameter. Some example values for Left are:

1 (no attenuation)
0 (maximum attenuation)
!Fader1 (continuous controller sets level)
!KeyVelocity (MIDI key velocity controls the amplitude)

You can also paste another signal into this field, and the amplitude will vary with the output amplitude of
the pasted signal (something like an LFO controlling the attenuation). (See the manual for a complete
description of hot parameters, EventValues, EventSources, and Map files).

Right
This controls the level of the right input channel. The maximum value is 1 and the minimum is -1. The
right channel of the input is multiplied by the value of Right. Some example values for Right are:

1 (no attenuation)
0 (maximum attenuation)
!Fader1 (continuous controller sets level)
!KeyVelocity (MIDI key velocity controls the amplitude)

You can also paste another signal into this field, and the amplitude will vary with the output amplitude of
the pasted signal (something like an LFO controlling the attenuation). (See the manual for a complete
description of hot parameters, EventValues, EventSources, and Map files).

229

AudioInput

Sampling Category
An AudioInput represents the analog or digital inputs on the back of the Capybara. If Digital Input is
selected in the DSP Status window, then this represents the digital input.

If there are (preamplified) microphones connected to the inputs then this Sound represents the input from
those microphones. You can also connect the audio outputs of some other line-level sound generator
(like a CD or DAT) to the input.

The individual channel check boxes control which audio input channel(s) will be used. If only one channel
is checked, it will be output on both channels of the AudioInput.

Channel1
Check this box to use the channel 1 audio input of the signal processor.

Channel2
Check this box to use the channel 2 audio input of the signal processor.

Channel3
Check this box to use the channel 3 audio input of the signal processor.

Channel4
Check this box to use the channel 4 audio input of the signal processor.

Channel5
Check this box to use the channel 5 audio input of the signal processor.

Channel6
Check this box to use the channel 6 audio input of the signal processor.

Channel7
Check this box to use the channel 7 audio input of the signal processor.

Channel8
Check this box to use the channel 8 audio input of the signal processor.

230

AveragingLowPassFilter

Filters Category
Low-pass filter that operates by taking a running average of the stream of Input values. The length of the
running average is the period of the cutoff frequency. The Cutoff frequency and its harmonics are
cancelled out by the filter (and frequencies close to the cancelled frequencies are attenuated).

Input
This is the Sound that is to be low-pass filtered.

Cutoff
Frequencies above the cutoff will be attenuated by the filter.

Wavetable
This is the wavetable that is used to keep the running average of the last few samples. Select Private if
you want the next free wavetable and do not need to reference this same segment of memory again. (If
you want to reference this same memory segment from another Sound, type in a unique name for the
wavetable and use that same name when accessing the memory from the other Sound.)

Scale
This is the attenuation on the input. For the full amplitude use +1.0 or -1.0 (or 0 dB); any factor whose
absolute value is less than 1 will attenuate the output.

231

CellularAutomaton

Scripts Category
This Sound is based on the one-dimensional cellular automata described by Stephen Wolfram in his
book, Theory and Applications of Cellular Automata. The state, an n-place binary number, where n is the
number of Inputs, determines which of the Inputs is turned on and which is turned off in a given
generation. An integer, rule, is used to determine the next state.

Inputs
Each Sound is associated with a position in the state array, starting with position 1 at the upper left and
moving from top to bottom and left to right. These Sounds form a sort of "chord" in which individual
Sounds are turned on or turned off according to whether they correspond to a position in the state array
that contains a 1 or a position that contains a 0.

Rule
If you look at the rule and the state as 8-bit binary numbers, you can use the rule to compute the next
generation of the state. Number the positions of the digits 0 to 7 counting from right to left. To compute
the next generation of position P of the state: Take the number at position P, P+1 and P-1 (i.e. the
number at position P and its neighbors to the right and to the left). Think of this as a three digit binary
number N that you are going to use as an index into the binary number representing the rule. Look at
position N of the rule. The value at position N of the rule is the value of position P in the next generation
of the state.

For example, if the rule is 2r10101110 and the state is 2r10010101, let’s compute the next generation
state of position 3. The current value at position 3 of the state is ’0’. Looking at position 3 and its two
neighbors as a binary number, we get ’101’ or the number 5. Using this number as an index, look at
position 5 of the rule; it is ’1’. So the value of position three in the next generation is ’1’. When you reach
the rightmost or leftmost digit in the state, make the assumption that there is an infinite number of zeroes
extending both leftwards and rightwards.

Iterations
The value of iterations is the number of generations.

InitialState
Imagine the initial state as an n-bit binary number where n is the size of the collection of inputs. Each digit
in the binary number corresponds to an input; use a 1 to indicate that a Sound is initially on, a 0 to
indicate that it is initially off.

Left
This controls the level of the left input channel. The maximum value is 1 and the minimum is -1. The left
channel of the input is multiplied by the value of this parameter. Some example values for Left are:

1 (no attenuation)
0 (maximum attenuation)
!Fader1 (continuous controller sets level)
!KeyVelocity (MIDI key velocity controls the amplitude)

You can also paste another signal into this field, and the amplitude will vary with the output amplitude of
the pasted signal (something like an LFO controlling the attenuation). (See the manual for a complete
description of hot parameters, EventValues, EventSources, and Map files).

232

Right
This controls the level of the right input channel. The maximum value is 1 and the minimum is -1. The
right channel of the input is multiplied by the value of Right. Some example values for Right are:

1 (no attenuation)
0 (maximum attenuation)
!Fader1 (continuous controller sets level)
!KeyVelocity (MIDI key velocity controls the amplitude)

You can also paste another signal into this field, and the amplitude will vary with the output amplitude of
the pasted signal (something like an LFO controlling the attenuation). (See the manual for a complete
description of hot parameters, EventValues, EventSources, and Map files).

233

CenteringMixer

Mixing & Panning Category
Lines up all of the Inputs’ duration midpoints with the longest Input’s midpoint and outputs the mix of all
the Inputs. The "midpoint" is defined as half the duration of the longest Input.

Inputs
The duration midpoint of each of these Sounds occurs at the same time.

Left
This controls the level of the left input channel. The maximum value is 1 and the minimum is -1. The left
channel of the input is multiplied by the value of this parameter. Some example values for Left are:

1 (no attenuation)
0 (maximum attenuation)
!Fader1 (continuous controller sets level)
!KeyVelocity (MIDI key velocity controls the amplitude)

You can also paste another signal into this field, and the amplitude will vary with the output amplitude of
the pasted signal (something like an LFO controlling the attenuation). (See the manual for a complete
description of hot parameters, EventValues, EventSources, and Map files).

Right
This controls the level of the right input channel. The maximum value is 1 and the minimum is -1. The
right channel of the input is multiplied by the value of Right. Some example values for Right are:

1 (no attenuation)
0 (maximum attenuation)
!Fader1 (continuous controller sets level)
!KeyVelocity (MIDI key velocity controls the amplitude)

You can also paste another signal into this field, and the amplitude will vary with the output amplitude of
the pasted signal (something like an LFO controlling the attenuation). (See the manual for a complete
description of hot parameters, EventValues, EventSources, and Map files).

234

ChannelCrosser

Mixing & Panning Category
A Crossover lets you switch any portion of the left channel signal into the right channel and vice versa.

Input
The left and right channels of this Sound can be attenuated and mixed using the sliders.

LeftInLeft
This is the portion of the left input that appears in the left output.

RightInLeft
This is the portion of the right input that appears in the left output.

LeftInRight
This is the portion of the left input that appears in the right output.

RightInRight
This is the portion of the right input that appears in the right output.

235

ChannelJoin

Mixing & Panning Category
This Sound places the left channel of Left into the left output channel and the right channel of Right into
the right output channel.

Left
The left channel of this Sound is output to the left channel.

Right
The right channel of this Sound is output to the right channel.

236

Channeller

Mixing & Panning Category
If LeftChannel is checked, the left channel of Input is output on both channels.

If RightChannel is checked, the right channel of Input is output on both channels.

If both are checked, the Input is passed through unchanged.

If neither is checked, there will be no output.

Input
Either the left or right channel of this Sound will be output.

LeftChannel
If only this control is checked, the left channel of Input will be output on both channels.

RightChannel
If only this control is checked, the right channel of Input will be output on both channels.

237

Chopper

Envelopes & Control Signals Category
Multiplies the Input by a stream of "grains" or envelopes (one cycle of the selected wavetable), each
lasting for GrainDuration with InterGrainDelay silence in between. During the InterGrainDelay the Input is
multiplied by zero.

Input
This Sound is multiplied by an alternating stream of grains and inter-grain silences.

GrainDuration
This is the duration of each grain. (Duration should always be greater than 0.)

InterGrainDelay
This is the delay time between grains. (Duration should always be greater than 0.)

Wavetable
One cycle of the selected wavetable will be used as the envelope of each grain.

238

Constant

Math Category
The output of a Constant is its Value. If Value is set to a number, the output of the Constant is the same
number over its entire duration.

If you paste an Event Value into the Value field of a Constant, the Constant’s output is equal to the Event
Value. This is useful for processing Event Values as if they were Sounds. For example, if you were to
paste !cc07 into the Value field of this Constant, you could then feed the Constant into a delay, put it into
a waveshaper, multiply it by a sine wave oscillator, or perform any number of other signal processing
operations on it.

Value
Enter a value from -1.0 to 1.0. You can also paste Event Values or Sounds into this field (since their
values fall within the range of -1 to 1).

If you paste !Pitch or !KeyNumber into this field, you must divide it by 127 in order to scale it down to the
range of 0 to 1; if you then use this Constant in the Frequency field of another Sound, remember to
multiply the Constant by 127 nn in order to scale it back into the range of 0 nn to 127 nn.

239

ContextFreeGrammar

Scripts Category
A Sound consisting of Concatenations and CenteringMixers of the Inputs is generated from the
startExpression by rewriting according to the production rules of a context-free grammar. A seed is used
for repeatable results.

Inputs
These Sounds act as the terminals of the production rules; in order from top to bottom, left to right they
are referred to in the productions as s1, s2, ..., sn.

Drag a folder or any number of individual Sounds into this field.

RewriteRules
Production rules should be of the following form,

Variable -> option {| option}*.

A single uppercase letter is followed by -> and then one or more options separated by the delimiter, |.
Each option consists of a fully parenthesized expression followed by a number in brackets indicating the
relative weighting of that choice. Each expression should consist of binary combinations of Sounds, s1 -
sn where n is the number of Inputs, and Variables (single uppercase letters), separated by a comma for
Concatenation or plus for a CenteringMixer. For example, the following production rule will always
generate palindromes:

A -> ((s1 , A) , (s1)) [2] |

 ((s2 , A) , (s2)) [2] |

 ((s3 , A) , (s3)) [2] |

(s1) [1] | (s2) [1] | (s3) [1].

This assumes that there are at least 3 Inputs.

StartExpression
This expression is rewritten using the production rules. It should consist of some combination of
variables, A - Z, and terminals, s1 - sn where n is the number of subSounds, separated by one of the
operators, comma or plus (where a comma represents a Concatenation and a plus represents a
CenteringMixer). The starting expression represents a Sound; it should be fully parenthesized. Some
legitimate examples of startExpressions are:

(A)

(A + (s1 , B))

((E , Z) + ((T , U) , (s3 , (X , s5)))),

where A, B, E, Z, T, U, and X all appear on the left hand sides of production rules and there are at least 5
Inputs.

Seed
Type in an integer less than 65535, for example, 34897.

240

MaxRewrites
This is an upper bound on the number of times the startExpression will be rewritten.

MaxSize
This puts an upper bound on the number of Sounds that will be generated by the grammar.

Left
This controls the level of the left input channel. The maximum value is 1 and the minimum is -1. The left
channel of the input is multiplied by the value of this parameter. Some example values for Left are:

1 (no attenuation)
0 (maximum attenuation)
!Fader1 (continuous controller sets level)
!KeyVelocity (MIDI key velocity controls the amplitude)

You can also paste another signal into this field, and the amplitude will vary with the output amplitude of
the pasted signal (something like an LFO controlling the attenuation). (See the manual for a complete
description of hot parameters, EventValues, EventSources, and Map files).

Right
This controls the level of the right input channel. The maximum value is 1 and the minimum is -1. The
right channel of the input is multiplied by the value of Right. Some example values for Right are:

1 (no attenuation)
0 (maximum attenuation)
!Fader1 (continuous controller sets level)
!KeyVelocity (MIDI key velocity controls the amplitude)

You can also paste another signal into this field, and the amplitude will vary with the output amplitude of
the pasted signal (something like an LFO controlling the attenuation). (See the manual for a complete
description of hot parameters, EventValues, EventSources, and Map files).

241

Crossfade

Level, Compression, Expansion Category
Crossfades between its two Sound inputs while optionally also panning and attenuating the result.

Pan
A Pan value of 0 places the sound entirely in the left speaker, and a Pan value of 1 places it entirely in
the right. Values inbetween those extremes make the Input source appear as if it were placed
somewhere inbetween the two speakers.

Scale
Attenuates the crossfaded signal.

Snd1
This Sound will be crossfaded with Snd2.

Snd2
This Sound is crossfaded with Snd1.

Fade
0 corresponds to entirely Snd1, and 1 corresponds to entirely Snd2. Values in between correspond to
mixtures of Snd1 and Snd2.

Type
Choose between a straight, linear crossfading function (which, psychoacoustically, "jumps" in the middle)
and a power function that will sound, psychoacoustically, as if it were a linear change from one Sound to
the other. The linear fade function is sometimes the more desireable one when crossfading between
control functions (See also the Interpolation prototype).

242

DelayWithFeedback

Reverb, Delay, Feedback Category
Delays the Input signal, optionally feeding some of that delayed signal back and adding it to the current
Input.

Type
Choose between Comb and Allpass filters. Both Comb and Allpass are delays with feedback. Allpass
also adds some of the direct signal to the output in order to make the long term frequency response flat.
With Comb selected, you will not hear the Input until after the first delay. With Allpass, you will hear the
direct Input immediately.

Input
This is the signal to be delayed.

Scale
An attenuation factor on the Input (where 1 is full amplitude and 0 is completely attenuated so there is no
more Input).

Feedback
Controls the amount of the delayed signal that is fed back and added to the Input. It is the attenuation on
the feedback signal (where 1 or 0 dB feeds back the full amplitude signal and adds that to the current
Input signal).

Delay
The maximum delay time. The proportion of this time that is actually used is determined by multiplying
this value by DelayScale. Kyma needs to know the maximum possible delay in order to allocate some
memory for this Sound to use as a delay line, but the actual delay can vary over the course of the Sound
from 0 s up to the value of DelayTime.

DelayScale
The proportion of DelayTime that is actually used as the delay, where 0 is no delay, and 1 is equal to the
value in the DelayTime field.

Wavetable
In almost all situations, this should be set to Private, so Kyma can allocate some unused wavetable
memory to be used as a delay time for this program. (The only time you would want to name this
wavetable is if you would like multiple delays or resonators to share a single delay line. In that case, you
would type a name for the wavetable and make sure that the other delays use the same name for their
wavetables.)

Prezero
Check this box to start with an empty delay line when this program starts. If Prezero is not checked, the
delay line may have garbage in it from previous programs. This can have interesting, if unpredictable,
effects and, in some sense, models a physical object or resonator which would maintain its "state"
between excitations.

243

Interpolation
When Linear is selected, changes to DelayScale are linearly interpolated, causing smoother changes to
the delay.

When None is selected, changes to DelayScale are not interpolated, resulting in zipper noise.

For fixed delays, it is better to select None, since that uses fewer DSP resources.

244

Difference

Math Category
Outputs the difference of Input and minusInput.

Input
The Sound in the MinusInput field will be subtracted from this Sound.

MinusInput
MinusSound is subtracted from Sound.

245

DiskCache

Sampling Category
Stores the Input as a disk recording when Record is clicked. When Record is unclicked, the input is
played off the disk rather than computed in real time.

This Sound can be useful when you are trying to reduce the amount computation required by one branch
of a large Sound structure. Whenever you make a change to the Input, remember to click Record and
recapture the new version of Input on the disk.

Input
When Record is checked, the Input is recorded into a disk file. When Record is not checked, the
recording of the Input is played, not the Input itself.

FileName
Enter a memorable name for the samples file that will be used to "cache" the Input Sound.

Record
Check this box when you want to record the Input. Uncheck it when you want to play back the previously
recorded input.

246

DiskPlayer

Sampling Category
This Sound plays back recordings from the disk file specified in FileName, starting at the time specified in
FilePosition and continuing for the amount of time specified in Duration and at the rate specified in
RateScale. Whenever Trigger changes to a positive number, the playback restarts from FilePosition and
plays again.

To treat this as a sample controlled from the MIDI keyboard, set FileName to the name of the sample, set
Duration to the total time during which you would like to be able to trigger the sample, set Trigger to
!KeyDown (or a MIDI switch), and set RateScale to the ratio of the desired frequency to the original
recorded frequency, for example

!Pitch hz / 2 a hz

to use the MIDI keyboard to control a sample whose recorded pitch was 2 a.

FileName
Enter the name of a Samples file or use the Browse button to select a file from the standard file list dialog.
The file can be a recording made in Kyma, a recording imported from another program, or a sample from
a CD-ROM (as long as the file is in one of the formats listed in the Kyma manual).

FilePosition
This is the start time within the recording. In other words, you don’t have to start playback at the
beginning of the file; instead, you can start some amount of time into the file.

RateScale
This is the rate of playback. For example, use 1 to play back at the original rate, 0.5 for half speed, 2 for
twice as fast, etc.

Trigger
When the Trigger becomes nonzero, one event is triggered. You can trigger several events over the
course of the total Duration of this program as long as the value of Trigger returns to zero before the next
trigger. Some example values for Trigger are:

1 (plays once with no retriggering)
0 (the sound is silent, never triggered)
!KeyDown (trigger on MIDI key down)
!cc64 (trigger when controller 64 > 0)

You can also paste another signal into this field, and events will be triggered every time that signal
changes from zero to a positive value. (See the manual for a complete description of hot parameters,
Event Values, and the Global map files).

247

DiskRecorder

Sampling Category
Records its Input to disk for CaptureDuration when its Trigger becomes positive.

Input
This is the Sound to be recorded onto disk.

FileName
The name of the samples file where Input will be recorded.

Format
Choose the samples file format. Kyma can record or playback any of these, but if you are going to export
this sample to be used in another application, choose a format that the other application can read.

WordSize
This is the number of bits used for each sample point. 24-bit words take up the most memory but will
provide the best dynamic range and signal to noise ratio. 8-bit words provide the least dynamic range but
also take up the least amount of space on disk. If you are going to export this samples file for use in
another application, choose a word size appropriate for that application. For example, if you are creating
an alert sound for a Windows application, you would choose 8-bit words and the WAV format. But if you
have 18-bit converters and digital I/O, and this is an audio track that you want to use in ProTools, you
would probably want to choose 24-bit words and the SD-II format.

Channels
Choose between monaural and stereo recording. If both channels of the Input are identical, choose
Mono since it will take half the disk space of a stereo file.

Trigger
When Trigger becomes positive, the Input will be recorded into the specified file for the specified
CaptureDuration. You cannot retrigger without replaying the DiskRecorder (so you will not accidently
write over what you have just captured on disk).

CaptureDuration
Amount of time to record the Input to disk when triggered. This duration can be shorter than the duration
of the Input, so, for example, you could have a 1 day long ADInput, and just capture 3 s of it when you
trigger the recording. To automatically set the CaptureDuration to the full duration of the Input, enter 0 s
here.

Gated
When checked, Gated makes the trigger act as a gate. This means that its input is only recorded when
Trigger is a positive value (for example, if Trigger is !KeyDown, the input is only recorded while the key is
held down).

248

DualParallelTwoPoleFilter

Filters Category
Two parallel second-order filter sections having fixed zeroes (at the complex location 1%0). The output
of this Sound is the sum of the outputs from the two filter sections.

This Sound is useful if you already know the complex pole locations of the filters that you want.
Otherwise, use the TwoFormantElement prototype; it will give you the same results but with more intuitive
parameters (like Frequency and Bandwidth).

Input
This is the Sound that is filtered.

Pole1
This is the pole of the first filter. Type a complex number of the form, r % i, where r is the x coordinate in
the z-plane and i is the y coordinate in the z-plane. Try 0.0%0.9 for a high-pass filter, or 0.9%0.0 for a
low-pass. If (r**2 + i**2) is greater than 1.0, the filter output will overflow. The second pole of this filter is
automatically the complex conjugate of this one, so you don’t have to specify it.

Scale1
This is the scale factor on the first filter section. For the full amplitude use +1.0 or -1.0; any factor whose
absolute value is less than 1 will attenuate the output.

Pole2
This is the pole of the second filter. Type a complex number of the form, r % i, where r is the x coordinate
in the z-plane and i is the y coordinate in the z-plane. Try 0.0%0.9 for a high-pass filter, or 0.9%0.0 for a
low-pass. If (r**2 + i**2) is greater than 1.0, the filter output will overflow. The second pole of this filter is
automatically the complex conjugate of this one, so you don’t have to specify it.

Scale2
This is the scale factor on the second filter section. For the full amplitude use +1.0 or -1.0; any factor
whose absolute value is less than 1 will attenuate the output.

249

DynamicRangeController

Level, Compression, Expansion Category
Compresses or expands the Input’s dynamic range as a function of the SideChain’s amplitude envelope.

The Input and output levels will be the same except when the SideChain amplitude envelope crosses the
specified Threshold.

If Compressor is selected, the Input will be attenuated whenever the SideChain amplitude exceeds the
Threshold.

If Expander is selected, the Input amplitude will be boosted whenever the SideChain amplitude falls
below the Threshold.

You specify the Ratio of the input to the output amplitude.

Typical uses include: Limiting (compression with a very large ratio and high threshold), Gating (expansion
with extremely small ratio and low threshold), Ducking (set attack and decay to 1 or 2 seconds, put the
signal you want to duck in an out at the Input and put the controlling signal at the SideChain, and also mix
the SideChain with the output of the DynamicRangeController) , making short percussive sounds seem
louder (compress, then increase the overall gain), and smoothing out extreme changes in amplitude
(particularly useful when recording to media with limited dynamic range, such as cassette tape or
videotape).

SideChain
The amplitude envelope of this signal affects the amplitude envelope on the Input. Whenever the
SideChain’s envelope crosses the Threshold, the Input’s dynamic range will be either compressed or
expanded.

Input
This is the signal whose dynamic range will be compressed or expanded.

Type
Choose Compressor to compress all amplitudes above the threshold to a narrower dynamic range.

Choose Expander to expand the dynamic range of all amplitudes below the threshold to a wider dynamic
range.

Ratio
This is the ratio of the Input amplitude to the output amplitude. For compression, it should be greater
than 1. For expansion, it should be less than 1. (This only affects the Input when the SideChain crosses
the Threshold).

Threshold
This is the point at which a graph of Input to output level changes from a straight line to a curved line.

In compression, the Input is unchanged when the SideChain amplitude is below this threshold. When the
SideChain amplitude exceeds this threshold, the Input is attenuated.

In expansion, the Input is unchanged when the SideChain amplitude is above this threshold. When the
SideChain amplitude falls below this threshold, the Input is boosted.

250

AttackTime
Relates to how quickly or slowly the output amplitude will be modified whenever the Threshold is crossed.
This controls how quickly the envelope follower on the SideChain reacts to increases in the SideChain’s
amplitude.

ReleaseTime
Relates to how quickly or slowly the output amplitude returns to normal whenever the Threshold is
crossed. This controls how quickly the envelope follower on the SideChain reacts to decreases in the
SideChain’s amplitude.

Delay
Typically set to equal to the attack plus the decay time. This is to compensate for the delay introduced by
the envelope follower on the SideChain.

Gain
Besides changing the relative levels within the signal, compression and expansion usually change the
overall level of the output signal as well. Use Gain to adjust the overall level up or down.

251

EndTogetherMixer

Mixing & Panning Category
Forces all of its Inputs to end at the same time (if necessary, by delaying the start time of the shorter
Inputs).

Inputs
All of these Inputs end at the same time.

Left
This controls the level of the left input channel. The maximum value is 1 and the minimum is -1. The left
channel of the input is multiplied by the value of this parameter. Some example values for Left are:

1 (no attenuation)
0 (maximum attenuation)
!Fader1 (continuous controller sets level)
!KeyVelocity (MIDI key velocity controls the amplitude)

You can also paste another signal into this field, and the amplitude will vary with the output amplitude of
the pasted signal (something like an LFO controlling the attenuation). (See the manual for a complete
description of hot parameters, EventValues, EventSources, and Map files).

Right
This controls the level of the right input channel. The maximum value is 1 and the minimum is -1. The
right channel of the input is multiplied by the value of Right. Some example values for Right are:

1 (no attenuation)
0 (maximum attenuation)
!Fader1 (continuous controller sets level)
!KeyVelocity (MIDI key velocity controls the amplitude)

You can also paste another signal into this field, and the amplitude will vary with the output amplitude of
the pasted signal (something like an LFO controlling the attenuation). (See the manual for a complete
description of hot parameters, EventValues, EventSources, and Map files).

252

Equality

Math Category
Whenever InputA equals InputB (plus or minus the Tolerance), the output of this Sound is one; at all other
times, the output is zero.

Tolerance
This is the amount of deviation from equality that is still to be considered equality.

InputA
InputA is compared, sample point by sample point, against the Sound in InputB.

InputB
InputB is compared, sample point by sample point, against the Sound in InputA.

253

FeedbackLoopInput

Xtra Category
A FeedbackLoopInput and FeedbackLoopOutput must always be used as a pair sharing the same
Connection name, start time, and duration. The FeedbackLoopInput writes into the delay line specified in
Connection, and the FeedbackLoopOutput reads out of that same delay line.

(This differs from other ways of doing feedback in that it allows Kyma’s scheduler to put the input to the
delay line and the output from the delay line on different expansion cards--freeing up more computation
time for processing modules that are in the loop. For simpler cases of feedback, use the
DelayWithFeedback or simply write into memory with a MemoryWriter and read out of it with a TimeOffset
Sample, Oscillator, or TriggeredTableRead.)

Input
This is the signal that is to be delayed.

Connection
This is the name of the delay line (It must be the same as that specified in the corresponding
FeedbackLoopOutput).

254

FeedbackLoopOutput

Xtra Category
A FeedbackLoopInput and FeedbackLoopOutput must always be used as a pair sharing the same
Connection name, start time, and duration. The FeedbackLoopInput writes into the delay line specified in
Connection, and the FeedbackLoopOutput reads out of that same delay line.

(This differs from other ways of doing feedback in that it allows Kyma’s scheduler to put the input to the
delay line and the output from the delay line on different expansion cards--freeing up more computation
time for processing modules that are in the loop. For simpler cases of feedback, use the
DelayWithFeedback or simply write into memory with a MemoryWriter and read out of it with a TimeOffset
Sample, Oscillator, or TriggeredTableRead.)

Connection
This is the name of the delay line and must be the same as that specified in the corresponding
FeedbackLoopInput.

Delay
Specify a delay time between 12 samp and 2048 samp. For longer delays, feed the output of this Sound
into a DelayWithFeedback. Shorter delays may cause clicking in the output.

255

FFT

Spectral Analysis FFT Category
The FFT takes an input from the time domain and produces an output signal in the frequency domain or
vice versa. Length is the length of the FFT.

Two independent time domain signals are present: one in the left channel and one in the right.

The frequency domain signal repeats every Length/2 samples, alternating between the spectrum of the
left channel time domain signal and the spectrum of the right channel time domain signal. The frequency
signal is output in frequency order: 0 hz, Fs / Length, 2*Fs / Length, etc. Each frequency domain sample
has the real part in the left channel and the imaginary part in the right channel.

When Inverse is not checked, the Input is a time domain signal and the output is a frequency domain
signal. When Inverse is checked, the Input is a frequency domain signal and the output is a time domain
signal.

Input
This is the signal that will be transformed from the time domain to the frequency domain or vice versa.

Length
This is the window length of the FFT.

Inverse
Click here to perform an inverse FFT (to convert from a spectrum back to a time-domain waveform).

256

Filter

Filters Category
An IIR filter of the specified type, cutoff frequency, and order with gain or attenuation on the input and an
attenuator on the amount of feedback.

Input
This is the Sound to be filtered.

Type
Choose:

LowPass to attenuate all frequencies above the cutoff Frequency.

HighPass to attenuate all frequencies below the cutoff Frequency.

AllPass to allow all frequencies to pass through unattenuated (but phase shifted by (-90 * Order) degrees
at the specified Frequency, with smaller phase shifts at frequencies below that and larger ones for
frequencies above).

Frequency
The cutoff frequency for the filter can be specified in units of pitch or frequency. When Feedback is close
to 1, the filter will tend "ring" at this frequency. The following are all ways to specify the A above middle
C:

440 hz (in hertz or cycles per second)
4 a (as the 4th octave A)
69 nn (as a MIDI notenumber)
4 c + 9 nn (as 9 half steps above middle C)
1.0 / 0.00227273 s (inverse of a period at 44.1 kHz sample rate)

The following are examples of how to control the frequency using MIDI, the virtual control surface, or a
third-party program:

!Pitch (key number plus pitch bend)
!KeyNumber nn (MIDI notenumber)
4 c + (!Frequency * 9 nn) (continuous controller from 4 c to 4 a)

Q
Q is related to Bandwidth.

For AllPass filters, this affects the size of the phase shift on frequencies around the center Frequency
(higher Q corresponds to a narrower band of frequencies that will be phase-shifted).

For LowPass and HighPass filters, this control has no effect.

Scale
This is the attenuation or gain on the Input. The typical maximum for scale is 1, but it can be set as high
as 2 if necessary.

HighPass filters generally require lower Scale values than LowPass filters.

257

Feedback
The higher the Feedback, the longer the filter will ring in response to an input.

This is the amount of filtered signal that is fed back in and added to the Input (when low pass is selected,
the feedback is negative). Negative feedback values are the same as the positive ones but 180 degrees
out of phase.

To simulate a traditional analog sound, use a 4th order low pass or high pass filter, and use feedback to
increase the "resonance".

Order
The order of the filter corresponds to the number of poles. In general, the higher the order of the filter,
the sharper the cutoff, and the more real-time computation required.

258

ForcedProcessorAssignment

Sampling Category
Forces the Input to be scheduled on the specified expansion card’s processor.

In almost all cases, it is better to let Kyma automatically handle the scheduling of Sounds on different
processors. However, this Sound lets you override the default scheduling and force a particular Sound to
be computed on a particular processor. Reasons for doing this might include: wanting to record a sample
into the wavetable memory of a specific expansion card (or range of cards) and being able to read out of
that same memory later; or trying to reschedule a Sound by hand if Kyma’s scheduling of it doesn’t keep
up with real time (doing your own processor allocation by hand is tricky and time-consuming and it is not
necessarily recommended! See the Tutorial entitled "What is Real Time Really" for other ways to reduce
the computational complexity of a Sound that can’t keep up with real time).

Processor
Number of the expansion card that Input will be scheduled on.

Input
Sound that will be forced onto the specified expansion card.

259

FormantBankOscillator

Xtra Sources Category
Synthesizes a filtered pulse train where the filter is based on the shape of the FormantImpulse and on the
formant frequencies, amplitudes, and bandwidths that you supply in the Spectrum parameter (which is
usually a SyntheticSpectrumFromArray Sound).

Frequency
This is the fundamental frequency of the pulse train input.

Spectrum
This should be a spectral source (typically a SyntheticSpectrumFromArray) and should specify center
frequencies, bandwidths, and amplitudes for the desired formants.

CascadeInput
Whatever Sound you place at this input will be added to the output of the current Sound. You can use
this to cascade several FormantBankOscillators or to mix the output of a different kind of Sound with the
output of this Sound.

FirstFormant
The lowest numbered formant that you would like to read from the spectrum specification. This is almost
always going to be 1 (but can be set to a different number if you would like to skip over some formants or
if this is one in a chain of cascaded FormantBankOscillators).

NbrFormants
The number of formants that you would like to synthesize (which can be less than the number of formants
specified in the Spectrum input).

FormantImpulse
This is a wavetable containing the impulse response for each of the formant filters. In other words, if you
were to hit one of the formant filters with a single 1 followed by an infinite string of zeroes, this would be
the output of the filter.

NbrImpulses
This is the maximum number of simultaneous impulse responses that can be generated. Leave it at its
default value unless you hear the sound breaking up (in which case you can try a smaller number).

AllowFormantAtDC
In nearly all situations, you should leave this box unchecked. You can use this option to synthesize a
pulse train whose shape is stored in the FormantImpulse wavetable. (To do this, you also have to
specify a spectrum that is a single formant centered at 0 hz or DC).

260

FrequencyScale

Frequency & Time Scaling Category
Scales the frequency of the Input by the value specified in FrequencyScale. It does this by "granulating"
the input and then either overlapping the grains to scale up in frequency, or leaving time between the
grains to scale down in frequency.

Input
This is the Sound whose frequency is to be scaled.

FreqTracker
In order to scale the frequency, we have to know the frequency.

The normal setup is to have a FrequencyTracker as the Input in this field. It could also be a Constant or
a FunctionGenerator if you already have a good frequency estimate (or intentionally want to supply a
different frequency estimate).

FrequencyScale
The frequency of the input will be multiplied by this value.

For example, to shift up by an octave, the FrequencyScale should be 2, and to shift down and octave, the
scale should be 0.5. To shift up by 3 half steps, you would use:

2 ** (3/12)

To shift down by 7 half steps, you would use:

2 ** (-7/12)

To continuously shift between 0 and 4 half steps under control of !Frequency, you could use:

2 ** (!Frequency * 4 / 12)

MaxScale
This should be equal to the FrequencyScale, or, if FrequencyScale is an Event Value, this should be the
maximum value of the Event Value.

The larger MaxScale is, the more computation time is required by the FrequencyScale.

Window
This function is used as a window or envelope on each grain.

Delay
Use this to delay the Input so that it lines up with the FrequencyTracker’s estimate of its frequency (since
the FrequencyTracker has to have at least two cycles of the Input before it can make its frequency
estimate).

It should be a power of two number of samples. Use the following to calculate the delay based on the
value of MinFrequency that you have set in the FreqTracker that feeds into this module:

(2 raisedTo: ((1.0 / 120 "!<-- this should be replaced by the minFrequency in hertz!") s samp removeUnits
log: 2) ceiling) * 2 samp

261

FrequencyTracker

Tracking Live Input Category
Outputs a continuously updated estimate of the frequency of the Input.

Set the range of frequencies (MinFrequency to MaxFrequency) to be as narrow as possible given what
you know about the range of the instrument or voice you are tracking. It is recommended that you leave
Confidence, Scale, Emphasis, and Detectors at their default values until you have gotten a reasonably
good frequency tracker for a given Input. Then, if you want to fine-tune the tracker, experiment with
making small changes to these values, one at a time (starting by increasing the number of Detectors), so
you can be sure of what effect each one will have on the tracking. If the tracking gets worse instead of
better, revert back to the default values.

The output of the FrequencyTracker falls within the range of 0 to1; to use this value in a frequency field,
multiply it by the maximum possible frequency:

SignalProcessor sampleRate hz * 0.5

Input
Estimates the frequency of this Sound.

MinFrequency
This is the lowest expected input frequency. In general, try to set this as high as possible given what you
know about the input. For example, if you are frequency tracking a recording or sample and know the
lowest frequency, enter it here. Or, for example, if you are tracking the frequency of a live violin, you
know that there won’t be any frequencies lower than that of the lowest open string 3 g, so if you were to
enter 3 e here, you know you would be safe.

MaxFrequency
This is the highest expected input frequency. In general, set this as low as you can given what you know
about the Input. But don’t underestimate the value, because higher frequencies will then be misidentified
as being an octave lower than they really are.

Confidence
This is a measure of how confident the FrequencyTracker must be of a new estimate before it lets go of
the previous estimate. In other words, this is a control on how easily the FrequencyTracker will change to
a new estimate when the Input frequency is changing over time. A Confidence value of 1 means that the
tracker must be 100% sure of its new estimate before giving up the previous estimate; since the tracker is
not omniscent it never feels *that* sure, so the result is that it sticks with its very first guess throughout the
entire Input, no matter how much the Input’s frequency changes. Setting the Confidence to 0 means that
the tracker will output every guess even if it is not confident at all, resulting in a lot of spurious frequency
estimates. Carefully adjust the Confidence to some value between these two extremes, fine-tuning this
setting depending on the Input.

Scale
This is an attenuator on the Input to the FrequencyTracker. In general, the input must be attenuated,
since the FrequencyTracker uses an autocorrelation which requires summing the contributions of at least
1000 sample points at a time.

262

Detectors
This determines the sensitivity of the frequency tracking. Try starting with a value of 10, and then
experiment with more or fewer if you want to try fine tuning the frequency tracking. (More is not
necessarily better; there is some optimal number of detectors for each circumstance.)

Emphasis
This is a frequency-dependent weighting giving preference to higher frequency estimates. The range of
this value is 0 to 1, where 1 is the highest weighting and 0 means to do no weighting. The
recommmended value is 1.

263

FunctionGenerator

Envelopes & Control Signals Category
Reads the specified Wavetable for the specified OnDuration whenever it receives a Trigger.

Useful for envelope generation or for reading recordings stored in the wavetable memory (see also the
Sample prototype).

In a prototype with an Envelope parameter field (Oscillator, for example) you can use the
FunctionGenerator directly as the Envelope parameter. A FunctionGenerator can also be used to control
other parameters (such as Frequency or OnDuration). To apply an envelope to any Sound, use the
Sound and an envelope generator as Inputs to the VCA prototype. (The VCA simply multiplies its two
inputs by each other).

Trigger
When the Trigger becomes nonzero, one event is triggered. You can trigger several events over the
course of the total Duration of this program as long as the value of Trigger returns to zero before the next
trigger. Some example values for Trigger are:

1 (plays once with no retriggering)
0 (the sound is silent, never triggered)
!KeyDown (trigger on MIDI key down)
!F1 (trigger when MIDI switch > 0)

You can also paste another signal into this field, and events will be triggered every time that signal
changes from zero to a nonzero value. (See the manual for a complete description of hot parameters,
EventValues, EventSources, and Map files).

OnDuration
This is the duration of each triggered event. It should be the same length or shorter than the value in
Duration (which is the total length of time that this program is available to be triggered). Think of Duration
as analogous to the total lifetime of a piano string, and OnDuration as the duration of each individual note
that you play on that piano string. The OnDuration must be greater than zero, and you must specify the
units of time, for example:

2 s (for 2 seconds)
2 ms (for 2 milliseconds)
200 usec (for 200 microseconds)
2 m (for 2 minutes)
2 h (for 2 hours)
2 days
2 samp (for 2 samples)
1 / 2 hz (for the duration of one period of a 2 hz signal)

Wavetable
This is the name of the function that will be generated (or the sample that will be played) each time the
FunctionGenerator is triggered.

FromMemoryWriter
Check FromMemoryWriter when the wavetable does not come from a disk file but is recorded by a
MemoryWriter in real time.

264

Gain

Level, Compression, Expansion Category
Gain can be used to boost the amplitude above the maximum of 1.0. This can be useful when you want
to multiply by numbers greater than 1 or when you have a low amplitude Sound.

If you need variable gain, you can use an Attenuator with variable loss (using Left and Right scales) on
the Sound before feeding it into the Gain.

Input
This is the Sound whose amplitude will be boosted.

Left
This is the scale on the left channel. It can be any value.

Right
This is the scale on the left channel. It can be any value.

265

GAOscillators

Xtra Sources Category
Additive synthesis using oscillators with complex waveforms (rather than sine waves). Each oscillator
has its own amplitude envelope and all oscillators share the same frequency deviation envelope.

TimeIndex
This controls the position within the frequency and amplitude envelopes, where -1 points to the beginning
of the envelopes, 0 points to the middle, and 1 points to the end of the envelopes. To move linearly from
the beginning to the end of the envelopes, use a FunctionGenerator whose wavetable is a FullRamp, or
use the EventValue fullRamp generator. For example,

!KeyDown fullRamp: 3 s

would go from -1 up to 1 whenever a MIDI key goes down.

Analysis0
This is the GA analysis file used when Morph is set to 0. A GA analysis file is an AIFF file containing
each of the wavetables, followed by each of the amplitude envelopes, followed by the frequency deviation
envelope. Each of the waveforms is 4096 samples long, and each of the amplitude envelopes and the
frequency envelope is the same length as each other (but this length varies from analysis to analysis).

To create your own analysis file from a sample, first do a spectral analysis of the sample, and then
generate a GA analysis file from that. Both of these operations can be performed using tools found in the
Tools menu. (See the tutorial on GA analysis/synthesis for full details).

Analysis1
This is the GA analysis file used when Morph is set to 1. A GA analysis file is an AIFF file containing
each of the wavetables, followed by each of the amplitude envelopes, followed by the frequency deviation
envelope. Each of the waveforms is 4096 samples long, and each of the amplitude envelopes and the
frequency envelope is the same length as each other (but this length varies from analysis to analysis).

To create your own analysis file from a sample, first do a spectral analysis of the sample, and then
generate a GA analysis file from that. Both of these operations can be performed using tools found in the
Tools menu. (See the tutorial on GA analysis/synthesis for full details).

Envelope
This is an overall envelope on all of the enveloped oscillators.

Frequency
The frequency can be specified in units of pitch or frequency. The following are all ways to specify the A
above middle C:

440 hz (in hertz or cycles per second)
4 a (as the 4th octave A)
69 nn (as a MIDI notenumber)
4 c + 9 nn (as 9 half steps above middle C)
1.0 / 0.00227273 s (inverse of a period at 44.1 kHz sample rate)

The following are examples of how to control the frequency using MIDI, the virtual control surface, or a
third-party program:

266

!Pitch (key number plus pitch bend)
!KeyNumber nn (MIDI notenumber)
4 c + (!Frequency * 9 nn) (continuous controller from 4 c to 4 a)

Morph
This controls a crossfade between each of the waveforms and envelopes in Analysis0 with each of the
waveforms and envelopes in Analysis1.

267

GenericSource

Xtra Sources Category
This Sound can represent the live input, a sample read from the disk, or a sample read from RAM. If Ask
is checked, you can choose between these three kinds of sources each time you recompile the Sound.

Source
Select the live input, an audio track on disk, or a sample in RAM.

LeftChannel
Check this box to monitor the left channel of the source signal.

RightChannel
Check this box to monitor the right channel of the source signal.

Sample
Enter the name of a sample file or click the disk icon to choose it from the file dialog.

Autoloop
Check here to loop the sample or disk.

Trigger
Whenever Trigger changes from 0 to a nonzero value, it will replay the disk or sample in RAM from the
beginning.

AttackTime
Attack time for a linear envelope applied to the sample source.

ReleaseTime
Release time for a linear envelope applied to the sample source.

Scale
Scales the amplitude of the source.

Frequency
For samples in RAM or on disk, this controls the playback frequency. For samples that are unpitched, the
original frequency is assumed to be 4 c (60 nn).

268

GrainCloud

Xtra Sources Category
Generates a cloud of short-duration grains of sound, each with the specified Waveform and each with an
amplitude envelope whose shape is given by GrainEnv. The density of simultaneous grains within the
cloud is controlled by Density, with the maximum number of simultaneous grains given by MaxGrains.

Amplitude controls an amplitude envelope over the *entire* cloud (each individual grain amplitude is
controlled by GrainEnv). Similarly, Duration is the duration of the entire cloud, not of each individual
grain.

You can control the Frequency, stereo positioning, and duration of each grain as well as specifying how
much (if any) random jitter should be added to each of these parameters (giving the cloud a more
focused or a more dispersed sound, depending on how much randomness is added to each of the
parameters).

Waveform
The waveform of the oscillator inside each grain.

GrainEnv
Defines the shape of each grain’s amplitude envelope. To minimize clicks, choose a wavetable that
starts and ends on zero.

MaxGrains
Maximum number of grains that can be playing at any one time. The smaller this number, the less
computational power the GrainCloud requires (but the less dense the texture you can generate). For
even denser textures, put more than one GrainCloud into a Mixer, and give each GrainCloud a different
Seed value.

Amplitude
An overall level or amplitude envelope applied to the entire cloud. Note that this is independent of the
amplitude envelope on each individual grain.

Density
Controls the number of new grains that can start up at any one time. Small Density values result in a
sparse texture; large Density values generate a dense texture.

GrainDur
The duration of an individual grain.

The duration of each grain is a function of three parameters:

GrainDur + CyclesPerGrain + (GrainDurJitter * 2 * (GrainDur + CyclesPerGrain))

To specify the number of waveform cycles within each grain (implies that higher frequency grains will
have shorter duration than lower frequency grains and assures that every grain will contain an integer
number of full cycles of the waveform):

GrainDur = 0 s
CyclesPerGrain = <number of cycles in each grain>

269

To specify a constant duration, no matter what the frequency of the waveform within each grain (implying
that high frequency grains will have more cycles in them than low frequency grains):

GrainDur = <desired grain duration>
CyclesPerGrain = 0

GrainDurJitter
The amount of random jitter added to the grain duration value when a new grain starts up. When
GrainDurJitter is 0, every new grain will have the same duration. At the other extreme, when it is set to 1,
the durations vary randomly from 0 to twice the specified duration.

CyclesPerGrain
The integer number of full cycles of the waveform that should occur inside each grain. Use this
parameter to specify grains that are shorter for high frequencies than they are for low frequencies. If you
prefer uniform grain durations over all frequencies, set this parameter to zero and use GrainDur to set the
grain duration.

Frequency
Frequency of the oscillator within each grain.

FreqJitter
The amount of random jitter added to the Frequency value when a new grain starts up. When FreqJitter
is 0, the frequency inside each grain will be equal to the value in the Frequency parameter. When it is 1,
each grain will have a different, randomly selected frequency.

It is defined as:

(1 + (<randomNumber> * FreqJitter)) * Frequency

so when FreqJitter is 1, the frequency can range from 0 hz up to twice the specified Frequency (100% up
is an octave up, while 100% down is DC). When FreqJitter is zero, no random deviations are added to
the Frequency.

Pan
Stereo position of each grain (where 0 is hard left, 0.5 is in the middle, and 1 is hard right).

PanJitter
The amount of random jitter added to the Pan value when a new grain starts up. The larger this number,
the more diffuse the apparent location, and the smaller the number, the more localized the sound.

Seed
A starting point for the random number generator. It should be a number between 0 and 1. Each
different seed number results in a different (but repeatable) sequence of random numbers. When adding
several GrainClouds with the same control parameters together in a Mixer, give each of them a different
seed in order to ensure that each of them has *different* random jitter added to its parameters (otherwise,
they will just double each other).

270

GraphicalEnvelope

Envelopes & Control Signals Category
Similar to the ADSR envelope, except that you can graphically specify an arbitrary number of segments
and can specify loop points.

Typical uses include amplitude envelopes, pitch envelopes, and time index functions.

Envelope
Use this field to edit the envelope.

To add an envelope breakpoint, click the mouse while holding down the Shift key. Click and drag a
breakpoint to move it. Click a breakpoint and press the Delete key to delete it. The button at the lower
right of this field is used to control the looping behavior of the selected breakpoint.

See the section on Parameter Settings in the manual for more information.

Level
This is a scale factor (from 0 to 1) for attenuating the overall output level.

Gate
When Gate changes from zero to a nonzero, the envelope will be triggered. Gate must return to zero
again before the envelope can be retriggered. If you have specified beginning and ending segments for a
loop, the envelope will repeat the loop segments for as long as the Gate is nonzero. If the ending loop
segment ends on a higher or lower value than the start of the beginning segment, the entire looped
portion will get larger or smaller each time it is repeated (because each segment has a *slope* associated
with it, not the absolute values at each point).

Rate
This is the rate at which the envelope is played.

Use 1 to play it back as shown in the Envelope parameter field (where each heavy vertical line
represents one second), 0.5 to make the envelope last twice as long, 2 to make it play twice as fast, etc.

271

GraphicEQ

Filters Category
This gives you independent control over the levels of seven, octave-wide bands ranging in center
frequency from 250 hz up to 16,000 hz. You can use it for attenuating or accentuating subparts of the
Input spectrum. When all levels are set to 1, you should hear the original Input signal with no change.

Input
This is the Sound to be filtered or equalized.

CF250Hz
Controls the level of a band from DC up to about 4 f.

CF500Hz
Controls the level of an octave band from about 4 f to 5 f (350-670 hz).

CF1000Hz
Controls the level of an octave band from about 5 f to 6 f (670-1340 hz).

CF2000Hz
Controls the level of an octave band from about 6 f to 7 f (1340-2794 hz).

CF4000Hz
Controls the level of an octave band from about 7 f to 8 f (2794-5588 hz).

CF8000Hz
Controls the level of an octave band from about 8 f to 9 f (5588-11,175 hz).

CF16000Hz
Controls the level of an octave band from about 9 f to 10 f (11,175 up to half the sampling rate).

272

HarmonicResonator

Filters Category
A filter that has resonances at the specified Frequency and all of its harmonics.

Input
This is the Sound that will be filtered.

DecayTime
This is the time it will take for the input amplitude to decay to -60 dB below its initial amplitude.

Brightness
The higher this value, the longer it will take for the high frequency partials to die away, resulting in a
brighter timbre.

Frequency
The frequency can be specified in units of pitch or frequency. The following are all ways to specify the A
above middle C:

440 hz (in hertz or cycles per second)
4 a (as the 4th octave A)
69 nn (as a MIDI notenumber)
4 c + 9 nn (as 9 half steps above middle C)
1.0 / 0.00227273 s (inverse of a period at 44.1 kHz sample rate)

The following are examples of how to control the frequency using MIDI, the virtual control surface, or a
third-party program:

!Pitch (key number plus pitch bend)
!KeyNumber nn (MIDI notenumber)
4 c + (!Frequency * 9 nn) (continuous controller from 4 c to 4 a)

Wavetable
Type in the name of a wavetable to use as a delay line, or select Private to let Kyma choose some free
wavetable memory for you.

Prezero
Check this box if you want to assure that the delay line is clear before it is used in this Sound. Leaving it
unchecked simulates a physical resonator by allowing the filter to remember its state between excitations.

Scale
This is an attenuator on the input Sound. For the full amplitude use +1.0 or -1.0; any factor whose
absolute value is less than 1 will attenuate the output.

273

HighShelvingFilter

Filters Category
Boosts or cuts the frequencies above the specified cutoff frequency.

Input
This is the Sound to be filtered.

CutoffFreq
Frequencies above this will be boosted or cut by the specified amount.

BoostOrCut
Indicate the amount of boost or cut in units of dB. Negative values indicate a cut, positive values a boost.

Scale
Attenuator on the input.

274

Interpolate

Math Category
A linear combination of two inputs. The left channel of Input0 is multiplied by 1-leftInterp, the left channel
of Input1 is multiplied by leftInterp, and the two are added together (and the same for the right channels
and rightInterp).

This Sound is useful for interpolating between control functions and envelopes (for example, interpolating
between two sets of analysis envelopes and using the result as an input to an OscillatorBank results in a
spectral "morph" from one spectrum to another before it is fed into the OscillatorBank).

Input1
When the Interpolation value is 0, this Sound is at full amplitude and Input2 is at zero amplitude.

Input2
When the Interpolation value is 1, this Sound is at full amplitude and Input1 is at zero amplitude.

LeftInterp
This parameter controls the left channel of the output. 0 results in an output of Input1 alone, and 1 results
in an output of Input2 alone. Any values between 0 and 1 result in a mix of Input1 and Input2 to be output.
(If Inputs are spectral sources, this channel is the amplitude envelopes.)

RightInterp
This parameter controls the right channel of the output. 0 results in an output of Input1 alone, and 1
results in an output of Input2 alone. Any values between 0 and 1 result in a mix of Input1 and Input2 to be
output. (If Inputs are spectral sources, this channel is the frequency envelopes.)

275

IteratedWaveshaper

Distortion & Waveshaping Category
This is like waveshaping, except that the output of the waveshaping is fed back into the waveshaper for
the specified number of Iterations before the result is finally output.

This algorithm was submitted by Agostino Di Scipio.

Iterations
Specify the number of times the output of the waveshaper should be fed back through the shaping
function before the output.

Input
Each sample of this Sound is used as an index into the shaping function stored in the Wavetable.

Scale
This attenuation is applied prior to feeding the output back into the waveshaper for each iteration.

Wavetable
This is the shaping function. An input value of zero indexes into the middle of this table, minus one
indexes into the beginning, and plus one indexes into the end of the table.

276

KeyMappedMultisample

Sampling Category
This provides a quick way to map a large bank of samples to specific ranges of a MIDI keyboard. It can
be used for mapping large numbers of samples taken from musical instruments to narrow ranges on the
keyboard (much as is done on a standard sampler) or for being able to select and trigger large banks of
sound effects in real time (from a sequencer or from the MIDI keyboard).

To specify the samples that belong in the same bank, place all of them in the same folder or directory.
Kyma will only look at the top level of your directory, so any folders within that folder will be ignored. The
ordering of the samples within that file will be interpreted to be alphabetical by name (when ordering is
important).

The files within the directory must all be mono or all stereo; mixtures of mono and stereo files are not
guaranteed to be interpreted correctly.

Frequency
Use Default here if you want the Frequency to equal the pitch of the recorded sample. The frequency
can be specified in units of pitch or frequency. The following are all ways to specify the A above middle
C:

440 hz (in hertz or cycles per second)
4 a (as the 4th octave A)
69 nn (as a MIDI notenumber)
4 c + 9 nn (as 9 half steps above middle C)
1.0 / 0.00227273 s (inverse of a period at 44.1 kHz sample rate)

The following are examples of how to control the frequency using MIDI, the virtual control surface, or a
third-party program:

!Pitch (key number plus pitch bend)
!KeyNumber nn (MIDI notenumber)
4 c + (!Frequency * 9 nn) (continuous controller from 4 c to 4 a)

Gate
Enter a 1 in this field to play the Sound exactly once for the duration you have specified in the Duration
field.

If you use an EventValue (for example, !KeyDown) in this field, the Sound can be retriggered as often as
you like within the duration specified in the Duration field.

When Gate becomes positive, the Sound is heard; when Gate becomes zero, the Sound is released and
will finish playing through the current sample and then stop.

If the sample file has loop points stored in its header, Kyma will loop the sample for as long as Gate
remains positive (so, for example, as long as the MIDI key is held down).

Velocity
If By Base Pitch is checked, this value will pick between several samples of the same base pitch but
different velocity ranges as long as you have set those ranges in the header of the samples file.

FirstSample
Use the disk icon to browse, and then select one sample file within the folder or directory containing all

277

the samples to be mapped.

LoFreq
Lowest frequency on the keyboard that will trigger one of the samples.

HiFreq
Highest frequency on the keyboard that will trigger one of the samples.

Mapping
The policy for mapping note number to samples file:

OnePerHalfStep: assign each samples file in order to the next half step on the keyboard. If you run
out of samples files start over again from the first file. This is a good mode for triggering sound effects
from the keyboard since you know that each half step will trigger a different sample.

EquallySpaced: Give each samples file an equal-sized range of the keyboard. The first samples file in
the list gets the lowest range of keys, the next file gets the next block of keys, etc. This is especially
useful when you have arranged the files alphabetically in your directory from the lowest to the highest
originally recorded pitches.

ByBasePitch: Use the base pitch (as specified in the header of AIFF files) to assign samples to the
frequencies closest to their originally recorded pitch. This is the best policy to use when you have a set of
samples that covers the range of a musical instrument, since it will result in the least distortion of the
samples if you can play them as close as possible to their original pitches.

ByPitchRange: Assigns each sample to the pitch range specified in the sample file header. When the
ranges overlap, sample files whose names sort later in the alphabet take precedence.

AttackTime
Duration of the attack of an envelope applied to the sample.

ReleaseTime
Duration of the release of an envelope applied to the sample.

Scale
Overall level of the sample.

Loop
Click here if you want to loop the sample using the loop points specified in the header of the samples file.
(Applies only to samples read from RAM, not those read directly from disk).

FromDisk
Click here to indicate that the sample should be read directly from disk rather than from sample RAM on
the Capybara. You can use this option when Kyma tells you that you have run out of sample RAM
(because your sample is too long or you have requested too many samples).

NoTransposition
Click here to indicate that the samples should not be transposed from their originally recorded pitches.
This is so you can use the keyboard to trigger sound effects or long disk files without changing the
duration or frequency of the recordings.

278

LimeInterpreter

Scripts Category
Reads binary files produced by the Lime music notation program and maps values to parameters of
Kyma Sounds. This allows you to "play" scores produced in Lime using Kyma Sounds as the
instruments.

FileName
This is the name of a binary file created and saved in Lime.

Inputs
These Sounds are treated as templates. Each name should begin with a letter and contain only
alpha-numeric characters; this field will reject any Sounds with "illegal" names. You can reference these
Sounds by name in the Script field.

Script
The script contains Smalltalk code that reads and interprets data from the specified Lime binary file. See
the manual for a more details about Smalltalk.

Left
This controls the level of the left input channel. The maximum value is 1 and the minimum is -1. The left
channel of the input is multiplied by the value of this parameter. Some example values for Left are:

1 (no attenuation)
0 (maximum attenuation)
!Fader1 (continuous controller sets level)
!KeyVelocity (MIDI key velocity controls the amplitude)

You can also paste another signal into this field, and the amplitude will vary with the output amplitude of
the pasted signal (something like an LFO controlling the attenuation). (See the manual for a complete
description of hot parameters, EventValues, EventSources, and Map files).

Right
This controls the level of the right input channel. The maximum value is 1 and the minimum is -1. The
right channel of the input is multiplied by the value of Right. Some example values for Right are:

1 (no attenuation)
0 (maximum attenuation)
!Fader1 (continuous controller sets level)
!KeyVelocity (MIDI key velocity controls the amplitude)

You can also paste another signal into this field, and the amplitude will vary with the output amplitude of
the pasted signal (something like an LFO controlling the attenuation). (See the manual for a complete
description of hot parameters, EventValues, EventSources, and Map files).

279

LiveSpectralAnalysis

Tracking Live Input Category
This Sound should be used as the Spectrum parameter of an OscillatorBank. It analyzes the Input and
produces amplitude and frequency envelopes for controlling a bank of oscillators.

Input
The output of the LiveSpectralAnalysis is the spectrum of this Input.

LowestAnalyzedFreq
Check the highest frequency that will still lie below the lowest fundamental frequency of the Input. The
lower this frequency, the more time-smearing and delay, so pick the highest one that will still encompass
the fundamental.

The frequency value you select will also determine how many bandpass filters are used in the analysis
and, therefore, the number of tracks or partials generated by the analysis. The lower the frequency, the
more partials that are generated:

1 F: 512
2 F: 256
3 F: 128
4 F: 64
5 F: 32

If you use this LiveSpectralAnalysis to control an OscillatorBank, this is the maximum number of
oscillators that you should specify in the OscillatorBank (you can specify fewer of them, but specifying
more of them will not result in any additional partials).

AmpScale
This is the overall amplitude level for all the partials.

FreqScale
This scales the frequency of all the oscillators without affecting the timing or duration of the amplitude
envelopes. There is no limit on the range, so to control it continuously use:

!Freq * 10

Or to control it from a MIDI keyboard use:

!KeyNumber nn hz / 60 nn hz

Response
This is the time response of the filters. Experiment to find the best time response that does not add
distortion to the sound. This specifies the bandwidth of the bandpass filters used in the analysis:
"BestFreq" is the narrowest bandwidth, "BestTime" is the widest bandwidth, and the others are
intermediate bandwidths.

Harmonic
Some kinds of live morphs work better with Harmonic checked, but you should experiment with it both
checked and unchecked. It is a little trickier to do the harmonic analysis, so you should avoid checking
this box except in situations where it is required.

280

Once you check this box, you must also set several other parameters: LowFreq, HighFreq, InitFreq,
TrackedHarmonic, UnpitchedThreshold.

UnpitchedOnly
Set this value to 1, and adjust UnpitchedThreshold if you would like to hear the unpitched parts of the
sound only (transients, clicks, consonants, noise, etc). It requires that you have Harmonic checked.

UnpitchedThreshold
Set UnpitchedOnly to 1, and adjust this value if you would like to hear only the unpitched parts of the
Input (clicks, consonants, transients, noise). This requires that you have Harmonic checked.

TrackedHarmonic
Only required if you have Harmonic set. A pitch-follower attempts to track whichever harmonic you
indicate in this field. Usually it is 1 for the fundamental, but if a higher harmonic is stronger, it may be
easier to track harmonic 2, 3 or higher. The harmonic’s frequency must lie between LowFreq and
HighFreq.

LowFreq
Only required if you have Harmonic checked. This is the lowest frequency you expect to see in the
tracked harmonic.

HighFreq
Required only when you have Harmonic checked. This is the highest frequency you expect to encounter
in the tracked harmonic.

InitFreq
Required only if Harmonic is checked. This is an estimate of the initial frequency of the tracked harmonic.

FundamentalOnly
This only applies when Harmonic is checked. Check this box if you would like to listen to the estimated
fundamental frequency. It can help you judge whether adjusting LowFreq or HighFreq might result in a
better estimate.

281

LowShelvingFilter

Filters Category
Boost or cut the spectrum below the specified cutoff frequency.

Input
This is the Sound to be filtered.

CutoffFreq
Frequencies below this will be boosted or cut by the specified amount.

BoostOrCut
Indicate the amount of boost or cut in units of dB. Negative values indicate a cut, positive values a boost.

Scale
Attenuator on the input.

282

Matrix4

Spatializing Category
This Sound is a four-input four-output matrix mixer. The four input Sounds are routed and mixed to the
four output channels of the signal processor.

This Sound only works properly as the rightmost Sound in the signal flow diagram.

In1
One of the four input Sounds.

In2
One of the four input Sounds.

In3
One of the four input Sounds.

In4
One of the four input Sounds.

InsToOut1
This parameter is a list of four mixing levels. These levels are used to mix the four inputs into an output
for channel 1.

InsToOut2
This parameter is a list of four mixing levels. These levels are used to mix the four inputs into an output
for channel 2.

InsToOut3
This parameter is a list of four mixing levels. These levels are used to mix the four inputs into an output
for channel 3.

InsToOut4
This parameter is a list of four mixing levels. These levels are used to mix the four inputs into an output
for channel 4.

283

Matrix8

Spatializing Category
This Sound is a eight-input eight-output matrix mixer. The eight input Sounds are routed and mixed to the
eight output channels of the signal processor.

This Sound only works properly as the rightmost Sound in the signal flow diagram.

In1
One of the eight input Sounds.

In2
One of the eight input Sounds.

In3
One of the eight input Sounds.

In4
One of the eight input Sounds.

In5
One of the eight input Sounds.

In6
One of the eight input Sounds.

In7
One of the eight input Sounds.

In8
One of the eight input Sounds.

InsToOut1
This parameter is a list of eight mixing levels. These levels are used to mix the eight inputs into an output
for channel 1.

InsToOut2
This parameter is a list of eight mixing levels. These levels are used to mix the eight inputs into an output
for channel 2.

InsToOut3
This parameter is a list of eight mixing levels. These levels are used to mix the eight inputs into an output
for channel 3.

InsToOut4

284

This parameter is a list of eight mixing levels. These levels are used to mix the eight inputs into an output
for channel 4.

InsToOut5
This parameter is a list of eight mixing levels. These levels are used to mix the eight inputs into an output
for channel 5.

InsToOut6
This parameter is a list of eight mixing levels. These levels are used to mix the eight inputs into an output
for channel 6.

InsToOut7
This parameter is a list of eight mixing levels. These levels are used to mix the eight inputs into an output
for channel 7.

InsToOut8
This parameter is a list of eight mixing levels. These levels are used to mix the eight inputs into an output
for channel 8.

285

MemoryWriter

Sampling Category
When Trigger becomes positive, records the Input into the wavetable memory of the signal processor for
the length of time specified in CaptureDuration.

Any Sounds that read wavetables can be used to play back this recording (for example,
FunctionGenerator, Sample, and others).

Input
The output of this Sound is recorded into the wavetable memory of the signal processor.

CaptureDuration
The length of time to record the Input. Enter 0 s if you want to record Input for its full duration.

Global
Click here to record the Input into the wavetable memory on all expansion cards (otherwise, it will be
recorded only into the memory of the expansion card on which the MemoryWriter happens to get
scheduled, and Kyma will be forced to schedule the playback Sound on that same card. If you make the
recording global, it is much easier for Kyma to schedule the playback Sounds, because it can schedule
them on any cards, knowing that the recording is available in the memory of all the cards.)

Cyclic
When Cyclic is selected, the MemoryWriter does a "looping" recording. In other words, it records for the
specified CaptureDuration; then, if Trigger is still positive, it wraps around to the beginning of the
recording and continues recording the Input, overwriting what it had previously recorded there.

RecordingName
Enter a name for the sample that you are recording into the wavetable memory. Use this same name in
the playback Sounds, so they can find the sample in the wavetable memory. Any Sound that reads from
the wavetable memory can also read the sample that you are writing into the memory with MemoryWriter.
Sounds like Sample and FunctionGenerator read arbitarily long tables, whereas Sounds like Oscillator
will use only the first 4096 entries of the named wavetable (only the first 4096 sample points).

Silent
Click here if you would like to record the Input silently, without also monitoring it at the same time.

Trigger
When the Trigger becomes nonzero, the recording is triggered. You can trigger several events over the
course of the total Duration of this program as long as the value of Trigger returns to zero before the next
trigger. Some example values for Trigger are:

1 (plays once with no retriggering)
0 (the sound is silent, never triggered)
!KeyDown (trigger on MIDI key down)
!F1 (trigger when MIDI switch > 0)

You can also paste another signal into this field, and events will be triggered every time that signal
changes from zero to a nonzero value. (See the manual for a complete description of hot parameters,

286

EventValues, EventSources, and Map files).

287

MIDIFileEcho

MIDI Out Category
This Sounds reads up all MIDI events on the specified range of channels from the designated file and
then echoes them to the MIDI output.

It does not output MIDI within Kyma but copies the MIDI file directly to the DSP MIDI output.

LowChannel
The lowest MIDI channel to echo.

HighChannel
Highest MIDI channel to echo.

FileName
A MIDI file

288

MIDIMapper

MIDI In Category
Defines its Input as a MIDI voice of the specified polyphony that takes its input from the specified MIDI
input channel within the given range of pitches either in real time or from a MIDI file. Left and Right are
attenuators on the left and right channels of the audio output of this Sound.

A local map supplied in the Map field overrides the global MIDI map for any Event Values in its Input. If
you don’t need to override the global map, use MIDIVoice instead.

Input
Input (including all of its inputs) is the Sound associated with this MIDI voice. If any of Input’s parameters
are Event Values, they will be mapped to Event Sources by the Map parameter (which overrides the
currently select global map but only for Input)

Map
Enter any mappings from Event Values to Event Sources that should be *different* in Input (and its
inputs) than they are in the currently selected global map. If an Event Value is not defined here in the
local map, Kyma will use the global map to determine its Event Source.

The syntax for a mapping is:

!EventValueName is: ‘EventSourceName

Left
This controls the level of the left input channel. The maximum value is 1 and the minimum is -1. The left
channel of the input is multiplied by the value of this parameter. Some example values for Left are:

1 (no attenuation)
0 (maximum attenuation)
!Fader1 (continuous controller sets level)
!KeyVelocity (MIDI key velocity controls the amplitude)

You can also paste another signal into this field, and the amplitude will vary with the output amplitude of
the pasted signal (something like an LFO controlling the attenuation). (See the manual for a complete
description of hot parameters, EventValues, EventSources, and Map files).

Right
This controls the level of the right input channel. The maximum value is 1 and the minimum is -1. The
right channel of the input is multiplied by the value of Right. Some example values for Right are:

1 (no attenuation)
0 (maximum attenuation)
!Fader1 (continuous controller sets level)
!KeyVelocity (MIDI key velocity controls the amplitude)

You can also paste another signal into this field, and the amplitude will vary with the output amplitude of
the pasted signal (something like an LFO controlling the attenuation). (See the manual for a complete
description of hot parameters, EventValues, EventSources, and Map files).

Channel
The MIDIMapper only pays attention to this incoming MIDI channel (or MIDI events on this channel of the

289

MIDI file).

Set Channel to 0 to use whatever channel is specified in the global map.

Source
Choose between live MIDI input, reading from a MIDI file, or receiving MIDI events specified in the Script
field.

MidiFile
Read the MIDI event stream from this file if MIDI File is selected as the Source. Use the Browse button to
bring up a standard file list and select the filename from the list.

Polyphony
Number of simultaneous MIDI note events possible on this voice. For example, if you specify a
Polyphony value of 4, Kyma makes 4 copies of the Input Sound, so any one of them can be triggered at
any time and all four can be sounding at the same time. The higher the value of Polyphony, the more
computation time is required per sample tick.

LowPitch
The lowest MIDI pitch that this voice responds to. Be sure to include units of pitch or frequency with the
value. (For this particular Sound, if you specify this value as a frequency, Kyma will round to the nearest
equal-tempered MIDI notenumber).

This allows you to map different regions of the MIDI note range to different voices and to define keyboard
splits.

HighPitch
The highest MIDI pitch that this voice responds to. Be sure to include units of pitch or frequency with the
value. (For this particular Sound, if you specify this value as a frequency, Kyma will round to the nearest
equal-tempered MIDI notenumber).

This allows you to map different regions of the MIDI note range to different voices and to define keyboard
splits.

Script
When Source is set to Script, this program sends MIDI events to the Input (just as if these events were
being read from a MIDI file). See the manual for more information on algorithmically generating and
manipulating MIDI events.

To specify a MIDI event, use:

self keyDownAt: <aTime> duration: <aDur> frequency: <aFreq> velocity: <aVel>.

Be sure to include units on the start time, duration, and frequency values, and specify velocity within a
range of 0 to 1. Frequency can be any value specified in hz or nn; you are not limited to the pitches from
the 12-tone equal tempered scale. All arguments must be real values (as opposed to EventValues).

As a shortcut, you can drop any of the tags, for example, the following are all valid:

self keyDownAt: 0 s.
self keyDownAt: 3 s duration: 10 beats.
self keyDownAt: 0 beats duration: 10 beats frequency: 4 c.
self keyDownAt: 5 beats duration: 0.25 beats frequency: 4 c + 0.5 nn velocity: 0.75.

This field is actually a Smalltalk program, so you can use Smalltalk expressions or control structures to
generate these events algorithmically, for example:

1 to: 12 do: [:i |

290

 self keyDownAt: (i - 1) beats duration: 0.25 beats frequency: 4 c + i nn velocity: (i / 12.0)].

or:

| r t |
r := Random newForKymaWithSeed: 66508.
t := 0.
100 timesRepeat: [
 t := t + r next.
 self keyDownAt: t s duration: 0.25 beats frequency: (r next * 1000 + 60) hz velocity: r next].

You can also create sequences and mixes of "notes" and "rests" or collections of MIDI events, each
associated with its own time tag.

To create a rest object, use:

Rest durationInBeats:

To create a note, use any of the following creation messages:

Note durationInBeats:
Note durationInBeats:frequency:
Note durationInBeats:frequency:velocity:
Note durationInBeats:velocity: frequency:
Note durationInBeats: frequency:durationInBeats:velocity:

To create a sequence of events (where an event is a Note, a Rest, an EventSequence, an EventMix, or a
TimedEventCollection) use:

EventSequence events: <anArrayOfEvents>.

To create a mix of events which all start at the same time (where an event is a Note, a Rest, an
EventSequence, an EventMix, or a TimedEventCollection) use:

EventMix events: <anArrayOfEvents>.

To create a collection of events, each of which has a starting time associated with it (where an event is a
Note, a Rest, an EventSequence, an EventMix, or a TimedEventCollection, and the starting time is
specified in beats) use:

TimedEventCollection startingBeats: <anArrayOfBeatsWithNoUnits> events: <anArrayOfEvents>.

To play a Note, Rest, EventSequence or EventMix, use:

<anEvent> playOnVoice:onBeat:bpm:
<anEvent> playOnVoice:
<anEvent> playOnVoice:bpm:
<anEvent> playOnVoice:onBeat:

Transformations that can be applied to Notes, Rests, EventSequences, EventMixes or
TimedEventCollections include:

dim: <aDurationScaleFactor>
trsp: <anIntervalOfTranspositionInHalfSteps>
dbl: <anIntervalOfDoublingInHalfSteps>
retrograde

Transformations that can be applied to EventSequences, EventMixes or TimedEventCollections include:

randomOrder
randomizeTimesUsing: <aRandomStream>
 pickingEventsUsing: <aRandomStream>
 totalBeats: <durInBeats>
 quantizeTo: <shortestDur>
 maxSpacing: <longestDur>

For examples using these creation and manipulation methods, see MIDI scripts in the manual.

291

MIDIOutputController

MIDI Out Category
This Sound outputs its Value parameter to the MIDI output on the specified channel as the specified
continuous controller.

Channel
MIDI output channel.

ControllerNumber
This is the MIDI continuous controller number.

Value
This is the value that will be output as the controller data. Paste a Sound in here to turn a Sound into a
MIDI controller output.

292

MIDIOutputEvent

MIDI Out Category
When Gate becomes positive, a note-on message with the current values of Frequency and Amplitude is
sent as the note number and velocity on the given MIDI channel. When Gate returns to zero, a note-off
message will be sent.

Frequency
There is no help available for this parameter.

Amplitude
There is no help available for this parameter.

Channel
There is no help available for this parameter.

Gate
There is no help available for this parameter.

293

MIDIOutputEventInBytes

MIDI Out Category
This Sounds sends an uninterpreted sequence of bytes to the MIDI output. You can use it to send
arbitrary MIDI events.

Bytes
Enter the MIDI message as a sequence of numbers separated by spaces. If you want to specify them in
hex, precede the number with 16r, for example:

16rFF

294

MIDIVoice

MIDI In Category
Defines its Input as a MIDI voice of the specified polyphony that takes its input from the specified MIDI
input channel within the given range of pitches either in real time or from a MIDI file. Left and Right are
attenuators on the left and right channels of the audio output of this Sound.

Input
Input (including all of its inputs) is the Sound associated with this MIDI voice. If any of Input’s parameters
are Event Values, they will be mapped to Event Sources by the Map parameter (which overrides the
currently select global map but only for Input)

Left
This controls the level of the left input channel. The maximum value is 1 and the minimum is -1. The left
channel of the input is multiplied by the value of this parameter. Some example values for Left are:

1 (no attenuation)
0 (maximum attenuation)
!Fader1 (continuous controller sets level)
!KeyVelocity (MIDI key velocity controls the amplitude)

You can also paste another signal into this field, and the amplitude will vary with the output amplitude of
the pasted signal (something like an LFO controlling the attenuation). (See the manual for a complete
description of hot parameters, EventValues, EventSources, and Map files).

Right
This controls the level of the right input channel. The maximum value is 1 and the minimum is -1. The
right channel of the input is multiplied by the value of Right. Some example values for Right are:

1 (no attenuation)
0 (maximum attenuation)
!Fader1 (continuous controller sets level)
!KeyVelocity (MIDI key velocity controls the amplitude)

You can also paste another signal into this field, and the amplitude will vary with the output amplitude of
the pasted signal (something like an LFO controlling the attenuation). (See the manual for a complete
description of hot parameters, EventValues, EventSources, and Map files).

Channel
The MIDIVoice only pays attention to this incoming MIDI channel (or MIDI events on this channel of the
MIDI file).

Set Channel to 0 to use whatever channel is specified in the global map.

Source
Choose between live MIDI input, reading from a MIDI file, or receiving events specified in the Script field.

MidiFile
Read the MIDI event stream from this file if MIDI File is selected as the Source. Use the Browse button to
bring up a standard file list and select the filename from the list.

295

Polyphony
Number of simultaneous MIDI note events possible on this voice. For example, if you specify a
Polyphony value of 4, Kyma makes 4 copies of the Input Sound, so any one of them can be triggered at
any time and all four can be sounding at the same time. The higher the value of Polyphony, the more
computation time is required per sample tick.

LowPitch
The lowest MIDI pitch that this voice responds to. Be sure to include units of pitch or frequency with the
value. (For this particular Sound, if you specify this value as a frequency, Kyma will round to the nearest
equal-tempered MIDI notenumber).

This allows you to map different regions of the MIDI note range to different voices and to define keyboard
splits.

HighPitch
The highest MIDI pitch that this voice responds to. Be sure to include units of pitch or frequency with the
value. (For this particular Sound, if you specify this value as a frequency, Kyma will round to the nearest
equal-tempered MIDI notenumber).

This allows you to map different regions of the MIDI note range to different voices and to define keyboard
splits.

Script
When Source is set to Script, this program sends MIDI events to the Input (just as if these events were
being read from a MIDI file). See the manual for more information on algorithmically generating and
manipulating MIDI events.

To specify a MIDI event, use:

self keyDownAt: <aTime> duration: <aDur> frequency: <aFreq> velocity: <aVel>.

Be sure to include units on the start time, duration, and frequency values, and specify velocity within a
range of 0 to 1. Frequency can be any value specified in hz or nn; you are not limited to the pitches from
the 12-tone equal tempered scale. All arguments must be real values (as opposed to EventValues).

As a shortcut, you can drop any of the tags, for example, the following are all valid:

self keyDownAt: 0 s.
self keyDownAt: 3 s duration: 10 beats.
self keyDownAt: 0 beats duration: 10 beats frequency: 4 c.
self keyDownAt: 5 beats duration: 0.25 beats frequency: 4 c + 0.5 nn velocity: 0.75.

This field is actually a Smalltalk program, so you can use Smalltalk expressions or control structures to
generate these events algorithmically, for example:

1 to: 12 do: [:i |
 self keyDownAt: (i - 1) beats duration: 0.25 beats frequency: 4 c + i nn velocity: (i / 12.0)].

or:

| r t |
r := Random newForKymaWithSeed: 66508.
t := 0.
100 timesRepeat: [
 t := t + r next.
 self keyDownAt: t s duration: 0.25 beats frequency: (r next * 1000 + 60) hz velocity: r next].

You can also create sequences and mixes of "notes" and "rests" or collections of MIDI events, each
associated with its own time tag.

To create a rest object, use:

296

Rest durationInBeats:

To create a note, use any of the following creation messages:

Note durationInBeats:
Note durationInBeats:frequency:
Note durationInBeats:frequency:velocity:
Note durationInBeats:velocity: frequency:
Note durationInBeats: frequency:durationInBeats:velocity:

To create a sequence of events (where an event is a Note, a Rest, an EventSequence, an EventMix, or a
TimedEventCollection) use:

EventSequence events: <anArrayOfEvents>.

To create a mix of events which all start at the same time (where an event is a Note, a Rest, an
EventSequence, an EventMix, or a TimedEventCollection) use:

EventMix events: <anArrayOfEvents>.

To create a collection of events, each of which has a starting time associated with it (where an event is a
Note, a Rest, an EventSequence, an EventMix, or a TimedEventCollection, and the starting time is
specified in beats) use:

TimedEventCollection startingBeats: <anArrayOfBeatsWithNoUnits> events: <anArrayOfEvents>.

To play a Note, Rest, EventSequence or EventMix, use:

<anEvent> playOnVoice:onBeat:bpm:
<anEvent> playOnVoice:
<anEvent> playOnVoice:bpm:
<anEvent> playOnVoice:onBeat:

Transformations that can be applied to Notes, Rests, EventSequences, EventMixes or
TimedEventCollections include:

dim: <aDurationScaleFactor>
trsp: <anIntervalOfTranspositionInHalfSteps>
dbl: <anIntervalOfDoublingInHalfSteps>
retrograde

Transformations that can be applied to EventSequences, EventMixes or TimedEventCollections include:

randomOrder
randomizeTimesUsing: <aRandomStream>
 pickingEventsUsing: <aRandomStream>
 totalBeats: <durInBeats>
 quantizeTo: <shortestDur>
 maxSpacing: <longestDur>

For examples using these creation and manipulation methods, see MIDI scripts in the manual.

297

Mixer

Mixing & Panning Category
Adds all of its Inputs together. Mixes the outputs of all the Sounds in the Inputs field.

Inputs
Inputs are all added together (mixed) so they will be heard simultaneously.

Left
This controls the level of the left input channel. The maximum value is 1 and the minimum is -1. The left
channel of the input is multiplied by the value of this parameter. Some example values for Left are:

1 (no attenuation)
0 (maximum attenuation)
!Fader1 (continuous controller sets level)
!KeyVelocity (MIDI key velocity controls the amplitude)

You can also paste another signal into this field, and the amplitude will vary with the output amplitude of
the pasted signal (something like an LFO controlling the attenuation). (See the manual for a complete
description of hot parameters, EventValues, EventSources, and Map files).

Right
This controls the level of the right input channel. The maximum value is 1 and the minimum is -1. The
right channel of the input is multiplied by the value of Right. Some example values for Right are:

1 (no attenuation)
0 (maximum attenuation)
!Fader1 (continuous controller sets level)
!KeyVelocity (MIDI key velocity controls the amplitude)

You can also paste another signal into this field, and the amplitude will vary with the output amplitude of
the pasted signal (something like an LFO controlling the attenuation). (See the manual for a complete
description of hot parameters, EventValues, EventSources, and Map files).

298

Monotonizer

Frequency & Time Scaling Category
Removes pitch changes from the input and uses the specified Frequency instead.

Input
Any frequency changes in the Input will be flattened out or removed by this module.

Frequency
This is the new frequency of the monotonized input.

MinInputPitch
This is the lowest frequency you expect in the input. It must include units: hz for a frequency or nn for a
notenumber.

MaxInputPitch
This is the highest frequency you expect in the input. It must include units: hz for a frequency or nn for a
notenumber.

299

MultifileDiskPlayer

Sampling Category
This is similar to DiskPlayer except that you specify an array of disk file names rather than a single disk
file name.

The value of Index determines which file will play on the next retrigger. (An index of 0 chooses the first
file in the array, an index of 1 chooses the second, etc.) Only one disk file will play at any one time, but
the choice of file can be made in real time. (To get more than one disk file to play simultaneously, feed
this Sound into a MIDIVoice and set the desired polyphony).

You can use a single Rate for all disk files, or make Rate a function of the Index if you want different files
to play at different rates.

The MultiFileDiskPlayer can be used whenever you need real-time random access to several different
disk recordings through a keyboard or MIDI controller. For example, it can be used to choose from a set
of live sound effects and synchronize them by hand to a film, to create a disk-based sampler with a
different sample for every key on the keyboard, to perform a composition made up of several, long disk
recordings, or (if the trigger is linked to the FrequencyTracker or EnvelopeFollower) as a synchronizable
"tape part" that responds to a live performer.

FileNames
List each of the file names that could be triggered, enclosing each of them within single quotes. The
Index corresponds to the placement of the filename in this field. In other words, an index of 0 selects the
first filename in the field, and index of 1 selects the second filename, etc.

RateScale
This is the rate of playback. For example, use 1 to play back at the original rate, 0.5 for half speed, 2 for
twice as fast, etc.

Trigger
When the Trigger becomes nonzero, one event is triggered. You can trigger several events over the
course of the total Duration of this program as long as the value of Trigger returns to zero before the next
trigger. Some example values for Trigger are:

1 (plays once with no retriggering)
0 (the sound is silent, never triggered)
!KeyDown (trigger on MIDI key down)
!cc64 (trigger when controller 64 > 0)

You can also paste another signal into this field, and events will be triggered every time that signal
changes from zero to a positive value. (See the manual for a complete description of hot parameters,
Event Values, and the Global map files).

Gated
NOT IMPLEMENTED YET.

Index
This is an integer that selects which of the disk files should be played when the next trigger is received.
An index of 0 selects the first file. If the index is less than 0, it selects the 0th file (the first file in the list).
If the index is larger than the length of the file list, it selects the last file in the list.

300

MultiplyingWaveshaper

Level, Compression, Expansion Category
Multiplies Input by a value read from the Wavetable at an index supplied by the NonlinearInput and
attenuates or amplifies the result by multiplying it by Scale.

Can be used as a computationally inexpensive dynamic range controller if the NonlinearInput is a signal
fed through a peak detector or RMS detector and the Input is that same signal delayed by some amount.
In this situation, the Wavetable describes the attenuation of the output amplitude as a function of input
amplitude.

To design a new input-output characteristic function, open the Sample/Wavetable editor and use the
InputOutputCharacteristic template to generate a new transfer function with the desired
compression/expansion parameters.

NonlinearInput
The output of this Sound is used as an index into the Wavetable.

Input
This Sound is multiplied by the value from the Wavetable that is indexed by the NonlinearInput.

Scale
This is a gain control for the output. It can be any positive number.

Wavetable
This is the transfer function that the NonlinearInput indexes into. When used as a dynamic range control,
this function describes a multiplier on the output amplitude as a function of the input amplitude.

301

Multisample

Sampling Category
This provides a quick way to select from a number of samples. The sample files are listed in the Samples
field, and the Index field is used to determine which sample file to play whenever the Gate changes to a
positive value.

Frequency
Use 0 hz here if you want the Frequency to equal the pitch of the recorded sample. The frequency can
be specified in units of pitch or frequency. Different frequencies are obtained by changing the size of the
increment through the recorded sample. The following are all ways to specify the A above middle C:

440 hz (in hertz or cycles per second)
4 a (as the 4th octave A)
69 nn (as a MIDI notenumber)
4 c + 9 nn (as 9 half steps above middle C)
1.0 / 0.00227273 s (inverse of a period at 44.1 kHz sample rate)

The following are examples of how to control the frequency using MIDI, the virtual control surface, or a
third-party program:

!Pitch (key number plus pitch bend)
!KeyNumber nn (MIDI notenumber)
4 c + (!Frequency * 9 nn) (continuous controller from 4 c to 4 a)

Gate
Enter a 1 in this field to play the Sound exactly once for the duration you have specified in the Duration
field.

If you use an EventValue (for example, !KeyDown) in this field, the Sound can be retriggered as often as
you like within the duration specified in the Duration field.

When Gate becomes positive, the Sound is heard; when Gate becomes zero, the Sound is released. If
the sample file has loop points stored in its header, Kyma will loop the sample for as long as Gate
remains positive (so, for example, as long as the MIDI key is held down).

Samples
Takes a list of samples file names, each within single quotes.

Index
An expression whose value is the index into the list of filenames: 0 selects the first file in the list, 1 the
second, and so on.

AttackTime
Duration of the attack of an envelope applied to the sample.

ReleaseTime
Duration of the release of an envelope applied to the sample.

Scale

302

Overall level of the sample.

Loop
Click here if you want to loop the sample using the loop points specified in the header of the samples file.

303

MultisegmentEnvelope

Envelopes & Control Signals Category
Similar to the ADSR envelope, except that you can specify an arbitrary number of segments and can
specify loop points. See also MultiSlopeFunctionGenerator and GraphicalEnvelope. Use the
GraphicalEnvelope except in those cases where you need hot BreakPoints or Levels.

Typical uses include amplitude envelopes, pitch envelopes, and time index functions.

Durations
Enter the durations of each segment of the envelope. You must include the units of time and enclose the
duration and its units within curly braces, for example

{!Length s} or {2 s}

The number of Durations must be one less than the number of BreakPoints.

BreakPoints
These are the amplitude values at the endpoints of each segment. There should always be one more
breakpoint than there are segment durations. Every time there is a change in slope or a "break" in the
line corresponding to the envelope, you have to specify the amplitude at that point (including the very last
point in the envelope, since it does not necessarily have to end on a zero). These numbers can be any
value from 0 to 1. If you enter a larger value, the amplitude of the envelope will approach that number at
the rate required to reach that number in the given duration, but it will stick at the value of 1 once that has
been reached.

StartLoop
The number of the first segment included in the loop (where the segments are numbered from 1 to the
number of segments).

EndLoop
The number of the last segment included in the loop (where the segments are numbered from 1 to the
number of segments).

Level
This is a scale factor (from 0 to 1) for attenuating the overall output level.

Gate
When Gate changes from zero to a nonzero, the envelope will be triggered. Gate must return to zero
again before the envelope can be retriggered. If you have specified beginning and ending segments for a
loop, the envelope will repeat the loop segments for as long as the Gate is nonzero. If the ending loop
segment ends on a higher or lower value than the start of the beginning segment, the entire looped
portion will get larger or smaller each time it is repeated (because each segment has a *slope* associated
with it, not the absolute values at each point).

304

MultislopeFunctionGenerator

Envelopes & Control Signals Category
This is similar to the MultiSegmentEnvelope, except that you specify time points and *slopes* between
the time points (rather than time points and the levels at those time points), and you cannot loop the
envelope.

GraphicalEnvelope is easier to use than the MultiSlopeFunctionGenerator except in those situations
where you need hot TimePoints and/or Slopes.

The resting value of this envelope is 1. Each time it is triggered, it generates the envelope exactly once.

TimePoints
These are the time points at which the slope of the envelope should change. There should be one more
TimePoint than there are Slopes because the slopes specify the slope of a line *between* adjacent pairs
of TimePoints.

You must include the units of time and enclose the time point and its units within curly braces, for
example

{!TimePoint1 s} or {2 s}

Slopes
Specify a slope for each pair of adjacent TimePoints (you should end up with one more TimePoint than
you have slopes). A slope of 1 is a 45 degree angle, slopes of less than 1 are shallower, and slopes of
greater than 1 are steeper. Negative slopes go downward at the same angle as the positive slopes go
upward.

Level
This is an overall amplitude scale on the entire envelope.

Gate
When this changes from a zero to a number larger than zero, the envelope is generated exactly once.
The resting value of the envelope is the maximum amplitude (1).

305

Noise

Xtra Sources Category
This generates white or pink noise, which is a stream of pseudo-random numbers. Choose different
initial states to generate different streams of random numbers.

To get random numbers at a lower rate, use something like:

1 ms random

in a hot parameter field.

InitialState
Type in a seed value within the range of -1 to 1, excluding zero. (If you type a zero it will be changed to a
1 by the program).

Pink
Check this box to generate pink rather than white noise.

306

Oscillator

Xtra Sources Category
The Wavetable is treated as a single cycle of a periodic function. There are options for interpolation and
modulation. In general, the more options that are selected and more parameters that are time-varying,
the more complicated the computation of the Oscillator and the fewer of them you can compute in real
time.

Frequency
The frequency can be specified in units of pitch or frequency. The following are all ways to specify the A
above middle C:

440 hz (in hertz or cycles per second)
4 a (as the 4th octave A)
69 nn (as a MIDI notenumber)
4 c + 9 nn (as 9 half steps above middle C)
1.0 / 0.00227273 s (inverse of a period at 44.1 kHz sample rate)

The following are examples of how to control the frequency using MIDI, the virtual control surface, or a
third-party program:

!Pitch (key number plus pitch bend)
!KeyNumber nn (MIDI notenumber)
4 c + (!Frequency * 9 nn) (continuous controller from 4 c to 4 a)

Wavetable
Select a wavetable for the oscillator. The Oscillator expects wavetables with 4096 entries.

Modulation
Select whether or not there should be frequency modulation.

Modulator
If Modulation has been set to frequency, then this Sound is the Modulator (otherwise it is ignored).
Usually the Modulator is another Oscillator, but it can be any Sound.

MaxMI
This is the value of the modulation index when the Modulator is at its full amplitude.

Interpolation
Choose linear if you would like to interpolate between the values read from the wavetable.

Envelope
This is an attenuator on the output of the Oscillator. Enter 1 (or 0 dB) for the full amplitude. For a
time-varying amplitude, paste in a Sound (such as AR, ADSR, or FunctionGenerator) or an Event Value
(such as !Volume) in this field.

PitchBend
This is a deviation from the specified Frequency computed as:

307

actualFreq := Frequency + (Frequency * pitchBend).

The maximum pitchBend value is 2 and the minimum value is 0.

Reset
When reset is nonzero, it resets the phase to zero. In other words, it sets the wavetable index to its initial
position.

308

OscillatorBank

Xtra Sources Category
Generates the sum of several oscillators on the specified waveform, each with its own frequency and
amplitude envelope.

NbrOscillators
This is the number of oscillators that will be added together. Each oscillator is associated with a partial
from the time-varying spectrum given in the Spectrum field.

BankSize
This is the number of oscillators that will be synthesized at a time. This is important since the signal
processor has a maximum number of oscillators it can add at a single time (typically 50-56).

For instance, if NbrOscillators is 100 and BankSize is 50, this Sound will add up two groups of 50
oscillators.

Wavetable
This is the waveform used by all the oscillators.

Spectrum
The Spectrum controls the amplitude and frequency envelopes for each oscillator. This should come from
one of the Sounds in the Spectral Sources or Spectral Modifiers categories of the System Prototypes.

309

OscilloscopeDisplay

Tracking Live Input Category
Displays the Input as an oscilloscope trace on the Virtual control surface. Use the buttons along the
bottom of the display to zoom in or out in the time or amplitude dimensions. The value at the cursor point
(where the red cross hairs meet) is displayed in the upper left. Clicking on the display freezes it so you
can hold down the mouse over specific points to read their exact values.

An Oscilloscope can be placed anywhere along the signal flow path; it does not necessarily have to be
the final Sound in a signal flow path (it could, for example, be displaying the Input to the Sound that is
actually being heard). If a Sound has more than one Oscilloscope within it, all the traces will be displayed
side by side in the Virtual control surface.

You can also view the oscilloscope trace of any Sound by selecting the Sound and then choosing
Oscilloscope from the Info menu. (But the menu method only allows you to view one Sound at a time on
the Oscilloscope and does not allow you to adjust the trigger frequency for a stable display).

Input
The amplitude of this Sound is continuously displayed on the Virtual control surface, as if by an
oscilloscope.

Trigger
In order to see a picture of the waveform that does not drift across the screen, use a PulseTrain here, and
set the repetition period of the pulses to equal the inverse of the Input’s frequency. That way, the
Oscilloscope is triggered once every Input period, and you will see a single period of the Input in the
display window.

310

Output4

Spatializing Category
This Sound routes the four input Sounds to the four output channels of the signal processor.

This Sound only works properly as the rightmost Sound in the signal flow diagram.

Out1
This Sound is routed to output channel 1 of the signal processor.

Out2
This Sound is routed to output channel 2 of the signal processor.

Out3
This Sound is routed to output channel 3 of the signal processor.

Out4
This Sound is routed to output channel 4 of the signal processor.

311

Output8

Spatializing Category
This Sound routes the eight input Sounds to the eight output channels of the signal processor.

This Sound only works properly as the rightmost Sound in the signal flow diagram.

Out1
This Sound is routed to output channel 1 of the signal processor.

Out2
This Sound is routed to output channel 2 of the signal processor.

Out3
This Sound is routed to output channel 3 of the signal processor.

Out4
This Sound is routed to output channel 4 of the signal processor.

Out5
This Sound is routed to output channel 5 of the signal processor.

Out6
This Sound is routed to output channel 6 of the signal processor.

Out7
This Sound is routed to output channel 7 of the signal processor.

Out8
This Sound is routed to output channel 8 of the signal processor.

312

OverlappingMixer

Mixing & Panning Category
Overlaps the start times of its Inputs by the specified OverlapTime.

Inputs
These Sounds will be played one after another, overlapping with each other by the amount of time
specified in OverlapTime. The ordering is determined by their position in the Inputs field: left to right and
top to bottom.

OverlapTime
This is the amount of time that each Input overlaps with the previous Input. Be sure to include the units of
time.

Left
This controls the level of the left input channel. The maximum value is 1 and the minimum is -1. The left
channel of the input is multiplied by the value of this parameter. Some example values for Left are:

1 (no attenuation)
0 (maximum attenuation)
!Fader1 (continuous controller sets level)
!KeyVelocity (MIDI key velocity controls the amplitude)

You can also paste another signal into this field, and the amplitude will vary with the output amplitude of
the pasted signal (something like an LFO controlling the attenuation). (See the manual for a complete
description of hot parameters, EventValues, EventSources, and Map files).

Right
This controls the level of the right input channel. The maximum value is 1 and the minimum is -1. The
right channel of the input is multiplied by the value of Right. Some example values for Right are:

1 (no attenuation)
0 (maximum attenuation)
!Fader1 (continuous controller sets level)
!KeyVelocity (MIDI key velocity controls the amplitude)

You can also paste another signal into this field, and the amplitude will vary with the output amplitude of
the pasted signal (something like an LFO controlling the attenuation). (See the manual for a complete
description of hot parameters, EventValues, EventSources, and Map files).

313

Pan

Mixing & Panning Category
Places the Input between the left and right speakers and optionally attenuates the overall output.

Input
This is the signal being attenuated and positioned between the speakers.

Pan
A Pan value of 0 places the sound entirely in the left speaker, and a Pan value of 1 places it entirely in
the right. Values inbetween those extremes make the Input source appear as if it were placed
somewhere inbetween the two speakers.

Scale
Attenuates the Input.

Type
When Power is selected, the Input is about as loud for Pan = 0.5 as it is for Pan = 0 and Pan = 1. When
Linear is selected, the Input is softer at the midpoint than it is at the two extremes.

314

ParameterTransformer

Scripts Category
Parameters of the Input can be altered or set by statements made in the Transformation field (for full
details, see the corresponding tutorial and chapter in the manual). All transformations take place
symbolically (in other words, these are not signal processing transformations but transformations to the
parameters fields *before* the Input is compiled and loaded into the signal processor--before it has
started generating sound).

Input
The parameters of this Sound (and, in turn, any inputs *it* might have) can be set or modified by
statements in the Transformation field.

Transformation
Here are two examples of simple modifications. For examples of more elaborate transformations, see the
manual.

To set the all parameters named "frequency" to 400 hz, type:

snd frequency: 400 hz.

To double all frequencies, type:

snd frequency isNil ifFalse: [snd frequency: snd frequency * 2].

315

PeakDetector

Tracking Live Input Category
Outputs an amplitude envelope for its Input by tracking increases in the Input’s absolute value.
Responds to increases in the Input amplitude within the specified AttackTime and responds to decreases
in Input amplitude within the specified ReleaseTime. Scale is an attenuator on the Input amplitude.

Input
This is the Sound whose amplitude is being tracked.

AttackTime
This is the shortest attack time that will be tracked by the PeakDetector. You are specifying that any
faster increases in amplitude should be smoothed over.

ReleaseTime
This is the shortest decay time that will be tracked by the PeakDetector. You are specifying that any
faster decreases in amplitude should be smoothed over.

Scale
This is an attenuator on the input.

316

PhaseShiftBy90

Math Category
This is a combination of two filters tuned to do a 90 degree phase shift between the left and right
channels at the specified Frequency (by shifting one channel backwards 45 degrees and the other
channel forward 45 degrees).

Expand the prototype SingleSideBandRM for an example of how to use this Sound as the Envelope of a
QuadratureOscillator to do single side band ring modulation on Input.

NOTE: These filters are very sensitive to Input amplitude. Try attenuating the Input amplitude by 0.05
and gradually adjusting it upwards until you hear distortion and then backing it off a little. (It helps to also
look at the output of the PhaseShiftBy90 on the Info Oscilloscope as you adjust the Input amplitude).

Frequency
This is the only frequency at which the 90 degree phase shift occurs. Frequency can be specified in
units of pitch or frequency. The following are all ways to specify the A above middle C:

440 hz (in hertz or cycles per second)
4 a (as the 4th octave A)
69 nn (as a MIDI notenumber)
4 c + 9 nn (as 9 half steps above middle C)
1.0 / 0.00227273 s (inverse of a period at 44.1 kHz sample rate)

The following are examples of how to control the frequency using MIDI, the virtual control surface, or a
third-party program:

!Pitch (key number plus pitch bend)
!KeyNumber nn (MIDI notenumber)
4 c + (!Frequency * 9 nn) (continuous controller from 4 c to 4 a)

Input
This is the Sound whose left and right channels will shifted 90 degrees out of phase from each other (but
only at the specified Frequency).

317

PresenceFilter

Filters Category
Acts as a band pass or band reject (notch) filter. Specify a center frequency, a bandwidth, and indicate
the boost or cut amount in units of dB (negative values are cuts, positive values boosts).

Input
This is the Sound to be filtered.

CenterFreq
The center of the boost or cut region of the spectrum.

Bandwidth
The width of the boost or cut region of the spectrum.

BoostOrCut
Indicate the amount of boost or cut in units of dB. Negative values indicate a cut, positive values a boost.

Scale
Attenuator on the input.

318

Preset

MIDI In Category
Click the Set to Current Event Values button to save the current settings of faders and buttons in the
Virtual Control Surface (and/or the current settings of all MIDI controllers). The current values are written
into the EventValues field as a reminder (but they are not editable). Each time you play this Sound, any
EventValues in its Input will be initially set to the saved values; you can then change them using the
Virtual Control Surface or MIDI.

Input
Any EventValues in this Sound will be initially set to the values shown in the EventValues field. If that
field is empty, set the EventValues to reasonable initial values, and then click the Set to Current Event
Values button.

EventValues
These are initial values for the EventValues in the Input. If this field is blank, click on the Set to Current
Event Values button.

319

Product

Math Category
Outputs the product of its Inputs. If there are two, audio frequency inputs, this does ring modulation. If
one of the Inputs changes at sub-audio frequencies and the other is at audio frequencies, the effect will
be like applying an amplitude envelope to the Input that is at audio frequencies.

Inputs
The output of the Product is the product of all the Sounds in this field.

320

PulseGenerator

Xtra Sources Category
Generates a bandlimited square wave of the specified DutyCycle. The square wave always has a zero
DC offset regardless of the pulse width setting; this means that the minimum and maximum of the
waveform will change as the pulse width is changed.

Frequency
The frequency can be specified in units of pitch or frequency. The following are all ways to specify the A
above middle C:

440 hz (in hertz or cycles per second)
4 a (as the 4th octave A)
69 nn (as a MIDI notenumber)
4 c + 9 nn (as 9 half steps above middle C)
1.0 / 0.00227273 s (inverse of a period at 44.1 kHz sample rate)

The following are examples of how to control the frequency using MIDI, the virtual control surface, or a
third-party program:

!Pitch (key number plus pitch bend)
!KeyNumber nn (MIDI notenumber)
4 c + (!Frequency * 9 nn) (continuous controller from 4 c to 4 a)

Modulation
Select whether or not there should be frequency modulation.

Modulator
If Modulation has been set to frequency, then this Sound is the Modulator (otherwise it is ignored).

MaxMI
When Modulation is set to frequency, this is the value of the modulation index when the Modulator is at its
full amplitude.

Interpolation
Choose linear if you would like to interpolate between the values read from the wavetable.

Envelope
This is an attenuator on the output. Enter 1 (or 0 dB) for the full amplitude. For a time-varying amplitude,
paste in a Sound (such as AR, ADSR, or FunctionGenerator) or an Event Value (such as !Volume) in this
field.

DutyCycle
The proportion of each period that the waveform is in the "up" portion of its cycle. (If you add up all the
sample points in a cycle, the sum is zero, no matter what the duty cycle; when the duty cycle is 0.5 the
waveform is above zero half the time and below zero for the other half cycle.).

Reset

321

When reset is nonzero, it resets the phase to zero. In other words, it sets the wavetable index to its initial
position.

322

PulseTrain

Xtra Sources Category
If VariableDutyCycle is unchecked, then PulseTrain’s value is 1 for the first sample of each period and
zero for the remainder of each period. If VariableDutyCycle is checked, then DutyCycle controls how
much of each period’s is spent outputting 1 and how much is spent outputting 0.

Period
The amount of time for each period.

If you want a period corresponding to a certain frequency, for example 440 hz, use:

440 hz inverse

VariableDutyCycle
Check here to control the percentage of the period that the output should be one. If unchecked, the
output will be one for eactly one sample per period.

DutyCycle
Enter a value between 0 and 1, where 0 means that the output is never 1, 0.5 means that it is 1 for half of
each period, and 1 means that it is 1 for all of each period.

323

QuadOscillator

Xtra Sources Category
Multiplies the left channel of Envelope by a sine wave oscillator and the right channel of Envelope by a
cosine oscillator. The output is the sum of the ring-modulated left and right channels. If the Envelope
has the same signal but 90 degrees out of phase in the left and right channels, the lower sideband will be
cancelled out, leaving only the upper sideband (the sum of the frequencies of the Envelope and the
QuadratureOscillator).

Expand the SingleSideBandRM prototype for an example of how to use this as a nonharmonic frequency
shifter.

Frequency
This is the frequency of the sine and cosine oscillators. The frequency can be specified in units of pitch
or frequency. The following are all ways to specify the A above middle C:

440 hz (in hertz or cycles per second)
4 a (as the 4th octave A)
69 nn (as a MIDI notenumber)
4 c + 9 nn (as 9 half steps above middle C)
1.0 / 0.00227273 s (inverse of a period at 44.1 kHz sample rate)

The following are examples of how to control the frequency using MIDI, the virtual control surface, or a
third-party program:

!Pitch (key number plus pitch bend)
!KeyNumber nn (MIDI notenumber)
4 c + (!Frequency * 9 nn) (continuous controller from 4 c to 4 a)

Envelope
The left channel of Envelope will be multiplied by a sine and the right channel by a cosine. If this Sound
has gone through a PhaseShiftBy90 (forcing its left and right channels to be 90 degrees out of phase with
each other at a specified frequency), then putting it through the QuadratureOscillator will perform single
side band ring modulation. In this configuration, only the upper sideband is heard. To get the lower
sideband alone, use a negative frequency for the QuadratureOscillator (or else swap the left and right
channels of Envelope using a ChannelCrosser).

324

RandomSelection

Scripts Category
Chooses Sounds from the sample space of all Inputs and assigns them start times that are randomly
generated according to an exponential distribution of delay times having the specified averageDelay time.
The value in Iterations is the total number of Sounds. Seeds are supplied so that the results are
repeatable.

Inputs
This serves as the sample space. Sounds in the result are randomly chosen from among these Sounds.

Weights
Supply the relative likelihoods of each Input (where Inputs are ordered according to their positions in the
field from top to bottom and left to right). You must specify the same number of likelihoods as there are
Inputs. The likelihoods are normalized, so you can use numbers in any range.

AverageDelay
Supply an average delay time for the Input Sounds. (Durations should always be greater than 0.)

Iterations
This is the total number of randomly selected Sounds.

DelaySeed
This is a seed value for the exponential distribution of delay times. Type in an integer less than 65535,
for example, 35409.

SampleSeed
This is a seed value for the sample space of subSounds. Type in an integer less than 65535, for
example, 35425.

Left
This controls the level of the left input channel. The maximum value is 1 and the minimum is -1. The left
channel of the input is multiplied by the value of this parameter. Some example values for Left are:

1 (no attenuation)
0 (maximum attenuation)
!Fader1 (continuous controller sets level)
!KeyVelocity (MIDI key velocity controls the amplitude)

You can also paste another signal into this field, and the amplitude will vary with the output amplitude of
the pasted signal (something like an LFO controlling the attenuation). (See the manual for a complete
description of hot parameters, EventValues, EventSources, and Map files).

Right
This controls the level of the right input channel. The maximum value is 1 and the minimum is -1. The
right channel of the input is multiplied by the value of Right. Some example values for Right are:

1 (no attenuation)

325

0 (maximum attenuation)
!Fader1 (continuous controller sets level)
!KeyVelocity (MIDI key velocity controls the amplitude)

You can also paste another signal into this field, and the amplitude will vary with the output amplitude of
the pasted signal (something like an LFO controlling the attenuation). (See the manual for a complete
description of hot parameters, EventValues, EventSources, and Map files).

326

REResonator

Filters Category
This is a time-varying filter whose coefficients have been derived by analyzing a digital recording (a
"sample") using the RE Analysis Tool. RE (resonator/exciter) analysis assumes that the sound was
produced by an excitation signal feeding into a resonator. This Sound is the resonator and its input is the
excitation.

The most striking results occur when the analyzed signal is from a source whose resonances change
dramatically over time (e.g. human speech, singing, instruments like the didgeridoo, mouth harp, or
tabla). For analyses of instruments or other sound sources that do not change shape very much over
time, the REResonator will sound like a fixed, unchanging filter.

Input
This is the new excitation that you are substituting for the original excitation. Be sure to use extreme
attenuation of your input.

Broadband signals such as noise or pulse trains work best as inputs, because they cover more of the
spectrum and will be able to excite all the resonances of the filter.

Wavetable
This is a table of time-varying filter coefficents produced by the RE analysis. Use the RE Analysis Tool to
create your own sets of filter coefficients.

TimeIndex
This determines where to read from the sequence of filter coefficients. A value of -1 reads the beginning
set of coefficients, and a value of 1 reads the last set of coefficients. A FunctionGenerator whose
wavetable is a FullRamp will go through the coefficients in time order. To go through the coefficients at
the original rate, set the duration of the FunctionGenerator to be the same as the duration of the original,
analyzed sample. Use longer or shorter durations to stretch or compress time.

327

ReverbSection

Reverb, Delay, Feedback Category
Same as DelayWithFeedback except that the characteristics are specified in terms of DecayTime, the
time it takes for the delayed and fed-back input to die away 60 dB below its initial level.

You can use combinations of these Sounds and others to build your own reverberation algorithms.

Type
Choose between comb and allpass filters. Both comb and allpass are delays with feedback. Allpass also
adds some of the direct signal to the output in order to make the long term frequency response flat.

Input
This signal is delayed and added to itself.

Scale
An attenuation factor on the Input (where 1 is full amplitude and 0 is completely attenuated so there is no
more Input).

DecayTime
This is the time it takes for the signal to die away to 60 dB below its original level.

Delay
The maximum delay time. The proportion of this time that is actually used is determined by multiplying
this value by DelayScale. Kyma needs to know the maximum possible delay in order to allocate some
memory for this Sound to use as a delay line, but the actual delay can vary over the course of the Sound
from 0 s up to the value of DelayTime.

DelayScale
The proportion of DelayTime that is actually used as the delay, where 0 is no delay, and 1 is equal to the
value in the DelayTime field.

Wavetable
In almost all situations, this should be set to Private, so Kyma can allocate some unused wavetable
memory to be used as a delay time for this program. (The only time you would want to name this
wavetable is if you would like multiple delays or resonators to share a single delay line. In that case, you
would type a name for the wavetable and make sure that the other delays use the same name for their
wavetables.)

Prezero
Check this box to start with an empty delay line when this program starts. If Prezero is not checked, the
delay line may have garbage in it from previous programs. This can have interesting, if unpredictable,
effects.

Interpolation
When Linear is selected, changes to DelayScale will be interpolated, causing smoother changes to the
delay.

328

When None is selected, changes to DelayScale are not interpolated, resulting in zipper noise.

For fixed delays, it is better to select None, since that uses less DSP resources.

329

RhythmicCellularAutomaton

Scripts Category
This Sound is based on the one-dimensional cellular automata described by Stephen Wolfram in his book
"Theory and Applications of Cellular Automata". The state, an n-place binary number, where n is the
number of Inputs, determines when the Input is turned on and when it is turned off in a given generation.
An integer, rule, is used to determine the next state.

This differs from the CellularAutomaton in that the state is interpreted "horizontally" (rhythmically) rather
than "vertically" (harmonically). Each generation of the automaton is interpreted as a rhythmic pattern,
where a 1 means the Input is turned on, and a 0 means the Input is turned off (for the duration of the
Input).

Input
This Sound is repeated in a pattern determined by the state of the automaton in each generation. When
a value in the state array is 1, the Sound is played, and when a value in the state array is 0, there is a
silence of the same duration as the Sound. This field accepts only one Sound at a time.

Rule
If you look at the rule and the state as 8-bit binary numbers, you can use the rule to compute the next
generation of the state. Number the positions of the digits 0 to 7 counting from right to left. To compute
the next generation of position P of the state: Take the number at position P, P+1 and P-1 (i.e. the
number at position P and its neighbors to the right and to the left). Think of this as a three digit binary
number N that you are going to use as an index into the binary number representing the rule. Look at
position N of the rule. The value at position N of the rule is the value of position P in the next generation
of the state.

For example, if the rule is 2r10101110 and the state is 2r10010101, let’s compute the next generation
state of position 3. The current value at position 3 of the state is ’0’. Looking at position 3 and its two
neighbors as a binary number, we get ’101’ or the number 5. Using this number as an index, look at
position 5 of the rule; it is ’1’. So the value of position three in the next generation is ’1’. When you reach
the rightmost or leftmost digit in the state, make the assumption that there is an infinite number of zeroes
extending both leftwards and rightwards.

Generations
This is the number of generations.

InitialState
Imagine the initial state as an n-bit binary number where n is the size of the collection of Inputs. Each digit
in the binary number corresponds to a Sound in the Input collection; use a 1 to indicate that a Sound is
initiallly on, a 0 to indicate that it is initially off.

GenerationLength
This is the number of bits in each generation.

330

RMSSquared

Tracking Live Input Category
This can be used to get an estimate of the amplitude envelope of the Input. The output is

input^2 * timeConst + prev * (1 - timeConst)

This is the root mean square of the input without the final square root at the end.

Input
This is the Sound whose amplitude is tracked.

TimeConstant
This controls the response time. Longer timeConstants result in smoother outputs at a cost of losing
some of the detail in the attacks. Short timeConstants result in outputs that respond more immediately to
attack transients but that may not be as smooth for the steady state portions. For a constant input at
maximum amplitude, this is the time required for the output to reach 60% of the full output amplitude.
(Note that the output may never reach the maximum possible amplitude since it is the average of the
squares of the amplitudes).

Scale
Attenuates the input amplitude.

331

RunningMax

Math Category
Output is the maximum of all Input amplitudes seen so far, from the start of the Sound until the current
time. To reset the maximum to zero and restart on calculating the running max, set Reset to a nonzero
value. By the end of the Sound, if there have been no resets, the value is the maximum of all the Input’s
sample points.

Input
This is the Sound whose maximum amplitude over its entire duration is being computed.

Reset
When this Sound becomes nonzero, it resets the running maximum.

332

RunningMin

Math Category
The output of this Sound is the minimum amplitude of its Input as seen so far. Whenever Reset is
nonzero, the current minimum is thrown away, and the process starts over again. If Reset is always zero,
the final value of this Sound is the minimum of all the output values of its Input.

Input
This is the Sound whose minimum amplitude is being computed.

Reset
Whenever this Sound is nonzero, the min is reset to the maximumAmplitude and the process of keeping
track of the minimum seen so far begins again.

333

Sample

Sampling Category
Plays the specified Sample from the wavetable memory of the signal processor. If there is a loop stored
in the header of the sample file or if you have SetLoop checked, the sample will play once up through the
LoopEnd; then it will loop back to LoopStart and continue looping for as long as Gate has a positive
value; when Gate returns to zero, the sample will play on through LoopEnd to the end of the sample file.

Frequency
Use 0 hz here if you want the Frequency to equal the pitch of the recorded sample. The frequency can
be specified in units of pitch or frequency. Different frequencies are obtained by changing the size of the
increment through the recorded sample. The following are all ways to specify the A above middle C:

440 hz (in hertz or cycles per second)
4 a (as the 4th octave A)
69 nn (as a MIDI notenumber)
4 c + 9 nn (as 9 half steps above middle C)
1.0 / 0.00227273 s (inverse of a period at 44.1 kHz sample rate)

The following are examples of how to control the frequency using MIDI, the virtual control surface, or a
third-party program:

!Pitch (key number plus pitch bend)
!KeyNumber nn (MIDI notenumber)
4 c + (!Frequency * 9 nn) (continuous controller from 4 c to 4 a)

Gate
Enter a 1 in this field to play the Sound exactly once for the duration you have specified in the Duration
field.

If you use an EventValue (for example, !KeyDown) in this field, the Sound can be retriggered as often as
you like within the duration specified in the Duration field.

When Gate becomes positive, the Sound is heard; when Gate becomes zero, the Sound is released and
will finish playing through the sample and then stop.

If the sample file has loop points stored in its header, Kyma will loop the sample for as long as Gate
remains positive (so, for example, as long as the MIDI key is held down).

Sample
Choose a sample from among those stored in the Wavetables folder or directory. When you
compile/load/start, Kyma will read the sample from the hard disk of the host computer and load it into the
wavetable memory (the sample RAM) of the signal processor. This Sound then reads the sample from
the memory of the signal processor, not directly off the disk.

SetLoop
Check this box if you would like to set the loop points using the LoopStart and LoopEnd parameter fields.

LoopStart
When SetLoop is checked, this is the start point of the loop (otherwise it is ignored). Enter a value in the
range from 0 to 1, where 0 is the beginning of the sample and 1 is the end of the sample. In other words,
this is the proportion of the total sample duration when the start point should occur. (To compute the

334

exact time within the sample where the start point occurs, multiply LoopStart’s value by the total duration
of the sample. For example, if your sample is 5 seconds long and LoopStart is set to 0.2, then the
beginning of the loop is 1 second into the sample.)

LoopEnd
When SetLoop is checked, this is the end point of the loop (otherwise it is ignored). Enter a value in the
range from 0 to 1, where 0 is the beginning of the sample and 1 is the end of the sample. In other words,
this is the proportion of the total sample duration when the end point should occur. (To compute the
exact time within the sample where the end point of the loop occurs, multiply LoopEnd’s value by the total
duration of the sample. For example, if your sample is 5 seconds long and LoopEnd is set to 0.4, then
the end of the loop occurs at 2 seconds into the sample.)

LoopFade
When checked, this puts a quick fade in at the beginning of a loop and a quick fade out at the end to help
minimize any clicks due to discontinuities in the waveform between the beginning and end of the looped
section.

Start
This is the start point of playback within the sample. Enter a value in the range from 0 to 1, where 0 is the
beginning of the sample and 1 is the end of the sample. In other words, this is the proportion of the total
sample duration when the start point should occur. (To compute the exact time within the sample where
the start point occurs, multiply Start’s value by the total duration of the sample. For example, if your
sample is 5 seconds long and Start is set to 0.2, then the beginning of the playback is 1 second into the
sample.)

End
This is the end point of the sample playback. Enter a value in the range from 0 to 1, where 0 is the
beginning of the sample and 1 is the end of the sample. In other words, this is the proportion of the total
sample duration when the end should occur. (To compute the exact time within the sample where the
end occurs, multiply End’s value by the total duration of the sample. For example, if your sample is 5
seconds long and End is set to 0.4, then the end of the playback occurs at 2 seconds into the sample.)

FromMemoryWriter
Check FromMemoryWriter when the wavetable does not come from a disk file but is recorded by a
MemoryWriter in real time.

AttackTime
Duration of the attack of an envelope applied to the sample.

ReleaseTime
Duration of the release of an envelope applied to the sample.

Scale
Overall level of the sample.

335

SampleAndHold

Sampling Category
A SampleAndHold holds onto the current value of its Input for the duration specified in HoldTime. While it
is holding onto this value, it ignores any changes in its Input’s value. When HoldTime has expired, a
SampleAndHold looks at its Input’s value again, and holds onto THAT value for HoldTime and so on.

This effectively lowers the sample rate on the Input.

Try pasting this Sound into another Sound’s Frequency field and multiplying it by the desired range of
frequencies and adding an offset frequency to it, for example:

4 c + ([SampleAndHold] * 12 nn)

where [SampleAndHold] is a this Sound copied and pasted into another Sound’s Frequency field.

Input
This is the Sound whose output is periodically sampled by the SampleAndHold.

HoldTime
The amount of time that each sampled value is held before the Input is sampled again. If you think of the
SampleAndHold as downsampling its input, then this is the period of the new, lower sample rate.

OffsetTime
This is the amount of time to initially wait before starting the process of sampling and holding.

336

SampleCloud

Sampling Category
Generates a cloud of short-duration grains, each using GrainEnv as an amplitude envelope on a short
segment of sound taken from the specified Sample at a point in the sample given by the TimeIndex. The
density of simultaneous grains within the cloud is controlled by Density, with the maximum number of
simultaneous grains given by MaxGrains. Amplitude controls an amplitude envelope over the *entire*
cloud (each individual grain amplitude is controlled by GrainEnv). Similarly, Duration is the duration of
the entire cloud, not of each individual grain. You can control the Frequency, stereo positioning, time
point within the sample, and the duration of each grain as well as specifying how much (if any) random
jitter should be added to each of these parameters (giving the cloud a more focused or a more dispersed
sound, depending on how much randomness is added to each of the parameters).

Sample
Enter the name of a mono sample file or click the disk icon to choose a file from the file dialog. This is the
source material for each of the short duration grains.

GrainEnv
This is the shape of the amplitude envelope on each grain. The wavetables in the Windows category
make the classic, smooth grain envelopes, and some of the shapes in Impulse Responses also give
interesting results.

MaxGrains
This is the maximum number of simultaneous grains. The smaller this number, the less computational
power the SampleCloud requires (but the less dense the texture you can generate). On a Capybara-66
you should be able to get around 28 simultaneous grains per cloud. For even denser textures, put more
than one SampleCloud into a Mixer, and give each cloud a different Seed value.

Amplitude
This is an overall level applied to the entire cloud. Paste an envelope generator into this field to give an
overall envelope to the cloud.

Density
Small Density values result in a sparse texture; large Density values generate a dense texture. This
controls the average number of new grains starting up at any given point in time.

GrainDur
This is the duration of each individual grain.

GrainDurJitter
Adds some amount of random jitter to the grain durations. When set to 1, the durations vary randomly
from 0 to twice the specified duration. When this is set to 0, all grains will have a duration of GrainDur. In
other words, the actual grain duration for each grain is:

GrainDur + (<rand> * GrainDurJitter * GrainDur)

where <rand> is a random number between -1 and 1.

337

Pan
This is the stereo position of each new grain where 0 is hard left, 0.5 is in the middle, and 1 is hard right.

PanJitter
This is the amount of random deviation added to the pan position. The larger this number, the more
diffuse the apparent location, and the smaller the number, the more localized the sound.

Seed
This should be a number between 0 and 1. The seed provides a starting point for the random number
generator, so each different seed results in a different (but repeatable) sequence of random numbers.
When adding several SampleGrains with the same control parameters together in a Mixer, give each of
them a different seed in order to ensure that each of them has *different* random jitter added to its
parameters (otherwise, they will just double each other).

FromMemoryWriter
Check this box to granulate the live input or to granulate a sample that is being changed by a
MemoryWriter as the granulation is going on. This SampleCloud should be fed into a Mixer along with a
MemoryWriter that is recording something into the sample that you are granulating with the SampleCloud.
The SampleCloud should be fed through a TimeOffset of at least 1 sample, so it is reading *after* the
sample is written.

TimeIndex
This is a pointer into the Sample memory. -1 points to the beginning of the sample, 0 points to the
middle, and 1 points to the end of the sample. Grains are selected from this point and from random
positions in the neighborhood (whose size is determined TimeIndexJitter) around this point.

To read through the sample in linear, forward time, you can use something like:

!KeyDown fullRamp: 10 s

which will scan the sample from beginning to end over the course of 10 seconds each time it receives a
MIDI note event.

To remove the element of time from the sample, set TimeIndex to a fixed position like 0 (the middle of the
sample), and increase TimeIndexJitter to its maximum value. Then grains will be chosen at random from
all different time points within the sample.

TimeIndexJitter
TimeIndex is a time point in the Sample, and TimeIndexJitter is an amount of random deviation forward or
backward in time from the one point specified TimeIndex. A TimeIndexJitter of zero means that all grains
will be chosen from the single point specified in TimeIndex, whereas a TimeIndexJitter of 1 means that
grains may be chosen at random from any time point in the entire sample.

338

SamplesFromDiskSingleStep

Sampling Category
As long as the Trigger is greater than zero, the SamplesFromDiskSingleStep will read samples from the
disk file; if the Trigger is less than or equal to zero, the last sample read will be output. Gate resets the
pointer to the beginning of the file.

FileName
This is the name of a sample file that you have previously created either in Kyma or in another
application.

FilePosition
This is the first sample point to play back.

Trigger
As long as the Trigger is greater than zero, the SamplesFromDiskSingleStep will read samples from the
disk file; if the Trigger is less than or equal to zero, the last sample read will be output. PulseTrain is a
good Sound to use as a source of periodic triggers, and by putting an Event Value in the PulseTrain’s
Period field, you can control the rate at which the triggers occur.

Gate
Each time this value becomes positive, the Sound will start over again from the beginning of the sample.
Enter a 1 in this field to play the Sound exactly once. If you use an EventValue (for example, !KeyDown)
in this field, you can restart the sound multiple times.

339

ScaleAndOffset

Math Category
The output of this Sound is:

(Input * Scale) + Offset

This is can be useful for changing the minimum value and range of a control signal before using it to
control another Sound, as for example, in scaling or offsetting the left and right channel outputs of a
SpectrumFromRAM before they are fed into an OscillatorBank. (However, for those cases when the
control signal is pasted directly into a hot parameter field, it may be more straightforward to just use
regular arithmetic to scale or offset the value in the parameter field itself).

Input
The output of this Sound is multiplied by Scale and then the added to Offset.

LeftScale
Multiplier on the left channel. The range of allowable values is -2 to +2.

LeftOffset
Offset on the left channel. The range of allowable values is -1 to +1.

RightScale
Multiplier on the right channel. The range of allowable values is -2 to +2.

RightOffset
Offset on the right channel.Offset on the left channel. The range of allowable values is -1 to +1.

340

ScaleVocoder

Filters Category
Vocoder whose center frequencies are tuned to a base pitch and a scale.

Input
This is the source material to be filtered by the SideChain-controlled filters. This Sound is heard directly,
through the filters (whereas the SideChain is never heard directly). For example, if you want to make an
animal talk, put a sample of the animal sound here and put a sample of speech (or use a microphone) as
the SideChain.

The best Inputs tend to be fairly broad band signals that have energy in each of the frequency bands
covered by the resynthesis filter bank. For example, Noise or an Oscillator on a waveform with lots of
harmonics (such as Buzz128) will work well because they generate energy over the full frequency range.

SideChain
Sometimes referred to as the "modulation", this Sound is never heard directly; it controls the amplitudes
of the filters in the bank.

TimeConstant
This determines how quickly the amplitude envelopes on the filters will respond to changes in the
SideChain. For precise, intelligible results, use values less than 0.1 s. For a more diffuse, reverberated
result, use a longer TimeConstant.

NbrBands
This is the number of band pass filters in the filter bank.

BankSize
This is the number of filters per processor. Type

default

to get the standard number of filters per processor. If you are running out of time, try reducing the default
size, for example
default * 0.75

Tonic
This is the tonic or first pitch in the scale.

Intervals
This is the interval pattern of the scale in half steps. For example, a major scale would be

0 2 4 5 7 9 11
Arithmetic expressions should be enclosed in curly braces, for example
{!SmallInterval1 rounded nn}

The scale can have any number of steps, and the steps are repeated in each octave for as many bands
as you have specified.

SideLevel

341

Controls the level of the SideChain Sound before it is fed into the analysis filters.

InputLevel
Controls the level on the input Sound before it goes through the filters.

InBandwidth
Control on the bandwidth of the filters on the Input Sound.

SideBandwidth
Control on the bandwidth of the filters on the Sidechain Sound.

Tone
A tone control where higher values emphasize higher frequencies, and lower values emphasize lower
frequencies. Rolloff determines the width of the tone control filter.

Rolloff
This controls the steepness of the edges of a weak tone control filter on the Input. Use 1 if the edges
should rolloff precipitously at LoCutoff and HiCutoff. Use smaller numbers if you would like the
attenuation to start sooner and take longer.

Gain
You can boost or cut the overall output level here.

342

Script

Scripts Category
A Script is a handy way to construct Sounds algorithmically (rather than piecing them together graphically
in the Sound editor). The constructed Sound will be a Mixer of several Inputs, each with its own start
time (or TimeOffset).

A Script is like any other Sound in that it can be used as an Input to a more complex Sound; for example,
a Script can contain variables and can even be used as an Input to another Script.

Inputs
Use the script to schedule each of these Sounds at a specific time and to supply values for any variables
in the Sound’s parameters. (Script actually uses each of these Input Sounds as a template or model for
creating new instances of the Sounds with specific values at specific times. Multiple instances of a
Sound can be scheduled from the script by specifying simultaneous start times or overlapping durations.)

Script
The script supplies start times for the Sounds in the Inputs field and, optionally, sets the values of any
variable parameters. To specify an event in the script, type:

<name of an Input> start: <aTime in s or samp> {<variableParameterName>: <aValue>}.

In other words, type the name of an Input Sound, a space, the word "start" followed by a colon and then a
space, a start time followed by units of samp or s or beats, and then any number of <parameter: value>
pairs followed by a period. The <parameter: value> pairs consist of the name of a variable in the Input, a
colon, a space, and then a value for that variable. To specify the length of a beat, assign the desired
metronome setting to the variable MM. If an Input takes another Sound as an argument, you can supply
it from the script as a parenthesized event with no start time.

Any Smalltalk expression can appear in the script, including temporary variable declarations and control
structures like loops.

See the manual for more details and examples.

Left
This controls the level of the left output channel. The maximum value is 1 and the minimum is -1. The
left channel of the output is multiplied by the value of this parameter. Some example values for Left are:

1 (no attenuation)
0 (maximum attenuation)
!Fader1 (continuous controller sets level)
!KeyVelocity (MIDI key velocity controls the amplitude)

You can also paste another signal into this field, and the amplitude will vary with the output amplitude of
the pasted signal (something like an LFO controlling the attenuation). (See the manual for a complete
description of hot parameters, EventValues, EventSources, and Map files).

Right
This controls the level of the right output channel. The maximum value is 1 and the minimum is -1. The
right channel of the output is multiplied by the value of Right. Some example values for Right are:

1 (no attenuation)

343

0 (maximum attenuation)
!Fader1 (continuous controller sets level)
!KeyVelocity (MIDI key velocity controls the amplitude)

You can also paste another signal into this field, and the amplitude will vary with the output amplitude of
the pasted signal (something like an LFO controlling the attenuation). (See the manual for a complete
description of hot parameters, EventValues, EventSources, and Map files).

344

SetDuration

Time & Duration Category
Sets the duration and start time of its input. (It is the equivalent of dragging the input Sound into a
timeline and changing its duration and start time graphically). Without the SetDuration the Input Sound’s
program would continue running indefinitely; with the SetDuration you can specify that it should stop after
a given amount of time.

Input
Duration sets the duration of this Sound and StartTime sets its start time relative to the SetDuration.

StartTime
Start time of the Sound in Input relative to the start time of the SetDuration. Must be a value greater than
zero. Examples of startTimes:

0
1 samp
440 hz

Duration
Duration of the Input. Can be specified in seconds, samples, or in terms of frequency (where the duration
will be the duration of one period at that frequency). Must be a value greater than zero. Examples of
durations:

1 s
44100 samp

440 hz

345

SetRange

Math Category
This maps the output range of the Input to the specified range of newMin to newMax.

Input
The output of this Sound is scaled to a range of newMin to newMax. Set oldMin and oldMax to the
current output range of this Sound (typically -1.0 to 1.0 or 0 to 1.0). For example, a FunctionGenerator
that steps through the wavetable #ramp has a range of 0 to 1.0, but if the wavetable is #sine the range is
-1.0 to 1.0.

OldMin
The current minimum value of the Input. This is typically -1.0 (for full range wavetables) or 0 (for
wavetables like #ramp that never go negative).

OldMax
The current maximum output of the Input. Typically, this is the full amplitude: 1.0.

NewMin
This is the new minimum output.

NewMax
This is the new maximum output.

346

SimplePitchShifter

Frequency & Time Scaling Category
Shift the pitch of the input up or down by an interval (given in half steps).

Input
The frequency of this input will be shifted up or down by the given interval. Works best on monophonic
inputs with a strong formant structure.

Interval
A positive or negative number of halfsteps by which to shift the input’s pitch up or down. This does not
have to be an integer but can include fractions of halfsteps.

MinInputPitch
This is the lowest frequency you expect in the input. It must include units: hz for a frequency or nn for a
notenumber.

MaxInputPitch
This is the highest frequency you expect in the input. It must include units: hz for a frequency or nn for a
notenumber.

347

SingleSideBandRM

Frequency & Time Scaling Category
Does nonharmonic frequency scaling of the input. Takes the input and does a 90 degree phase shift
between the left and right channels at the frequency specified in the Frequency parameter field.
Multiplies this by a QuadratureOscillator with sine in the left and cosine in the right. The resulting ring
modulation gives you sum and difference frequencies but, because they are 90 degrees out of phase, the
difference frequency is mostly cancelled out, leaving you with single side band modulation. Expand to
see how this is put together.

Input
This signal will be ring modulated to scale its frequency by the specified FreqScale.

Frequency
This is the frequency at which there will be perfect cancellation of the difference frequency side-band.
The further the input is from this frequency, the less cancellation there will be and the more the result will
be like regular ring modulation.

FreqScale
Any part of the input that was at Frequency will be scaled by this ratio.

348

SOSOscillators

Xtra Sources Category
Generates the sum of several oscillators on the specified waveform, each with its own frequency and
amplitude envelope.

Spectrum
This should be either a SpectralShape or an SOSAnalysis. The Spectrum controls the amplitude and
frequency envelopes for each oscillator.

CascadeInput
The left channel of this input is mixed with the outputs of the oscillators.

NbrOscillators
This is the number of oscillators that will be added together. Each oscillator is associated with a partial
from the Input analysis, starting from the partial number associated with the firstOscillator.

FirstOscillator
This is the partial number to be resynthesized by the first oscillator in the bank. For example, set this to 1
if you want the lowest frequency oscillator to correspond to the fundamental. If you want to skip the
fundamental, set this to 2.

If you are mixing two or more OscillatorBanks, they can cover different portions of the spectrum. For
instance, one OscillatorBank might have 1 as its FirstPartial and 10 as the number of partials; the next
OscillatorBank might have 11 as its FirstPartial and 10 as its number of partials; and a third might have
21 as its FirstPartial and 10 as its number of partials.

Wavetable
This is the waveform used by all the oscillators.

349

SoundCollectionVariable

Variables Category
This represents a collection of Sounds. It can appear in any parameter field that takes more than one
Sound. It is typically used when creating new Sound classes that have an arbitrary number of inputs.

350

SoundToGlobalController

Tracking Live Input Category
Takes a number, a pasted Sound, or an Event expression as its input and generates a corresponding
EventValue (either a single event or a continuous controller stream) which, to all other Kyma Sounds,
looks the same as EventValues coming from the Virtual control surface or from an external MIDI source.

GeneratedEvent
Enter an EventValue name (including the exclamation point prefix) for the generated EventValue.

Value
Paste a Sound or enter a number or EventValue here. The constant or time-varying value here will be
translated into an EventValue named in GeneratedEvent.

351

SpectralShape

Spectral Sources Category
A SpectralShape sets the frequencies and amplitudes of oscillators in an OscillatorBank according to the
Spacing and SpectralEnvelope parameters. This kind of Sound makes sense only when used as an
Input to an OscillatorBank. Frequencies are output on the right channel and their corresponding
amplitudes are output on the left channel.

Frequency
The frequency can be specified in units of pitch or frequency. The following are all ways to specify the A
above middle C:

440 hz (in hertz or cycles per second)
4 a (as the 4th octave A)
69 nn (as a MIDI notenumber)
4 c + 9 nn (as 9 half steps above middle C)
1.0 / 0.00227273 s (inverse of a period at 44.1 kHz sample rate)

The following are examples of how to control the frequency using MIDI, the virtual control surface, or a
third-party program:

!Pitch (key number plus pitch bend)
!KeyNumber nn (MIDI notenumber)
4 c + (!Frequency * 9 nn) (continuous controller from 4 c to 4 a)

Spacing
This is the spacing between the partials and should be specified in units of frequency. To specify
harmonic partials, set the Spacing to be the same as the Frequency. For example, if you have set
Frequency to !KeyNumber nn, then setting Spacing to !KeyNumber nn will tell the OscillatorBank to
generate harmonics of !KeyNumber nn.

NbrPartials
This is the number of (amplitude,frequency) pairs that the SpectralShape will supply to an OscillatorBank.
For example, if there are 20 partials, this Sound will output the amp1 and freq1 on the first sample, amp2
and freq2 on the second sample, and on through amp20 and freq20 on the 20th sample. Then it will start
over again with amp1 and freq1.

Wavetable
The shape stored in this wavetable is interpreted as the shape of the spectrum, from 0 hz up to half the
sampling rate. An OscillatorBank can use this table to set the amplitude of each of its oscillators
according to that oscillator’s frequency. For example, if the frequency falls in a region with a low
amplitude in this table, it will be attenuated in the OscillatorBank. To see the spectral envelope, open this
file using File open with the file type set to Samples file. If the OscillatorBank waveform is Sine, and you
have chosen harmonic spacing, then this shape will be something like a filter acting on a bandlimited
pulse train (equal amplitude, harmonically spaced sine waves).

Scale
Used as an overall amplitude scale applied equally to all of the oscillators.

352

SpectrumAnalyzerDisplay

Tracking Live Input Category
A real-time spectrum analyzer. Displays the spectrum of the Input on the Virtual control surface. Use the
buttons below the display to zoom in or out in the frequency or magnitude dimensions. The value at the
cursor point (where the red cross hairs meet) is displayed in the upper left. Clicking on the display
freezes it so you can hold down the mouse over specific points to read their exact values.

A SpectrumAnalyzer can be placed anywhere along the signal flow path; it does not necessarily have to
be the final Sound in a signal flow path (it could, for example, be displaying the spectrum of the Input to
the Sound that is actually being heard). If a Sound has more than one SpectrumAnalyzer within it, all the
spectra will be displayed side by side in the Virtual control surface.

You can also view the real-time spectrum of any Sound by selecting the Sound and then choosing
Spectrum analyzer from the Info menu. (But the menu method only allows you to view one Sound at a
time on the SpectrumAnalyzer and does not allow you to adjust the windowing function or the length of
the FFT, except by changing the Preferences).

Input
The spectrum of this Sound is continuously displayed on the Virtual control surface, as if by a real-time
spectrum analyzer.

Window
Window weighting function applied to the analysis window of the FFT used to compute the spectra.

Length
Length of the FFT. Ideally it should be the same as the number of samples in the period of the lowest
frequency or fundamental frequency.

353

SpectrumFrequencyScale

Spectral Modifiers Category
Takes a spectral source (which must be harmonic) as its input and scales the frequency envelopes
without changing the amplitude envelopes. This allows you to shift the pitch of the resynthesis, while
leaving the formants at their original frequencies. The SpectrumFrequencyScale should be fed to an
OscillatorBank in order to resynthesize the newly scaled spectrum.

Spectrum
Should be a Sound from the spectral sources category of the Prototypes (based on an harmonic
analysis).

Scale
All frequencies in the spectrum will be multiplied by this scale factor. For example, use 2 to scale up by
one octave, 1 for no change, 0.5 for down by one octave. You can get other intervals by using a ratio of
two pitches that have been converted to hertz. For example, to get a half step up, you could use

4 c sharp hz / 4 c hz
or to shift down by a perfect fifth, you could use
4 c hz / 4 g hz

To control the pitch from the MIDI keyboard, use the ratio of !Pitch to the original pitch of the recording.
For example, if the original recording is a 3rd octave b, you could use

!Pitch hz / 3 b

354

SpectrumInRAM

Spectral Sources Category
This Sound is used only as the Spectrum input to an OscillatorBank.

It reads an analysis file that contains a series of spectra indexed by TimeIndex. It outputs a spectrum as
a sequence of (amplitude,frequency) pairs on every sample tick for nbrPartials samples. After nbrPartials
samples, it starts over again from the fundamental and outputs the entire spectrum again.

Frequency
Use Default to leave the frequency unchanged from the original analysis. Otherwise, the frequency
envelopes will be altered to scale the base pitch of the analysis to the value listed in this parameter field.

The frequency can be specified in units of pitch or frequency. The following are all ways to specify the A
above middle C:

440 hz (in hertz or cycles per second)
4 a (as the 4th octave A)
69 nn (as a MIDI notenumber)
4 c + 9 nn (as 9 half steps above middle C)
1.0 / 0.00227273 s (inverse of a period at 44.1 kHz sample rate)

The following are examples of how to control the frequency using MIDI, the virtual control surface, or a
third-party program:

!Pitch (key number plus pitch bend)
!KeyNumber nn (MIDI notenumber)
4 c + (!Frequency * 9 nn) (continuous controller from 4 c to 4 a)

Level
This is a control on the overall amplitude of all the partials. Enter 1 to leave all amplitudes as they are;
numbers larger than one result in a gain, and numbers less than one result in attenuation.

TimeIndex
This selects where we are in the series of spectral snapshots. The first snapshot is at -1, the middle
snapshot is at 0, and the last snapshot is at 1. To go through the series in linear time, use a
FunctionGenerator whose Duration equals the duration of the original recording and whose Wavetable is
FullRamp (which goes from -1 to 1). Change the Duration of the FunctionGenerator to go through the
spectra at different rates. Change the wavetable to go through the spectra in a different order.

Analysis
Use a spectrum file from the Wavetables folder or directory. These files came from spectral analyses
performed on digital recordings by the Spectral Analysis Tool or by Lemur.

NbrPartials
This is the number of partials you want to output for the resynthesis. Use Default to output all of the
partials in the file.

FirstPartial
This is the first analyzed partial that you want to output--usually it is partial number 1. If you want to skip
over some of the lower partials, enter a higher number here.

355

SpectrumLogToLinear

Spectral Modifiers Category
A spectrum can be in one of two forms: linear frequency or logarithmic frequency. This Sound converts a
logarithmic frequency spectrum input into a linear frequency spectrum output.

Generally, a spectrum that comes from a spectrum file has logarithmic frequencies, and a spectrum
generated in real time has linear frequencies.

Spectrum
This logarithmic frequency spectrum input is converted to linear frequency and then output.

356

SpectrumModifier

Spectral Modifiers Category
A SpectrumModifier takes one of the Sounds from the Spectral Sources category of the Prototype strip as
its input and modifies the spectrum. To resynthesize the modified spectrum, feed the SpectrumModifier
into the spectrum input of an OscillatorBank.

In order to modify the output of a spectral source, the SpectrumModifier selects or rejects tracks of the
spectrum according to some criteria, and then it optionally scales and offsets each frequency and/or
amplitude value of the selected tracks.

Decide whether to select or reject the tracks that meet the criteria.

Then decide whether the rejected tracks should have their amplitudes set to zero or whether they should
simply pass through unaffected by the scale and offset modifications.

Then set the selection (or rejection) criteria, including frequency range, track number range, or amplitude
range. The frequency and amplitude hysteresis values can prevent tracks that are close to the selected
range from popping in and out as they cross the threshold. Probability is the likelihood (ranging from 0 up
to 1) that a track will be selected (or rejected) on each frame.

Finally, you can choose to scale and/or offset either the frequency or amplitude (or both) on each frame
of each selected track.

Spectrum
This is the spectrum that will be modified; it should be one of the classes of Sound found in the Spectral
Sources category (e.g. LiveSpectralAnalysis, SpectrumInRAM). The SpectrumModifier assumes linear
(rather than log) frequencies, so you may see a dialog asking you to insert a SpectrumLogToLinear
module inbetween the spectral source and the SpectrumModifier.

Select
Check this to specify the criteria for *selection*. Otherwise, the tracks that meet the criteria will be
rejected. Unchecking this box is like placing a logical NOT after all of the selection criteria.

LoTrack
Enter an integer track number. Only this track and higher-numbered tracks will be selected.

HiTrack
Enter an integer track number. Only this track and lower-numbered tracks will be selected. To be certain
of selecting all tracks, enter a number much larger than the highest possible track number (e.g. 10000).

LoFreq
Enter a pitch or frequency with units. On each frame, a track will be selected if the value of the frequency
envelope on that frame is at this frequency or a higher frequency. Use FreqHysteresis to prevent tracks
from popping in and out on each frame if they are wavering around this frequency.

HiFreq
Enter a pitch or frequency with units. On each frame, a track will be selected if the value of the frequency
envelope on that frame is at this frequency or a lower frequency. Use FreqHysteresis to prevent tracks
from popping in and out on each frame if they are wavering around this frequency.

357

FreqHysteresis
Enter a frequency or pitch with units that is smaller than the value of LoFreq. If a track is currently
selected, its frequency will have to drop this much *lower* than LoFreq in order to be rejected. If a track
is currently unselected, it will have to be this much *higher* than LoFreq in order to become selected.
(And similarly, the frequency of a selected track must be this much *higher* than HiFreq in order to be
deselected, and the frequency of a rejected track would have to be this much lower than HiFreq in order
to switch from being rejected to selected).

Adjust this value to keep tracks that are close to LoFreq or HiFreq from switching between on and off on
every frame.

FreqScale
Multiply the frequency of each selected track by this number between 0 and 1.

FreqOffset
Add this number (between 0 and 1) to the frequency value of each selected track.

LoAmp
Enter an amplitude value between 0 and 1 (or from -1000 to 0 dB). On each frame, a track will be
selected if the value of the amplitude envelope on that frame is at this amplitude or a higher amplitude.
Use AmpHysteresis to prevent tracks from popping in and out on each frame if they are wavering around
this amplitude.

HiAmp
Enter an amplitude value between 0 and 1 (or from -1000 to 0 dB). On each frame, a track will be
selected if the value of the amplitude envelope on that frame is at this amplitude or a lower amplitude.
Use AmpHysteresis to prevent tracks from popping in and out on each frame if they are wavering around
this amplitude.

AmpHysteresis
Enter a number between 0 and 1 but smaller than the value of LoAmp. If a track is currently selected, its
amplitude will have to drop this much *lower* than LoAmp in order to be rejected. If a track is currently
unselected, it will have to be this much *higher* than lowAmp in order to become selected. (And similarly,
the amplitude of a selected track must be this much *higher* than HiAmp in order to be deselected, and
the amplitude of a rejected track would have to be this much lower than HiAmp in order to switch from
being rejected to selected).

Adjust this value to keep tracks that are close to LoAmp or HiAmp from switching between on and off on
every frame.

AmpScale
Multiply the amplitude of each selected track by this number between 0 and 1.

AmpOffset
Add this number (between 0 and 1) to the amplitude value of each selected track.

Probability
Enter a likelihood from 0 to 1. Numbers larger than 1 will be clipped to 1 (the maximum likelihood). On
each frame and for each track, this is the likelihood that the track will be selected on this frame. Use 1 to
say that the track will be selected 100% of the time, use 0.5 to give it a 50-50 chance of being selected,
and use 0 to indicate that it will never be selected. You can make the likelihood a function of the track
number. For example,

358

TrackNumber / 128

would make the higher tracks more likely to be selected on each frame than the lower tracks, and:

(TrackNumber - 1) rem: 2

would make the even-numbered tracks 100% likely, and the odd-numbered tracks 0% likely (because an
odd number minus 1 is an even number, and an even number modulo 2 is zero, while an odd number
modulo 2 is 1).

Seed
Enter a number from -1 to 1. This is the seed for the random number generator used in conjunction with
the value of Probability to determine whether a track should be selected on a given frame.

HearAll
Check this box to hear all the tracks, both the selected and the rejected. Uncheck it to set the rejected
tracks’ amplitudes to zero.

(Only the selected tracks are affected by the FreqScale, FreqOffset, AmpScale, and AmpOffset, so check
the HearAll box to hear all tracks but modify only the selected tracks).

359

SpectrumOnDisk

Spectral Sources Category
This can be used in place of a SpectrumInRAM as the input to an OscillatorBank. The difference is that
this reads the analysis file directly off the disk, rather than first loading the analysis file into RAM. This is
helpful for SOS analyses that are too long to fit into sample RAM.

Unlike the SpectrumInRAM, this Sound can only go through the analysis envelopes in forward-time order.
(The SpectrumInRAM TimeIndex parameter lets you read the analysis at any point in time and in any
time order with any function). In this Sound, you can, however, control the Rate at which you go forward
through the analysis file.

Frequency
Use Default to leave the frequency unchanged from the original analysis. Otherwise, the frequency
envelopes will be altered to scale the base pitch of the analysis to the value listed in this parameter field.

The frequency can be specified in units of pitch or frequency. The following are all ways to specify the A
above middle C:

440 hz (in hertz or cycles per second)
4 a (as the 4th octave A)
69 nn (as a MIDI notenumber)
4 c + 9 nn (as 9 half steps above middle C)
1.0 / 0.00227273 s (inverse of a period at 44.1 kHz sample rate)

The following are examples of how to control the frequency using MIDI, the virtual control surface, or a
third-party program:

!Pitch (key number plus pitch bend)
!KeyNumber nn (MIDI notenumber)
4 c + (!Frequency * 9 nn) (continuous controller from 4 c to 4 a)

Level
This is a control on the overall amplitude of all the partials.

Enter 1 to leave all amplitudes as they are; numbers larger than one result in a gain, and numbers less
than one result in attenuation.

RateScale
This controls the rate at which the analysis is read: use 1 to read it at the original rate, numbers greater
than 1 to read through it faster, and numbers less than 1 to read through it more slowly.

FileName
Click the Browse button to be able to select the file name from a list of names in the standard file dialog.

NbrPartials
This is the number of partials you want to output for the resynthesis. Use Default to output all of the
partials in the file.

FirstPartial
This is the first analyzed partial that you want to output--usually it is partial number 1. If you want to skip

360

over some of the lower partials, enter a higher number here.

Trigger
When this number becomes positive, the Sound will start over again at the beginning of the analysis file.

361

SqrtMagnitude

Math Category
This is the square root of the sum of the left and right channels squared. If the square root of the sum of
the squares is greater than 1.0, this Sound saturates at 1.0. It can be useful in doing spectral analysis
where the left channel is defined to be the real part and the right channel as the imaginary part of a
complex number. You could also use this as a strange kind of measure of the instantaneous "distance"
between two signals, one in the left and one in the right.

Input
The output is the square root of the sum of the squares of the left and right channels of this Sound.

362

StereoInOutput4

Spatializing Category
This Sound routes the two stereo input Sounds to the four output channels of the signal processor.

This Sound only works properly as the rightmost Sound in the signal flow diagram.

Out12
This Sound will be routed to channels 1 and 2.

Out34
This Sound will be routed to channels 3 and 4.

363

StereoInOutput8

Spatializing Category
This Sound routes the four stereo input Sounds to the eight output channels of the signal processor.

This Sound only works properly as the rightmost Sound in the signal flow diagram.

Out12
This Sound will be routed to channels 1 and 2.

Out34
This Sound will be routed to channels 3 and 4.

Out56
This Sound will be routed to channels 5 and 6.

Out78
This Sound will be routed to channels 7 and 8.

364

StereoMix2

Mixing & Panning Category
Adds the outputs of the Sounds in the In1 and In2 fields, each with the specified Pan and Scale
(attenuation) value. The overall output can also be panned and attenuated.

Left
This controls the level of the left outpu channel. The maximum value is 1 and the minimum is -1. The left
channel of the mix is multiplied by the value of this parameter. Some example values for Left are:

1 (no attenuation)
0 (maximum attenuation)
!Fader1 (continuous controller sets level)
!KeyVelocity (MIDI key velocity controls the amplitude)

You can also paste another signal into this field, and the amplitude will vary with the output amplitude of
the pasted signal (something like an LFO controlling the attenuation). (See the manual for a complete
description of hot parameters, EventValues, EventSources, and Map files).

Right
This controls the level of the right output channel. The maximum value is 1 and the minimum is -1. The
right channel of the mix is multiplied by the value of Right. Some example values for Right are:

1 (no attenuation)
0 (maximum attenuation)
!Fader1 (continuous controller sets level)
!KeyVelocity (MIDI key velocity controls the amplitude)

You can also paste another signal into this field, and the amplitude will vary with the output amplitude of
the pasted signal (something like an LFO controlling the attenuation). (See the manual for a complete
description of hot parameters, EventValues, EventSources, and Map files).

In1
The output of this Sound will be added to the output of the Sound in In2.

Pan1
The stereo position of In1. (0 is hard left and 1 is hard right).

Scale1
Attenuation on In1. 1 (or 0 dB) is no attenuation, and 0 is fully attenuated.

In2
This Sound is added to the Sound in the In1 field.

Pan2
The stereo position of In2. (0 is hard left and 1 is hard right).

Scale2
Attenuation on In2. 1 (or 0 dB) is no attenuation, and 0 is fully attenuated.

365

StereoMix4

Mixing & Panning Category
Adds the outputs of In1, In2, In3, and In4, each with its own Pan position and Scale (attenuation). Scale
and Pan control the attenuation and stereo position of the overall mix.

Left
This controls the level of the left output channel. The maximum value is 1 and the minimum is -1. The
left channel of the mix is multiplied by the value of this parameter. Some example values for Left are:

1 (no attenuation)
0 (maximum attenuation)
!Fader1 (continuous controller sets level)
!KeyVelocity (MIDI key velocity controls the amplitude)

You can also paste another signal into this field, and the amplitude will vary with the output amplitude of
the pasted signal (something like an LFO controlling the attenuation). (See the manual for a complete
description of hot parameters, EventValues, EventSources, and Map files).

Right
This controls the level of the right output channel. The maximum value is 1 and the minimum is -1. The
right channel of the mix is multiplied by the value of Right. Some example values for Right are:

1 (no attenuation)
0 (maximum attenuation)
!Fader1 (continuous controller sets level)
!KeyVelocity (MIDI key velocity controls the amplitude)

You can also paste another signal into this field, and the amplitude will vary with the output amplitude of
the pasted signal (something like an LFO controlling the attenuation). (See the manual for a complete
description of hot parameters, EventValues, EventSources, and Map files).

In1
The output of this Sound will be added to the output of the Sounds in In2, In3, and In4.

Pan1
The stereo position of In1. (0 is hard left and 1 is hard right).

Scale1
Attenuation on In1. 1 (or 0 dB) is no attenuation, and 0 is fully attenuated.

In2
The output of this Sound will be added to the output of the Sounds in In1, In3, and In4.

Pan2
The stereo position of In2. (0 is hard left and 1 is hard right).

Scale2
Attenuation on In2. 1 (or 0 dB) is no attenuation, and 0 is fully attenuated.

366

In3
The output of this Sound will be added to the output of the Sounds in In1, In2, and In4.

Pan3
The stereo position of In3. (0 is hard left and 1 is hard right).

Scale3
Attenuation on In3. 1 (or 0 dB) is no attenuation, and 0 is fully attenuated.

In4
The output of this Sound will be added to the output of the Sounds in In1, In2, and In3.

Pan4
The stereo position of In4. (0 is hard left and 1 is hard right).

Scale4
Attenuation on In4. 1 (or 0 dB) is no attenuation, and 0 is fully attenuated.

367

SumOfSines

Xtra Sources Category
Resynthesizes sounds from the spectral analyses stored in Analysis0 and Analysis1. The dbMorph
parameter interpolates between the amplitudes of Analysis0 and Analysis1, and the pchMorph parameter
interpolates between the pitches in Analysis0 and Analysis1.

OnDuration
This is the duration of each triggered event. It should be the same length or shorter than the Duration
which is the total length of time that this program is available to be triggered. Think of Duration as
analogous to the total lifetime of a piano string, and OnDuration as the duration of each individual note
that you play on that piano string. The OnDuration must be greater than zero, and you must specify the
units of time, for example:

2 s (for 2 seconds)
2 ms (for 2 milliseconds)
200 usec (for 200 microseconds)
2 m (for 2 minutes)
2 h (for 2 hours)
2 days
2 samp (for 2 samples)
1 / 2 hz (for the duration of one period of a 2 hz signal)

Frequency0
Frequency of of the resynthesis based on Analysis0. Use 0 hz to default to the base frequency as stored
in the samples file.

Frequency1
Frequency of resynthesis based on Analysis1. Use 0 hz to default to the base frequency as stored in the
samples file.

Analysis0
Select a spectrum file from the dialog that you get when you click on the disk button next to this field.

The spectrum file contains frequency and amplitude information for resynthesizing an analyzed sound
using banks of sine wave oscillators.

Analysis1
Select a spectrum file from the dialog that you get when you click on the disk button next to this field.

The spectrum file contains frequency and amplitude information for resynthesizing an analyzed sound
using banks of sine wave oscillators.

DBMorph
Specifies how much of the amplitude envelopes of each of the envelopes is present in the resynthesized
sound. A value of zero specifies that the amplitude envelopes come from Analysis0 only, a value of one
specifies Analysis1 only, and values between specify mixtures of the two analyses.

Use a continuous controller or a control signal here to morph continuously between the two sets of
amplitude envelopes.

368

PchMorph
Specifies how much of the frequency envelopes of each of the envelopes is present in the resynthesized
sound. A value of zero specifies that the frequency envelopes come from Analysis0 only, a value of one
specifies Analysis1 only, and values between specify mixtures of the two analyses.

Use a continuous controller or a control signal here to morph continuously between the two sets of
frequency envelopes.

NbrPartials
This is the total number of sine wave oscillators used to resynthesize the analyzed sound. Try increasing
the number of partials to hear the effect on the sound. There will be some maximum number above
which there is no longer any improvement in the perceived quality of the sound. The more partials you
request, the more computation this algorithm requires, so choose the minimum number of partials that
still gives you acceptable sound quality.

BankSize
This specifies the number of oscillators per bank. If you get a message that you are running out of real
time, try larger or smaller bank sizes.

TimeIndex
The analyzed sounds are like sequences of spectral snapshots. This value describes which snapshot to
resynthesize. A FunctionGenerator with Fullramp as its Wavetable is a straight line from - 1 to 1, and this
moves forward through the spectra in linear time. Try different functions (or use a continuous controller)
to go backwards through the sequence of spectra or to vary the rate at which you are stepping through
the spectra.

This parameter is only active if CtrlTime is checked.

Gate
Enter a 1 in this field to play the Sound exactly once for the duration you have specified in the Duration
field.

If you use an EventValue (for example, !KeyDown) in this field, the Sound can be retriggered as often as
you like within the duration specified in the Duration field.

When Gate becomes positive, the Sound is heard; when Gate becomes zero, the Sound is released.

This parameter is ignored if CtrlTime is checked.

Loop
Check this box if you would like to set the loop points using the LoopStart and LoopEnd parameter fields.

This parameter is ignored if CtrlTime is checked.

LoopStart
When Loop is checked, this is the start point of the loop (otherwise it is ignored). Enter a value in the
range from 0 to 1, where 0 is the beginning of the sample and 1 is the end of the sample. In other words,
this is the proportion of the total sample duration when the start point should occur. (To compute the
exact time within the sample where the start point occurs, multiply LoopStart’s value by the total duration
of the sample. For example, if your sample is 5 seconds long and LoopStart is set to 0.2, then the
beginning of the loop is 1 second into the sample.)

LoopEnd
When Loop is checked, this is the end point of the loop (otherwise it is ignored). Enter a value in the
range from 0 to 1, where 0 is the beginning of the sample and 1 is the end of the sample. In other words,
this is the proportion of the total sample duration when the end point should occur. (To compute the

369

exact time within the sample where the end point of the loop occurs, multiply LoopEnd’s value by the total
duration of the sample. For example, if your sample is 5 seconds long and LoopEnd is set to 0.4, then
the end of the loop occurs at 2 seconds into the sample.)

CtrlTime
The analyzed sounds are like sequences of spectral snapshots. This sound provides two ways to move
through these spectral snapshots.

If CtrlTime is not checked, then the snapshots will be played back in forward order over the duration given
in the OnDuration field. The playback will start whenever Gate becomes positive. If Loop is checked, the
playback will loop between the StartLoop and EndLoop points within the analysis for as long as Gate is
positive.

If CtrlTime is checked, then the snapshot played back is controlled directly by the value in the TimeIndex
field.

Envelope
This is an attenuator on the output of the Oscillator. Enter 1 (or 0 dB) for the full amplitude. For a
time-varying amplitude, paste in a Sound (such as AR, ADSR, or FunctionGenerator) or an Event Value
(such as !Volume) in this field.

370

SyntheticSpectrumFromArray

Spectral Sources Category
Creates a synthetic spectrum from two arrays: an array of amplitude values for each track in the frame,
and an array of frequency values for each track in the frame (and, if SendBandwidths is checked, a
corresponding array of bandwidths for each of the tracks as well). A SyntheticSpectrumFromArray
should be fed to an OscillatorBank, FormantBankOscillator, or VocoderChannelBank in order to
synthesize the partials, formants, or bank of vocoder filters. The SyntheticSpectrumFromArray produces
a set of envelopes for controlling the parameters of an OscillatorBank, FormantBankOscillator, or
VocoderChannelBank.

NbrPartials
This is the number of partials (or filters) to synthesize. In most cases, it should be the same as the size of
the Frequencies array; however, you can specify a slower update rate for the envelopes by using a larger
number here. The time between updates of the control envelopes is equal to the number you specify
here but in units of samples. If you enter 128 here, for example, the envelopes will be updated every 128
samples (that is about every 3 milliseconds if your sampling rate is 44.1 kHz).

LogScale
Check this box to output the Frequencies (and, optional Bandwidths) in log rather than linear frequency.
In most cases, this box should be unchecked; the only time it should be checked is if you want to
manipulate the frequency envelopes in pitch space rather than in hertz.

SendBandwidths
Check this box to send bandwidth information. Bandwidths are required for controlling the filters of a
FormantBankOscillator or a VocoderChannelBank, but they are not required for controlling the oscillators
in an OscillatorBank.

Envelope
This is an overall amplitude envelope.

Amplitudes
Enter an array of amplitude values separated by spaces. Enclose any arithmetic expressions or units
within curly braces, for example:

!Amp1 {!Amp2 * 0.5} {-6 db} !KeyVelocity {!KeyDown ramp: 5 s} {0.1 s random}

The number of amplitude values should be the same as the number of frequency values (and optional
bandwidth values). If the frequency, amplitude (and bandwidth if used) arrays are different sizes, the
smallest array will be used, and any extra values in the other two arrays are thrown away.

Frequencies
Enter an array of frequency values separated by spaces. If you leave off the units, the values will be
interpreted as frequencies in hertz. Enclose any arithmetic expressions or frequencies with units within
curly braces, for example:

609 {!Freq1 * 1000} {2048 hz} {60 nn} {5 c}

The number of frequency values should be the same as the number of amplitude values (and optional
bandwidth values). If the frequency, amplitude (and bandwidth if used) arrays are different sizes, the

371

smallest array will be used, and any extra values in the other two arrays are thrown away.

Bandwidths
This is array is optional and need only be set if the SendBandwidths box is checked. Bandwidths are
required by the FormantBankOscillator and VocoderChannelBank, but they are not required by the
OscillatorBank.

Enter an array of bandwidth values separated by spaces. If you leave off the units, the values will be
interpreted as frequencies in hertz. Enclose any arithmetic expressions or frequencies with units within
curly braces, for example:

609 {!Freq1 * 1000} {2048 hz} {60 nn} {5 c}

The number of bandwidth values should be the same as the number of amplitude and frequency values.
If the frequency, amplitude and bandwidth arrays are different sizes, the smallest array will be used and
any extra values in the other two arrays are thrown away.

372

SyntheticSpectrumFromSounds

Spectral Sources Category
Generates a synthetic spectrum whose amplitudes, frequencies (and optionally, bandwidths) are
controlled by two input Sounds. One input supplies the amplitudes and the other supplies the
frequencies (optionally alternating with bandwidths). You can think of each cycle of the input Sounds as
defining one frame of the spectrum. If the input Sounds change from cycle to cycle, then the spectrum
will also change from frame to frame.

A SyntheticSpectrumFromSounds (like other Sounds in the Spectral Sources category) outputs spectral
envelopes in the following format:

Left Channel: Amp1 Amp2 ... AmpN

Right Channel: Freq1 Freq2 ... FreqN

For each frame, Amp1 is the amplitude of the first partial (and Freq1 is the frequency or pitch of the first
partial), Amp2 is the amplitude of the second partial (corresponding with Freq2), and AmpN is the
amplitude of the highest numbered partial (specified in NbrPartials). Then the whole sequence repeats
for the next frame of the spectrum. Because of this repetition rate, the output of the
SyntheticSpectrumFromSound has a kind of periodicity to it, where the period is the equal to the same
number of samples as there are partials in each frame.

Amplitudes
If the period of this Sound in samples is equal to NbrPartials, then one cycle of this Sound defines one
frame’s worth of amplitudes for the synthesized spectrum. (For example, to synthesize 80 partials, set
the Frequency of this Sound to 80 samp inverse if you want the cycles to line up with frames). If the
repetition rate of this Sound is lined up with the number of partials in each frame of the spectrum, then the
waveform of each cycle of this Sound will correspond to a kind of spectral envelope for each frame of the
spectrum. For example, if you select ExponRev as the waveform of an oscillator whose period is 80
samples and set NbrPartials to 80, then each frame of the spectrum will have high amplitudes on its
lower-numbered partials and lower amplitudes on the upper partials. Even more interesting is to make
this Sound’s frequency adjustable within a narrow range so you can create spectral envelopes that "drift"
because their repetition rates are slightly out of phase with the number of partials being generated on
each frame.

FrequenciesAndBandwidths
If the period of this Sound in samples is equal to NbrPartials, then one cycle of this Sound defines one
frame’s worth of frequencies (or pitches i f you have LogScale checked) for the synthesized spectrum.
(For example, to synthesize 80 partials, set the Frequency of this Sound to 80 samp inverse if you want
the cycles to line up with frames). If the repetition rate of this Sound is lined up with the number of
partials in each frame of the spectrum, then the waveform of each cycle of this Sound will provide the
frequencies for each partial in one frame of the spectrum. For example, if you select Ramp as the
waveform of an oscillator whose period is 80 samples and set NbrPartials to 80, then, in each frame of
the spectrum, the lower-numbered partials will have low frequencies, and the higher-numbered partials
will have high frequencies. Even more interesting is to make this Sound’s frequency adjustable within a
narrow range so you can create spectra that "drift" because their repetition rates are slightly out of phase
with the number of partials being generated on each frame.

If the SyntheticSpectrumFromSounds is controlling something that requires bandwidth (like
FormantBankOscillator or VocoderChannelBank), and you have checked the SendBandwidths box, then

373

every other value of this Sound will be interpreted as a bandwidth, rather than a frequency.

NbrPartials
This is the number of partials in the synthetic spectrum. It should be greater than or equal to the number
of oscillators or filters in the Sound being controlled by the SyntheticSpectrumFromSounds.

LogScale
Check this box to output log-frequency (pitch) envelopes rather than frequency envelopes.

IncludesBandwidths
Check here if the synthetic spectrum is feeding into a Sound that can use bandwidth information (e.g.
FormantBankOscillators and VocoderChannelBanks).

374

TextFileInterpreter

Scripts Category
Reads and interprets a line at a time from a text file. This Sound can be used to interpret scores
prepared for Music N languages (such as csound) and map the parameters to the variable parameters of
Kyma Sounds, essentially treating Kyma Sounds as "instruments". It can also be used more generally to
read data from text files and map them to the parameters of Kyma Sounds.

This is like the Script in that it constructs a new Sound algorithmically and then plays it; it does NOT set
up fixed "patches" and then update the parameters by reading them out of the text file as the Sound is
playing.

FileName
This is the name of a text file created in Kyma or another program. In other programs, save a file as
text-only (ASCII) if you want to use it as a Kyma text file.

Inputs
These Sounds are treated as templates. Each name should begin with a letter and contain only
alpha-numeric characters; this field will reject any Sounds with "illegal" names. You can reference these
Sounds by name in the Script field.

Script
Enter the Smalltalk code to read and interpret data from the specified text file. See the manual for a
detailed description and example scripts.

Left
This controls the level of the left output channel. The maximum value is 1 and the minimum is -1. The
left channel of the output is multiplied by the value of this parameter. Some example values for Left are:

1 (no attenuation)
0 (maximum attenuation)
!Fader1 (continuous controller sets level)
!KeyVelocity (MIDI key velocity controls the amplitude)

You can also paste another signal into this field, and the amplitude will vary with the output amplitude of
the pasted signal (something like an LFO controlling the attenuation). (See the manual for a complete
description of hot parameters, EventValues, EventSources, and Map files).

Right
This controls the level of the right input channel. The maximum value is 1 and the minimum is -1. The
right channel of the input is multiplied by the value of Right. Some example values for Right are:

1 (no attenuation)
0 (maximum attenuation)
!Fader1 (continuous controller sets level)
!KeyVelocity (MIDI key velocity controls the amplitude)

You can also paste another signal into this field, and the amplitude will vary with the output amplitude of
the pasted signal (something like an LFO controlling the attenuation). (See the manual for a complete
description of hot parameters, EventValues, EventSources, and Map files).

375

Threshold

Tracking Live Input Category
The output of a Threshold is 1 when its Input amplitude exceeds the specified threshold; otherwise it is 0.
The smaller the value of hysteresis, the more sensitive the Threshold is to momentary changes in the
Input amplitude.

When trying to detect when an amplitude is exceeded, it is usually a good idea to put your input through
an AmplitudeFollower or PeakDetector first so you are detecting when the amplitude *envelope* exceeds
the threshold rather than when individual sample points might cross the threshold.

Input
When this Sound’s amplitude exceeds the threshold, the output of the Threshold will be a 1 (i.e. the
maximum deviation).

Threshold
When the amplitude of the Input is less than the threshold (plus or minus half the hysteresis), the output
of this sound is zero. Otherwise the output is 1.

Hysteresis
The larger the hysteresis, the less sensitive the Sound will be to small changes in the Input amplitude.
Hysteresis comes from the Greek husteros, come later or behind. This is the tendency of this Sound to
stay in its previous state (either 1 or 0).

376

TimeControl

Time & Duration Category
Slows down or speeds up the rate that time is progressing in its Input by controlling how the time counter
is incremented on the signal processor. This affects only the start time of events within the Input (e.g. if
Input is a Script or Concatenation or contains TimeOffsets), not the sample rate.

Input
The duration of this Sound can be shortened or lengthened depending on the value of Rate.

Rate
This is the rate that time progresses. For example, use 1 to increment time at the normal rate, 0.5 for half
speed, 2 for twice as fast, etc.

377

TimeFrequencyScale

Frequency & Time Scaling Category
Simultaneously time stretches and/or frequency scales a disk recording or a sample stored in wavetable
memory.

FrequencyScale
The frequency of the input will be multiplied by this value.

For example, to shift up by an octave, the FrequencyScale should be 2, and to shift down and octave, the
scale should be 0.5. To shift up by 3 halfsteps, you would use:

2 raisedTo: (3/12)

To shift down by 7 half steps, you would use:

2 raisedTo: (-7/12)

Rate
This is the rate of playback. The value should be less than or equal to 1, because the Sound can only do
time stretching, not time compression. For example, use 1 to play back at the original rate, 0.5 for half
speed, 0.25 for one quarter of the speed, etc.

Gate
Enter a 1 in this field to play the Sound exactly once for the duration you have specified in the Duration
field.

If you use an EventValue (for example, !KeyDown) in this field, the Sound can be retriggered as often as
you like within the duration specified in the Duration field.

When Gate becomes positive, the Sound is heard; when Gate becomes zero, the Sound is released.

MinInputFreq
This is the minimum frequency you expect to hear at the input. Follow the usual conventions for
specifying frequencies.

MaxInputFreq
This is the maximum frequency you expect to hear at the input. Follow the usual conventions for
specifying frequencies.

MaxFreqScale
This is the largest scale that will be applied to the frequency (the maximum allowable is 4).

Detectors
This determines the sensitivity of the frequency tracking. Try starting with a value of 10, and then
experiment with more or fewer if you want to try fine tuning the frequency tracking. (More is not
necessarily better; there is some optimal number of detectors for each circumstance.)

FromDisk
When the box is checked, read the recording directly from the disk. Otherwise, look for it in wavetable

378

memory.

Sample
If FromDisk is checked, this is the name of the disk file. Otherwise, this should be the name of a sample
in the Wavetables list or the name of a segment of wavetable memory being recorded into by a
MemoryWriter prior to or in parallel with this Sound.

FromMemoryWriter
Check FromMemoryWriter when the wavetable does not come from a disk file but is recorded by a
MemoryWriter in real time.

379

TimeOffset

Time & Duration Category
Offsets the start time of its Input by the specified SilentTime. If Retrograde or Reverse is set, a Constant
zero is concatenated to the end of Input; this can be useful for adding some silence to the end of an input
to a reverberator or echo in order to give the reverberation time to die away.

Input
This Sound’s start time is delayed by the amount of time specified in SilentTime. If retrograde or reverse
(but not both) is true, the silence will follow this Sound.

SilentTime
Amount of time to delay the start time of the Input. It can be any amount of time from 0 to the maximum
possible duration. If retrograde or reverse (but not both) is true, this silence follows the Input.

380

TimeStopper

Time & Duration Category
Allows Input to be loaded into the signal processor and start playing but then stops any further progress
of time on the signal processor. Time resumes only when the value in the Resume field becomes
nonzero. For example, even if Input had a duration of 1 samp, it would last until Resume became
nonzero. If the input has multiple events in it that occur sequentially, only the first one will take place
immediately; the others will occur only after Resume becomes nonzero.

Input
This Sound is loaded and started but it will not terminate unless Resume becomes nonzero.

Resume
Time is stopped until this value becomes something other than 0. You could use an EventValue (such
as !KeyDown) in this field to control when time should progress. By putting a Threshold Sound here, you
can make the progress of time depend on the amplitude of another Sound (such as the ADInput). Use an
Equality prototype to make time depend on an Event Value or Sound reaching an exact value.

ResumeOnZero
Click here if you would like time to resume when Resume equals 0 (rather than resuming whenever the
value in Resume becomes nonzero).

381

TriggeredSampleAndHold

Sampling Category
When triggered, reads a value from Input and holds onto it until triggered again. This is like
SampleAndHold except that the sampling only occurs on triggers, not periodically.

Input
A sample of this Sound is read each time the Trigger becomes positive.

Trigger
When the Trigger becomes positive, one event is triggered. You can trigger several events over the
course of the total Duration of this program as long as the value of Trigger returns to zero before the next
trigger. Some example values for Trigger are:

1 (plays once with no retriggering)
0 (the sound is silent, never triggered)
!KeyDown (trigger on MIDI key down)
!F1 (trigger when MIDI switch > 0)

You can also paste another signal into this field, and events will be triggered every time that signal
changes from zero to a nonzero value. (See the manual for a complete description of hot parameters,
EventValues, EventSources, and Map files).

382

TriggeredTableRead

Sampling Category
As long as the Trigger is greater than zero, the TriggeredTableRead will read samples from the
Wavetable; if the Trigger is less than or equal to zero, the last sample read will be output. Gate resets
the pointer to the beginning of the Wavetable.

Trigger
As long as the Trigger is greater than zero, the TriggeredTableRead will read samples from the
Wavetable; if the Trigger is less than or equal to zero, the last sample read will be output. PulseTrain is a
good Sound to use as a source of periodic triggers, and by putting an Event Value in the PulseTrain’s
Period field, you can control the rate at which the triggers occur.

Wavetable
Select a wavetable or a sample. A single sample point is read from this table each time Trigger becomes
positive.

Gate
Each time this value becomes positive, the Sound will start over again from the beginning of the
Wavetable. Enter a 1 in this field to play the Sound exactly once. If you use an EventValue (for example,
!KeyDown) in this field, you can restart the sound multiple times.

IgnoreLoops
Click here if the Wavetable (or sample) has loop points specified in the header and you want to ignore the
loop points.

FromMemoryWriter
Check FromMemoryWriter when the wavetable does not come from a disk file but is recorded by a
MemoryWriter in real time.

383

TunableVocoder

Filters Category
Tune the base frequency of the vocoder and control the spacing of the center frequencies of the filters.

Input
The sound source that you hear going through the filter bank.

SideChain
The spectrum of this Sound controls the amplitudes of each filter in the filter bank.

TimeConstant
The smaller the time constant, the more quickly the amplitude envelopes respond to changes in the side
chain spectrum. Longer time constants result in a less precise sound (and give a reverberated effect).

NbrBands
This is the number of filters desired.

BankSize
This is the number of filters that should be scheduled on each processor. Ordinarily you should leave this
set to default. If you run out of realtime processing, you can try reducing the bankSize, as for example

0.75 * default

LogSpacing
Check this box to specify the spacing between center frequencies as an interval in pitch space. Uncheck
the box if you prefer to specify the spacing as a frequency in hertz.

AnalysisFreq
This is the lowest center frequency in the filter bank operating on the SideChain.

SynthesisFreq
This is the lowest center frequency in the filter bank operating on the Input.

AnalysisLevel
This is an attenuator on the amplitude of the SideChain before it goes through the filters.

SynthesisLevel
This is an attenuator on the amplitude of the Input before it goes through the filters.

AnalysisSpacing
This is the spacing between the center frequencies of the filters on the SideChain. Use nn as the units if
LogFrequency is checked. Use hz as the units if LogFrequency is unchecked.

SynthesisSpacing

384

This is the spacing between the center frequencies of the filters on the Input. Use nn as the units if
LogFrequency is checked. Use hz as the units if LogFrequency is unchecked.

AnalysisBW
This is a control on the bandwidth of the filters on the SideChain.

SynthesisBW
This is a control on the bandwidth of the filters on the Input.

Tone
This is a tone control. Higher values emphasize the filters with higher center frequencies. Lower values
emphasize the filters with lower center frequencies. (Rolloff determines the narrowness of this filter).

Rolloff
This is a control on the bandwidth of the Tone filter. Set this to 0 if all filters should have equal weight.
The bigger the value of Rolloff, the sharper the cutoff on the effect of the Tone filter.

Gain
You can boost or cut the final output amplitude here.

385

TwoFormantElement

Filters Category
A TwoFormantElement is realized as a DualParallelTwoPoleFilter; however, rather than specifying the
filter in terms of pole locations, you specify the desired center frequency and bandwidth of the two
formants.

Input
This is the Sound to be filtered.

Formant1
This is the center frequency of the first formant.

Bandwidth1
This is the bandwidth of the lower formant region. The narrower the bandwidth, the more "pitched" the
formant will sound--also the more likely the the filter is to overflow.

Scale1
This controls the amplitude of the first formant. For the full amplitude use +1.0 or -1.0; any factor whose
absolute value is less than 1 will attenuate the output.

Formant2
This is the center frequency of the second formant.

Bandwidth2
This is the bandwidth of the upper formant region. The narrower the bandwidth, the more "pitched" the
formant will sound--also the more likely the the filter is to overflow.

Scale2
This controls the amplitude of the second formant. For the full amplitude use +1.0 or -1.0; any factor
whose absolute value is less than 1 will attenuate the output.

386

TwoFormantVoiceElement

Xtra Sources Category
An excitation signal similar to a glottal pulse (with a randomly chosen rate of vibrato) is used as the input
to a pair of parallel second-order filter sections that simulate two of the formants of the vocal cavity.

Frequency
The frequency can be specified in units of pitch or frequency. The following are all ways to specify the A
above middle C:

440 hz (in hertz or cycles per second)
4 a (as the 4th octave A)
69 nn (as a MIDI notenumber)
4 c + 9 nn (as 9 half steps above middle C)
1.0 / 0.00227273 s (inverse of a period at 44.1 kHz sample rate)

The following are examples of how to control the frequency using MIDI, the virtual control surface, or a
third-party program:

!Pitch (key number plus pitch bend)
!KeyNumber nn (MIDI notenumber)
4 c + (!Frequency * 9 nn) (continuous controller from 4 c to 4 a)

Formant1
For an [IY] sound, try a center frequency of 238 hz. This will be the center frequency of the first formant.
This is not the fundamental frequency of the TwoFormantVoiceElement but the center of an emphasized
region of the spectrum.

Bandwidth1
For an [IY] sound, try a a bandwidth of 70 hz. This is the bandwidth of the lower formant region. The
narrower the bandwidth, the more "pitched" the formant will sound--also the more likely the the filter is to
overflow.

Scale1
For an [IY] sound, scale this formant to 0.3. This controls the amplitude of the first formant. For the full
amplitude use +1.0 or -1.0; any factor whose absolute value is less than 1 will attenuate the output.

Formant2
For an [IY] sound, try a center frequency of 1741 hz. This will be the center frequency of the second
formant. This is not the fundamental frequency of the TwoFormantVoiceElement but the center of an
emphasized region of the spectrum.

Bandwidth2
For an [IY] sound, try a a bandwidth of 100 hz. This is the bandwidth of the upper formant region. The
narrower the bandwidth, the more "pitched" the formant will sound--also the more likely the the filter is to
overflow.

Scale2
For an [IY] sound, scale this formant to 1.0. This controls the amplitude of the second formant. For the

387

full amplitude use +1.0 or -1.0; any factor whose absolute value is less than 1 will attenuate the output.

Seed
Supply an integer less than 2**30 as a seed for the random number generator that controls the vibrato
rate.

388

Variable

Variables & Annotation Category
A Variable is a placeholder that represents a single Sound. You can assign a value to the Variable in a
Script or related Sound by typing the name of the Variable followed by a colon, a space, and then the
name of the Sound that you want to assign to the variable.

389

VCA

Envelopes & Control Signals Category
Multiplies its Inputs together. To apply an amplitude envelope to a Sound, use the Sound and the
envelope generator as inputs to this Sound.

Inputs
These Sounds are multiplied together. Typically the inputs are a Sound and the amplitude envelope that
you want to apply to the Sound.

390

Vocoder

Filters Category
The Vocoder applies the spectral character of the SideChain Sound onto the Input Sound. What you
hear is the Input Sound filtered by the SideChain Sound. For example, you can use this module to apply
the spectral characteristics of human speech (the SideChain) onto any other sample or synthetic sound
(the Input). On some analog vocoders, the SideChain input is called the "modulation" input.

The Vocoder is implemented as two filter banks--an analysis bank and a resynthesis bank. The analysis
bank is used to measure the amount of energy in each frequency band of the SideChain Sound. The
resynthesis bank is used to filter the Input Sound. There is an amplitude follower on the output of each of
the filters in the analysis bank. The resulting amplitude envelopes are then applied to the corresponding
filters in the resynthesis bank. In this way, the SideChain controls the amplitude envelopes on the
resynthesis filters.

Input
This is the source material to be filtered by the SideChain-controlled filters. This Sound is heard directly,
through the filters (whereas the SideChain is never heard directly). For example, if you want to make an
animal talk, put a sample of the animal sound here and put a sample of speech (or use a microphone) as
the SideChain.

The best Inputs tend to be fairly broad band signals that have energy in each of the frequency bands
covered by the resynthesis filter bank. For example, Noise or an Oscillator on a waveform with lots of
harmonics (such as Buzz128) will work well because they generate energy over the full frequency range.

SideChain
Sometimes referred to as the "modulation", this Sound is never heard directly; it controls the amplitudes
of the filters in the bank.

TimeConstant
This determines how quickly the amplitude envelopes on the filters will respond to changes in the
SideChain. For precise, intelligible results, use values less than 0.1 s. For a more diffuse, reverberated
result, use a longer TimeConstant.

NbrBands
This is the number of band pass filters in the filter bank. In other words, this is the number of
equally-spaced frequency bands between LowCF and HighCF, inclusive.

BankSize
This is the number of filters per expansion card. In general, you should be able to get about 10 to 11
filters per card. Experiment with fewer or more filters per card to optimize the efficiency of your particular
Sound.

InputLevel
Controls the level on the input Sound before it goes through the filters.

SideLevel
Controls the level of the SideChain Sound before it is fed into the analysis filters.

391

LowCF
This is the center frequency of the lowest bandpass filter in the bank.

HighCF
This is the center frequency of the highest bandpass filter in the bank.

InFreq
This is a scale factor on all of the center frequencies in the "resynthesis" bank.

SideFreq
A scale factor on all of the center frequencies in the "analysis" filter bank.

Bw
A control on the bandwidth of all the bandpass filters in both the analysis and the resynthesis filter banks.

Pitch
Check here if you would like the bandpass filters to be spaced equally in pitch space from the LowCF to
the HighCF. If you uncheck this box, the filters will be spaced equally in frequency space.

LoCutoff
Everything below this frequency should drop off in amplitude according to the slope specified in Rolloff.
This is a weak tone-control-style filter applied to the Input Sound before it is fed to the resynthesis filter
bank. Use it to attenuate the low end if the output is too boomy (or set it to 0 hz if you want to give your
subwoofers something to do).

HiCutoff
Everything above this frequency should drop off in amplitude according to the slope specified in Rolloff.
This is a weak tone-control-style filter applied to the Input Sound before it is fed to the resynthesis filter
bank. Use it to attenuate the high end if the output is too piercing or trebly. Set it to an even higher
frequency if the output sounds muffled or low pass and you would like to boost the high end.

Rolloff
This controls the steepness of the edges of a weak tone control filter on the Input. Use 1 if the edges
should rolloff precipitously at LoCutoff and HiCutoff. Use smaller numbers if you would like the
attenuation to start sooner and take longer.

392

VocoderChannelBank

Filters Category
For most situations, you should use a Vocoder rather than the VocoderChannelBank, because the
Vocoderis a higher-level Sound with higher-level parameters and controls. Use a VocoderChannelBank
only in those situations requiring independent control over the center frequency, amplitude, and
bandwidth of each filter in both the analysis and the resynthesis filter banks.

The VocoderChannelBank works by feeding the sidechain input through a bank of bandpass filters (the
analysis filters), extracting an amplitude envelope from the output of each of those filters, applying the
extracted amplitude envelopes to a second bank of filters (the synthesis filters), and feeding the input
through that bank of filters.

To see an example of how the VocoderChannelBank can be used, drag a Vocoder into a Sound file
window and expand it; it expands into cascaded VocoderChannelBanks.

CascadeInput
The cascaded input is added to whatever output is produced by this VocoderChannelBank. Use it to
cascade several VocoderChannelBanks when you need more filter banks than can fit on a single
expansion card (usually around 11).

Input
This is the Sound that is actually heard through the filter bank. The output of the VocoderChannelBank is
the sound of the Input but filtered through formants of the SideChain.

The kinds of Inputs that work best are those that are broadband and continuous enough to excite all of
the filters in the bank at all times.

SideChain
This is the Sound that controls the amplitude envelopes on each of the filters in the filter bank. The
formants of the SideChain will be imposed on the basic sound characteristics of the Input.

The kinds of SideChains that work best are those with strong formants that change noticeably over time
(e.g. human speech, tablas, mouth harps).

InputParameters
This should be a Sound from the spectral sources category (most typically the
SyntheticSpectrumFromArray). Use the spectral source Sound to specify the center frequencies,
amplitudes, and bandwidths for all the filters in the synthesis bank.

To use the same settings on both the analysis filters and the synthesis filters (as it is in the classic
channel vocoder), hold down the option key and drag this Sound into the SideChainParameters field.

SideChainParameters
This should be one of the Sounds from the spectral sources category (most typically the
SyntheticSpectrumFromArray). Use the spectral source Sound to specify the center frequencies,
amplitudes, and bandwidths for all the filters in the analysis bank.

To use the same settings on both the analysis filters and the synthesis filters (as it is in the classic
channel vocoder), hold down the option key and drag this Sound into the InputParameters field.

393

TimeConstant
Controls the reaction time of the envelope follower on each of filters in the side chain bank. Smaller
numbers should be used for better intelligibility, larger numbers for a more diffuse, reverberated result.

First
This is the number of the first filter in this bank. If this is the first VocoderChannelBank in a cascade, this
number will be 1, but the next VocoderChannelBank in the cascade should start at (1 + Count). The total
number of filters in the entire cascade should be equal to the NbrPartials specified in the InputParameters
and the SideChainParameters.

Count
This is the total number of filters in this bank. You can get about 11 filters per card on a Capybara-66.
To get more filters, feed this Sound into the cascade input of another VocoderChannelBank.

394

WaitUntil

Time & Duration Category
Don’t start the Input Sound until the Resume condition is true. This is like TimeStopper except that a
WaitUntil won’t even let its Input start until the Resume value becomes nonzero (and a TimeStopper lets
its Input get started but won’t let it end until Resume becomes nonzero).

Input
Input will not start until Resume becomes nonzero.

Resume
Input will not start playing until this value becomes positive.

If this field contains a Sound, the Input will not resume until the Sound in this field ends.

ResumeOnZero
Click here if you want the Input to start whenever Resume becomes zero (rather than whenever it is no
longer zero).

395

WarpedTimeIndex

Time & Duration Category
Can be used as the input to any Sound that requires a time index (e.g. GAOscillators, REResonator,
SampleCloud, SpectrumInRAM). Generates a time index with a variable slope so that it can move more
quickly through some parts of sound and more slowly through others. You provide a set of current time
points that should be adjusted forward or backward in time to match a set of ideal time points, and it
generates a time index function that moves from -1 up to 1 but with a varying slope.

IdealTimePoints
Enter a chronological sequence of time points with units, enclosed within curly braces and separated by
spaces. These are the new time points. Time will be sped up or slowed down to make the
CurrentTimePoints line up with these ideal time points.

CurrentTimePoints
Enter a chronological sequence of time points with units, enclosed within curly braces and separated by
spaces. These are the time points that should be moved forward or backward in time in order until they
line up with the IdealTimePoints.

Trigger
Each time this value changes from a zero to a number greater than zero, the time function starts over
again from the beginning.

396

Waveshaper

Distortion & Waveshaping Category
The Input is used as an index into the table specified in ShapingFunction (if ShapeFrom is set to
Wavetable) or as the input to a polynomial whose coefficients are those listed in the Coefficients
parameter field (if ShapeFrom is set to Polynomial).

Unless the ShapingFunction or polynomial is a straight line, the Input will be nonlinearly distorted. The
distortion adds harmonics to the synthesized or sampled Input. Since polynomials tend to be close to
linear around zero and less linear the further they are from zero, low amplitude Inputs will be less
distorted than high amplitude Inputs. This tends to match the behavior of physical instruments (which
sound "brighter" when played louder) and also of electronic components like amplifiers which produce
harmonic distortions of their inputs at high amplitudes.

A Waveshaper can also be used to map non-signal Inputs to new values according to the
ShapingFunction or polynomial. For example, if the Input were a Constant whose Value were !Pitch, the
full range of MIDI notenumbers could be remapped by a Waveshaper to frequencies of an alternate
tuning system as stored in a table (the ShapingFunction).

Input
This Sound is used as an index into the ShapingFunction (or as the input into the polynomial described
the list of Coefficients).

Interpolation
Choose whether to use only integer values to index into the ShapingFunction or whether to use the
fractional part of the Input value to interpolate between the values actually stored in the table to values
that would fall "inbetween" the table entries if the actual values were connected by a straight line.

ShapeFrom
Choose whether to use a function stored in a table (Wavetable) or a polynomial computed on the fly using
the Coefficients (Polynomial).

ShapingFunction
Select the wavetable that will be used to map the Input to the output.

Coefficients
Enter a list of coefficients A0 A1 A2 ... An (separated by spaces) for a polynomial of the form:

A0 + A1x + A2x^2 + A3x^3 + ... + Anx^n

where Input is x.

FromMemoryWriter
Check FromMemoryWriter when the shaping function does not come from a disk file but is recorded by a
MemoryWriter in real time.

397

398

Sound Classes by Category

 Sources & Generators FormantBankOscillator 260

 Sources & Generators DiskPlayer 247

 Sources & Generators DynamicRangeController 250

 Sources & Generators TwoFormantElement 386

 Sources & Generators Oscillator 307

 Sources & Generators GenericSource 268

 Sources & Generators GrainCloud 269

 Sources & Generators AudioInput 230

 Sources & Generators SumOfSines 368

 Sources & Generators Attenuator 229

 Sources & Generators OscillatorBank 309

 Sources & Generators PulseGenerator 321

 Sources & Generators Sample 334

 Sources & Generators Mixer 298

 Sources & Generators SampleCloud 337

 Sources & Generators TimeFrequencyScale 378

 Sources & Generators MultiplyingWaveshaper 301

 Sources & Generators KBD Ctrl OscillatorBank 309

 Sources & Generators KBD Ctrl ScaleVocoder 341

 Sources & Generators KBD Ctrl Mixer 298

 Sources & Generators KBD Ctrl FormantBankOscillator 260

 Sources & Generators KBD Ctrl GAOscillators 266

 Sources & Generators KBD Ctrl GrainCloud 269

 Sources & Generators KBD Ctrl HarmonicResonator 273

 Sources & Generators KBD Ctrl KeyMappedMultisample 277

 Sources & Generators KBD Ctrl SumOfSines 368

 Sources & Generators KBD Ctrl Filter 257

 Sources & Generators KBD Ctrl Product 320

 Sources & Generators KBD Ctrl IteratedWaveshaper 276

Additive synthesis OscillatorBank 309

Additive synthesis DynamicRangeController 250

Additive synthesis SumOfSines 368

Additive synthesis SOSOscillators 349

Additive synthesis Product 320

Compression/Expansion DynamicRangeController 250

Compression/Expansion Mixer 298

399

Compression/Expansion Gain 265

Cross synthesis DynamicRangeController 250

Cross synthesis REResonator 327

Cross synthesis Vocoder 391

Delays-Mono DelayWithFeedback 243

Delays-Mono Mixer 298

Disk DiskCache 246

Disk DiskPlayer 247

Disk DiskRecorder 248

Disk GenericSource 268

Disk SamplesFromDiskSingleStep 339

Distortion & Waveshaping Mixer 298

Distortion & Waveshaping MultiplyingWaveshaper 301

Drum machines StereoMix4 366

Envelopes & Control Signals ADSR 220

Envelopes & Control Signals Product 320

Envelopes & Control Signals Gain 265

Envelopes & Control Signals AR 227

Envelopes & Control Signals Constant 239

Envelopes & Control Signals FunctionGenerator 264

Envelopes & Control Signals GraphicalEnvelope 271

Envelopes & Control Signals Oscillator 307

Envelopes & Control Signals MultisegmentEnvelope 304

Envelopes & Control Signals MultislopeFunctionGenerator 305

Envelopes & Control Signals PeakDetector 316

Envelopes & Control Signals PulseTrain 323

Envelopes & Control Signals SampleAndHold 336

Envelopes & Control Signals Difference 245

Envelopes & Control Signals TriggeredSampleAndHold 382

Envelopes & Control Signals TriggeredTableRead 383

EQ StereoMix2 365

EQ Vocoder 391

EQ Gain 265

EQ GraphicEQ 272

EQ PresenceFilter 318

EQ HighShelvingFilter 274

EQ LowShelvingFilter 282

Filters AnalysisFilter 225

Filters DualParallelTwoPoleFilter 249

400

Filters GraphicEQ 272

Filters HighShelvingFilter 274

Filters LowShelvingFilter 282

Filters PresenceFilter 318

Filters TunableVocoder 384

Filters TwoFormantElement 386

Filters Vocoder 391

Filters VocoderChannelBank 393

Filters-Mono Filter 257

Filters-Mono AnalysisFilter 225

Filters-Mono AveragingLowPassFilter 231

Filters-Mono ScaleVocoder 341

Filters-Mono HarmonicResonator 273

Filters-Mono Mixer 298

Filters-Stereo ChannelJoin 236

Flanging & Chorusing-Mono Mixer 298

Frequency & Time Scaling OscillatorBank 309

Frequency & Time Scaling Annotation 226

Frequency & Time Scaling FrequencyScale 261

Frequency & Time Scaling Monotonizer 299

Frequency & Time Scaling QuadOscillator 324

Frequency & Time Scaling SimplePitchShifter 347

Frequency & Time Scaling Gain 265

Frequency & Time Scaling SpectrumFrequencyScale 354

Frequency & Time Scaling Mixer 298

Gain & Level Attenuator 229

Gain & Level Gain 265

Global controllers Attenuator 229

Global controllers SoundToGlobalController 351

Granulating & Chopping-Mono Chopper 238

Granulating & Chopping-Mono Mixer 298

Granulating & Chopping-Mono Product 320

Inputs AudioInput 230

Inputs GenericSource 268

Looping Sample 334

Looping AnalogSequencer 222

Math AbsoluteValue 219

Math ArcTan 228

401

Math Difference 245

Math Equality 253

Math Interpolate 275

Math Constant 239

Math PhaseShiftBy90 317

Math Product 320

Math DelayWithFeedback 243

Math RunningMax 332

Math RunningMin 333

Math SampleAndHold 336

Math ScaleAndOffset 340

Math SetRange 346

Math SqrtMagnitude 362

Math TriggeredSampleAndHold 382

Math VCA 390

MIDI In MIDIMapper 289

MIDI In MIDIVoice 295

MIDI In Preset 319

MIDI Out MIDIFileEcho 288

MIDI Out MIDIOutputController 292

MIDI Out MIDIOutputEvent 293

MIDI Out MIDIOutputEventInBytes 294

Mixing & Panning CenteringMixer 234

Mixing & Panning ChannelJoin 236

Mixing & Panning Channeller 237

Mixing & Panning Crossfade 242

Mixing & Panning EndTogetherMixer 252

Mixing & Panning Difference 245

Mixing & Panning Mixer 298

Mixing & Panning Output8 312

Mixing & Panning Output4 311

Mixing & Panning OverlappingMixer 313

Mixing & Panning Pan 314

Mixing & Panning StereoInOutput4 363

Mixing & Panning StereoInOutput8 364

Mixing & Panning StereoMix2 365

Mixing & Panning StereoMix4 366

Modulation Oscillator 307

Modulation Product 320

402

Modulation Gain 265

Outputs Matrix4 283

Outputs Matrix8 284

Processing analyzed spectra OscillatorBank 309

Processing analyzed spectra SumOfSines 368

Reverb-Mono ReverbSection 328

Reverb-Spatializing Mixer 298

Reverb-Spatializing StereoInOutput4 363

Reverb-Stereo Mixer 298

Sampling Sample 334

Sampling DiskCache 246

Sampling DiskPlayer 247

Sampling DiskRecorder 248

Sampling ForcedProcessorAssignment 259

Sampling GenericSource 268

Sampling MemoryWriter 286

Sampling Filter 257

Sampling SampleAndHold 336

Sampling Mixer 298

Sampling TriggeredSampleAndHold 382

Sampling TriggeredTableRead 383

Scripts CellularAutomaton 232

Scripts ContextFreeGrammar 240

Scripts StereoMix4 366

Scripts LimeInterpreter 279

Scripts ParameterTransformer 315

Scripts RandomSelection 325

Scripts RhythmicCellularAutomaton 330

Scripts Script 343

Scripts MIDIVoice 295

Scripts TextFileInterpreter 375

Sequencers AnalogSequencer 222

Spatializing ChannelCrosser 235

Spatializing Channeller 237

Spatializing StereoMix4 366

Spatializing Difference 245

Spatializing Matrix4 283

Spatializing Matrix8 284

403

Spatializing Output8 312

Spatializing Output4 311

Spatializing StereoInOutput4 363

Spatializing StereoInOutput8 364

Spatializing StereoMix2 365

Spatializing Mixer 298

Spectral Analysis-FFT ChannelJoin 236

Spectral Analysis-FFT Mixer 298

Spectral Modifiers SpectrumFrequencyScale 354

Spectral Modifiers SpectrumLogToLinear 356

Spectral Modifiers SpectrumModifier 357

Spectral Processing-Live Gain 265

Spectral Processing-Live OscillatorBank 309

Spectral Sources LiveSpectralAnalysis 280

Spectral Sources SyntheticSpectrumFromSounds 373

Spectral Sources SpectralShape 352

Spectral Sources SpectrumInRAM 355

Spectral Sources SpectrumOnDisk 360

Spectral Sources SyntheticSpectrumFromArray 371

Time & Duration SetDuration 345

Time & Duration TimeControl 377

Time & Duration TimeOffset 380

Time & Duration TimeStopper 381

Time & Duration WaitUntil 395

Time & Duration WarpedTimeIndex 396

Tracking Live Input Gain 265

Tracking Live Input Threshold 376

Tracking Live Input FrequencyTracker 262

Tracking Live Input OscilloscopeDisplay 310

Tracking Live Input PeakDetector 316

Tracking Live Input SpectrumAnalyzerDisplay 353

Variables & Annotation Annotation 226

Variables & Annotation SoundCollectionVariable 350

Variables & Annotation Variable 389

Visual Displays SoundToGlobalController 351

Visual Displays OscilloscopeDisplay 310

Visual Displays SpectrumAnalyzerDisplay 353

Vocoders ScaleVocoder 341

Vocoders TunableVocoder 384

404

Xtra FeedbackLoopInput 254

Xtra FeedbackLoopOutput 255

Xtra Sources GAOscillators 266

Xtra Sources MultifileDiskPlayer 300

Xtra Sources Multisample 302

Xtra Sources OscillatorBank 309

Xtra Sources TimeFrequencyScale 378

Xtra Sources Mixer 298

405

406

Sound Classes by Name

AbsoluteValue Math 219

ADSR Envelopes & Control Signals 220

AnalogSequencer Sequencers 222

AnalogSequencer Looping 222

AnalysisFilter Filters-Mono 225

AnalysisFilter Filters 225

Annotation Variables & Annotation 226

Annotation Frequency & Time Scaling 226

AR Envelopes & Control Signals 227

ArcTan Math 228

Attenuator Global controllers 229

Attenuator Gain & Level 229

Attenuator Sources & Generators 229

AudioInput Inputs 230

AudioInput Sources & Generators 230

AveragingLowPassFilter Filters-Mono 231

CellularAutomaton Scripts 232

CenteringMixer Mixing & Panning 234

ChannelCrosser Spatializing 235

ChannelJoin Spectral Analysis-FFT 236

ChannelJoin Mixing & Panning 236

ChannelJoin Filters-Stereo 236

Channeller Spatializing 237

Channeller Mixing & Panning 237

Chopper Granulating & Chopping-Mono 238

Constant Math 239

Constant Envelopes & Control Signals 239

ContextFreeGrammar Scripts 240

Crossfade Mixing & Panning 242

DelayWithFeedback Math 243

DelayWithFeedback Delays-Mono 243

Difference Spatializing 245

Difference Mixing & Panning 245

Difference Math 245

Difference Envelopes & Control Signals 245

DiskCache Sampling 246

407

DiskCache Disk 246

DiskPlayer Sampling 247

DiskPlayer Disk 247

DiskPlayer Sources & Generators 247

DiskRecorder Sampling 248

DiskRecorder Disk 248

DualParallelTwoPoleFilter Filters 249

DynamicRangeController Cross synthesis 250

DynamicRangeController Compression/Expansion 250

DynamicRangeController Additive synthesis 250

DynamicRangeController Sources & Generators 250

EndTogetherMixer Mixing & Panning 252

Equality Math 253

FeedbackLoopInput Xtra 254

FeedbackLoopOutput Xtra 255

Filter Sampling 257

Filter Filters-Mono 257

Filter Sources & Generators KBD Ctrl 257

ForcedProcessorAssignment Sampling 259

FormantBankOscillator Sources & Generators KBD Ctrl 260

FormantBankOscillator Sources & Generators 260

FrequencyScale Frequency & Time Scaling 261

FrequencyTracker Tracking Live Input 262

FunctionGenerator Envelopes & Control Signals 264

Gain Tracking Live Input 265

Gain Spectral Processing-Live 265

Gain Modulation 265

Gain Gain & Level 265

Gain Frequency & Time Scaling 265

Gain EQ 265

Gain Envelopes & Control Signals 265

Gain Compression/Expansion 265

GAOscillators Xtra Sources 266

GAOscillators Sources & Generators KBD Ctrl 266

GenericSource Sampling 268

GenericSource Inputs 268

GenericSource Disk 268

GenericSource Sources & Generators 268

GrainCloud Sources & Generators KBD Ctrl 269

408

GrainCloud Sources & Generators 269

GraphicalEnvelope Envelopes & Control Signals 271

GraphicEQ Filters 272

GraphicEQ EQ 272

HarmonicResonator Filters-Mono 273

HarmonicResonator Sources & Generators KBD Ctrl 273

HighShelvingFilter Filters 274

HighShelvingFilter EQ 274

Interpolate Math 275

IteratedWaveshaper Sources & Generators KBD Ctrl 276

KeyMappedMultisample Sources & Generators KBD Ctrl 277

LimeInterpreter Scripts 279

LiveSpectralAnalysis Spectral Sources 280

LowShelvingFilter Filters 282

LowShelvingFilter EQ 282

Matrix4 Spatializing 283

Matrix4 Outputs 283

Matrix8 Spatializing 284

Matrix8 Outputs 284

MemoryWriter Sampling 286

MIDIFileEcho MIDI Out 288

MIDIMapper MIDI In 289

MIDIOutputController MIDI Out 292

MIDIOutputEvent MIDI Out 293

MIDIOutputEventInBytes MIDI Out 294

MIDIVoice Scripts 295

MIDIVoice MIDI In 295

Mixer Xtra Sources 298

Mixer Spectral Analysis-FFT 298

Mixer Spatializing 298

Mixer Sampling 298

Mixer Reverb-Stereo 298

Mixer Reverb-Spatializing 298

Mixer Mixing & Panning 298

Mixer Granulating & Chopping-Mono 298

Mixer Frequency & Time Scaling 298

Mixer Flanging & Chorusing-Mono 298

Mixer Filters-Mono 298

409

Mixer Distortion & Waveshaping 298

Mixer Delays-Mono 298

Mixer Compression/Expansion 298

Mixer Sources & Generators KBD Ctrl 298

Mixer Sources & Generators 298

Monotonizer Frequency & Time Scaling 299

MultifileDiskPlayer Xtra Sources 300

MultiplyingWaveshaper Distortion & Waveshaping 301

MultiplyingWaveshaper Sources & Generators 301

Multisample Xtra Sources 302

MultisegmentEnvelope Envelopes & Control Signals 304

MultislopeFunctionGenerator Envelopes & Control Signals 305

Oscillator Modulation 307

Oscillator Envelopes & Control Signals 307

Oscillator Sources & Generators 307

OscillatorBank Xtra Sources 309

OscillatorBank Spectral Processing-Live 309

OscillatorBank Processing analyzed spectra 309

OscillatorBank Frequency & Time Scaling 309

OscillatorBank Additive synthesis 309

OscillatorBank Sources & Generators KBD Ctrl 309

OscillatorBank Sources & Generators 309

OscilloscopeDisplay Visual Displays 310

OscilloscopeDisplay Tracking Live Input 310

Output4 Spatializing 311

Output4 Mixing & Panning 311

Output8 Spatializing 312

Output8 Mixing & Panning 312

OverlappingMixer Mixing & Panning 313

Pan Mixing & Panning 314

ParameterTransformer Scripts 315

PeakDetector Tracking Live Input 316

PeakDetector Envelopes & Control Signals 316

PhaseShiftBy90 Math 317

PresenceFilter Filters 318

PresenceFilter EQ 318

Preset MIDI In 319

Product Modulation 320

Product Math 320

410

Product Granulating & Chopping-Mono 320

Product Envelopes & Control Signals 320

Product Additive synthesis 320

Product Sources & Generators KBD Ctrl 320

PulseGenerator Sources & Generators 321

PulseTrain Envelopes & Control Signals 323

QuadOscillator Frequency & Time Scaling 324

RandomSelection Scripts 325

REResonator Cross synthesis 327

ReverbSection Reverb-Mono 328

RhythmicCellularAutomaton Scripts 330

RunningMax Math 332

RunningMin Math 333

Sample Sampling 334

Sample Looping 334

Sample Sources & Generators 334

SampleAndHold Sampling 336

SampleAndHold Math 336

SampleAndHold Envelopes & Control Signals 336

SampleCloud Sources & Generators 337

SamplesFromDiskSingleStep Disk 339

ScaleAndOffset Math 340

ScaleVocoder Vocoders 341

ScaleVocoder Filters-Mono 341

ScaleVocoder Sources & Generators KBD Ctrl 341

Script Scripts 343

SetDuration Time & Duration 345

SetRange Math 346

SimplePitchShifter Frequency & Time Scaling 347

SOSOscillators Additive synthesis 349

SoundCollectionVariable Variables & Annotation 350

SoundToGlobalController Visual Displays 351

SoundToGlobalController Global controllers 351

SpectralShape Spectral Sources 352

SpectrumAnalyzerDisplay Visual Displays 353

SpectrumAnalyzerDisplay Tracking Live Input 353

SpectrumFrequencyScale Spectral Modifiers 354

SpectrumFrequencyScale Frequency & Time Scaling 354

411

SpectrumInRAM Spectral Sources 355

SpectrumLogToLinear Spectral Modifiers 356

SpectrumModifier Spectral Modifiers 357

SpectrumOnDisk Spectral Sources 360

SqrtMagnitude Math 362

StereoInOutput4 Spatializing 363

StereoInOutput4 Reverb-Spatializing 363

StereoInOutput4 Mixing & Panning 363

StereoInOutput8 Spatializing 364

StereoInOutput8 Mixing & Panning 364

StereoMix2 Spatializing 365

StereoMix2 Mixing & Panning 365

StereoMix2 EQ 365

StereoMix4 Spatializing 366

StereoMix4 Scripts 366

StereoMix4 Mixing & Panning 366

StereoMix4 Drum machines 366

SumOfSines Processing analyzed spectra 368

SumOfSines Additive synthesis 368

SumOfSines Sources & Generators KBD Ctrl 368

SumOfSines Sources & Generators 368

SyntheticSpectrumFromArray Spectral Sources 371

SyntheticSpectrumFromSounds Spectral Sources 373

TextFileInterpreter Scripts 375

Threshold Tracking Live Input 376

TimeControl Time & Duration 377

TimeFrequencyScale Xtra Sources 378

TimeFrequencyScale Sources & Generators 378

TimeOffset Time & Duration 380

TimeStopper Time & Duration 381

TriggeredSampleAndHold Sampling 382

TriggeredSampleAndHold Math 382

TriggeredSampleAndHold Envelopes & Control Signals 382

TriggeredTableRead Sampling 383

TriggeredTableRead Envelopes & Control Signals 383

TunableVocoder Vocoders 384

TunableVocoder Filters 384

TwoFormantElement Filters 386

TwoFormantElement Sources & Generators 386

412

Variable Variables & Annotation 389

VCA Math 390

Vocoder Filters 391

Vocoder EQ 391

Vocoder Cross synthesis 391

VocoderChannelBank Filters 393

WaitUntil Time & Duration 395

WarpedTimeIndex Time & Duration 396

413

414

415

416

Reference

Menu Operations

The menus available in Kyma are File, Edit, DSP , Action , Info, and Tools. Only those menu operations
that can be applied in the current context will be highlighted; all other menu operations will be dimmed
and unselectable. Each menu and menu item is explained in the following sections.

The File menu (see page 419) is
used to create or modify files, file
editors, and other Kyma windows.

The Edit menu (see page 425) is
used to edit Sounds, samples, or
text within the active window.

The DSP menu (see page 433) is
used to configure and monitor the
Capybara.

The Action menu (see page 436) is
used to manipulate the selected
Sound(s) within the active window.

The Info menu (see page 439) is
used to obtain information on the
selected Sound(s) within the active
window.

The Tools menu (see page 442) is
used to start up high level tools for
designing alternate tunings and for
recording or analyzing sample files.

419

Many of the menu items have a keyboard short-cut listed to the right. All of these shortcuts are two-key
combinations: the Control or the Command (marked as or) key and a letter key. Usually the letter is
the first letter of the operation name (e.g., Ctrl+S or -S for Save… from the File menu).

Kyma operating on a Macintosh OS computer uses a single menu bar in the standard position. Kyma op-
erating on a Windows 95 computer uses a menu bar on each window; the menu bar for each window
manipulates the contents of only that window. Windows-based versions of Kyma have an additional
Launcher window not present on the Macintosh; the Launcher window contains most of the menu bar
operations in pop-up menu form.§

File Menu

Operations under the File menu are used to create or modify files, file editors, and other Kyma windows.

File menu: New…
To create a new file choose New… from the File menu. New… opens a dialog box requesting the type of
the new file.

To select a type, push down on the arrow to see a list of file types. Drag the mouse to the desired file type
and release the mouse button. Click the New button or press Enter to create a new file.

Types of Files Usable in Kyma
The following table lists the kinds of files that Kyma can use.

File Description File Type Open Create Play Import

Sound file KYM0 / KYM yes yes no yes

AIFF sample file AIFF / AIF yes yes yes yes

IRCAM/MTU samples sf / SF yes yes yes yes

SD-I sample file SFIL / SD1 yes yes yes yes

SD-II sample file Sd2f / --- yes* yes* yes* no

WAV sample file .WAV / WAV yes yes yes yes

Spectrum file KYMs / SPC yes yes yes yes

Compiled Sound file KYM9 / KYC no yes yes yes

Compiled Sound grid PMAP / PRG yes yes no yes

Global map KYM8 / MAP yes yes no yes

LIME file Lime / LIM no no no yes

MIDI file Midi / MID no no yes yes

Preferences file PREF / PRE no no no no

Text file TEXT / TXT yes yes no yes

Tool file KYM7 / PCI yes no* no yes

§ On Windows computers, if you close all of the windows in Kyma without exiting the Kyma application, you would

no longer have access to a menu bar, since the menu bar appears in each window. The Launcher window contains
most of the items found in the menu bar, so you can still open files, exit Kyma, etc. even in this case.

420

About the table:

♦ File Description describes the kind of file.

♦ File Type lists the Macintosh file type (4 letters) and the Windows file extension (3 letters).

♦ Open indicates whether you can open an editor on files of this type via Open… in the File menu.

♦ Create indicates whether you can use Kyma to create files of this type.

♦ Play indicates whether Kyma can play files of this type via Play… in the File menu or the File Or-
ganizer.

♦ Import indicates whether Kyma can import files of this type via Import… in the File menu.

About the files:

♦ A Sound file contains a collection of Sound objects.

♦ The five flavors of sample files contain digital recordings in various formats.

♦ A spectrum file contains amplitude and frequency envelopes for additive resynthesis.

♦ A compiled Sound file contains the Capybara program for a specific Sound.

♦ A compiled Sound grid is a collection of Sounds and their associated compiled Sound files.

♦ A global map file contains text that describes a relationship between MIDI devices and Kyma Event
Values.

♦ A LIME file contains music notation created by the Lime application.‡

♦ A MIDI file contains a MIDI sequence created by a MIDI sequencer application.

♦ A preferences file contains the settings of Kyma’s user preference items.

♦ A text file contains text.

♦ A tool file contains a high level tool, made up of a state machine with a graphic user interface, cre-
ated in the developer’s version of Kyma.

 Where the File Type Information is Stored

The Macintosh and Windows operating systems store the file type in different ways.

On Macintosh computers, there is a four character file type value stored in the resource fork of each file.
Applications running on the Macintosh use this file type value to determine whether a specific file is a
text file, MIDI file, AIFF sample file, etc.

On Windows computers, the file type is stored in the three character extension that follows the period in
each file’s name. Applications running on Windows use this extension to determine whether a specific
file is a text file, MIDI file, AIFF sample file, etc.

File menu: Open…
To open a file that already exists, choose Open… from the File menu.

‡ Lime is available at: http://datura.cerl.uiuc.edu.

421

In the file list, select the file type and the name of the file to be opened. To select a type, push down on the
arrow to see a list of file types. Drag the mouse to the desired file type and release the mouse button. The
list of files will show files of the selected type only. Either double-click on the name of the desired file in
the list, or click on the name of the desired file and click Open to open. A list of files that can be opened is
given in the section called Types of Files Usable in Kyma on page 419.

File menu: Open any…
To open a file regardless of its file type, choose Open any… from the File menu. In the file list, select the
name of the file to be opened and click Open, or double-click on the file name. Kyma will open the file
with the appropriate file editor. A list of files that can be opened is given in the section called Types of
Files Usable in Kyma on page 419.

File menu: Play…
To play a file without opening an editor on the file, choose Play… from the File menu. (To play a Sound,
see Action menu: Compile, load, start on page 436.)

In the file list, select the file type and the name of the file to be played. To select a type, push down on the
arrow to see a list of file types. Drag the mouse to the desired file type and release the mouse button. The
list of files will show files of the selected type only. Either double-click on the name of the desired file in
the list, or click on the name of the desired file and click Open to play. A list of files that can be played is
given in the section called Types of Files Usable in Kyma on page 419.

File menu: Import…
The Macintosh and Windows operating systems use different methods of storing the type of a file (see
Where the File Type Information is Stored on page 420 for more information). When moving Kyma files
from Windows to Macintosh computers (also, when moving files from the Internet to Macintosh comput-
ers), the file type is not available in the place normally used by the Macintosh for storing this information.
Without this file type information, these files will not be usable by Kyma.

On Macintosh computers, choosing Import… from the File menu opens a file list. In the file list, select
each file that has been moved to the Macintosh and click Open. Kyma will read the file type (encoded as
the three letter extension at the end of each file name) and store the proper file type information in the
selected file. Click Cancel when all files have been imported.

422

File menu: Close
Close closes the active window. Additionally, any window can be closed by clicking the window’s close
box (upper left corner of windows on the Macintosh; upper right corner of windows on Windows 95).

If there are changes in the window that have not been saved, Kyma will ask whether the changes in the
window should be saved.

File menu: Save…
Choose Save… from the File menu to save the contents of the active window into its current file.

File menu: Save as…
Choose Save as… from the File menu to save the contents of the active window to a different file.

In the file list, select the folder and enter the name of the file to store the contents of the active window.
Click Save to save the contents of the window into the file.

File menu: Choose window…
It can be hard to locate a specific window when many overlapping windows are opened simultaneously.
To cycle through the open windows, bringing each window in turn to the front, use either Ctrl+↑ or
Ctrl+↓. To bring a window to the front directly, choose Choose window… from the File menu.

To select a window, push down on the arrow to see a list of the windows. Drag the mouse to the desired
window and release the mouse button. Click OK to bring the selected window to the front.

423

File menu: System prototypes
The system prototypes window is a palette containing an example of each Sound built in to Kyma. These
prototypical Sounds are modified and combined with other Sounds when doing sound design and com-
position in Kyma. (See System Prototypes and the Sound File Window on page 458 for more
information.)

Choose System prototypes from the File menu to open the system prototypes window.

File menu: Choose global map…
The global map specifies a mapping between MIDI values received by the Capybara (for example, values
from continuous controller #18 on MIDI channel 1) and memorable names (for example, !Frequency).
Sounds designed using these descriptive names can be used on any Kyma System, regardless of the MIDI
devices connected to the Capybara, by simply modifying the global map to reflect the available MIDI de-
vices. (See Event Values, Virtual Control Surface, and Global Map on page 472 for more information.)

Choose Choose global map… from the File menu to open a file list form which to select the global map.

File menu: Virtual control surface
The virtual control surface displays the adjustable parameters of the Sound that was last compiled and
loaded. The appearance of the controls within the window is set by the global map and any maps con-
tained within the loaded Sound (see Virtual Control Surface and Mappings on page 483). As a
preferences option, the virtual control surface can be opened whenever a Sound is compiled and loaded,
see Performance… on page 430.

To open the virtual control surface, choose Virtual control surface from the File menu.

424

For more information, see Virtual Control Surface on page 481.

File menu: File organizer
Open the file organizer by choosing File organizer from the File menu. The file organizer provides a way
to quickly access, edit, and audition sound-producing files on the hard disk of the host computer.

The file organizer lists the files on the host computer’s hard disks, color-coded according to the type of
each file, and indented to indicate the folder hierarchy. The color conventions are:

Description Color Code

Unopened disk or folder Gray

Open disk or folder Underlined Black

Sample, EX Turquoise

Spectrum Purple

GA Red-brown

RE Yellow-orange

MIDI Green

Double-click on a disk or folder to hide or show the folders and files contained in it. Select a file or folder
by clicking on it once with the mouse. Use the arrow keys and the page up and down keys to move
around in the list.

The information stored in the header of the selected file is displayed in the lower part of the file organizer
window. The items displayed include the full path name for the file, the date and time on which it was
last modified, and other information specific to the file type.

To hear the selected file, use Ctrl+Space Bar. Kyma plays samples files directly. For analysis files
(spectrum, GA, or RE), Kyma uses the analysis to synthesize the sound. For MIDI files, Kyma constructs a
minimal “orchestra” and plays the notes of the MIDI file on those simple “instruments”.

To edit the selected file, press Enter or double-click on the file. This will open the appropriate Kyma
editor or, if there is an external editor specified for this file type (see File Editors… on page 430), it will
open the preferred program for editing files of this type.

To create a Sound based on a file, drag the file from the file organizer into a Sound file window. To set the
value of any parameter field in the Sound editor, drag a file name from the file organizer into the pa-

425

rameter field. If it is a parameter that makes sense for the file, the file will paste its value for that parame-
ter into the field.

File menu: Status
To monitor the status of memory on the host computer, choose Status from the File menu. The following
window will appear:

Memory Use
The horizontal bar indicates the percentage of available memory being used by the host computer. On
color monitors, the display is color coded as follows: cyan for light usage, green and yellow for moderate
usage, and red for heavy usage.

The Recycle button in the upper right is for recycling memory. Kyma tries to keep memory recycled
automatically whenever this window is opened; however, if the bar turns red and Kyma starts to get
sluggish, click the Recycle button to cause Kyma to recycle memory.

You should leave this window opened all of the time so that Kyma can automatically recycle memory for
you.

When the Recycle button is clicked, in addition to scanning the host computer’s memory for objects that
are no longer in use, Kyma removes any information about recently accessed files and folders. This
means that it is a good idea to click Recycle whenever a file or folder has been changed or moved to an-
other location using another application (for example, using the Finder on the Macintosh, File Manager
on Windows 3.1, or Windows Explorer on Windows 95).

MIDI Input
The bottom section of the status window displays information related to Event Values, MIDI input, and
the A/D used in the last Sound that was loaded. The status window indicates the following:

♦ the name of the global map being used to define Event Values

♦ whether the Sound expects input from the A/D

♦ the MIDI channels (if any) on which the Sound expects keyboard input

♦ the Event Value names (if any) that control the Sound’s parameters

File menu: Quit
Choosing Quit from the File menu causes Kyma to close all open windows (asking to save changes for
any window whose contents have been changed), save the preferences, and exit the Kyma application.
Any Sound playing on the Capybara will be stopped.

Edit Menu

Operations under the Edit menu are used to edit Sounds, samples, and text in the active window or active
field within the active window. In windows that include several editable fields (for example, the Sound
editor or the sample file editor), the active field will have a dark border drawn around it.

426

In this window, the Frequency field is active.

A field can be activated by clicking the mouse within its borders, or by using the Tab key to cycle
through all editable fields.

Edit menu: Undo
Undo cancels the effect of the last editing operation.

Edit menu: Cut
Cut removes the selection (whether it is a Sound, samples, or text) from the active field and places it into
the clipboard.

Edit menu: Copy
Copy places a copy of the selection (whether it is a Sound, samples, or text) into the clipboard.

Edit menu: Paste
Paste replaces the selection in the active field with the contents of the clipboard.

Edit menu: Paste special…
Paste special… applies to both text fields and Sound fields.

In text fields, Paste special… presents a choice of the last several text selections cut or copied. Use the pull
down list to select the text, and click the Paste button to paste that text into the active field.

In Sound fields, Paste special… pastes exactly the Sounds that are in the clipboard, not a copy of the
Sounds that are in the clipboard. This is one way to cause different Sounds to share the same input.

Edit menu: Paste hot…
Paste hot… presents a list of commonly used expressions together with all of the Event Values in the cur-
rent global map.

427

Use the pull down list to select an Event Value or expression, and click Paste to paste it into the hot pa-
rameter field. Alternatively, type all or part of the name of the expression and hit Enter.

Edit menu: Clear
Clear from the Edit menu and the Delete key accomplish the same result: the selection is removed with-
out being saved in the clipboard.

Before Kyma removes any Sound, it will verify that you really want to delete it.

If you have several Sounds selected and would like to remove all of them, click Remove All.

428

Edit menu: Trim
The Trim operation is the complement of the Clear operation. Whereas Clear removes the selection,
leaving the unselected items untouched, Trim removes the unselected items, leaving the selection un-
touched.

Edit menu: Evaluate
Evaluate tries to evaluate the selection as a Smalltalk-80 expression, and, if successful, inserts the result
immediately following the selection. (See The Smalltalk-80 Language on page 513 for an introduction to
Smalltalk-80.) If there is an error, the field will flash and Kyma will either insert a message into the text
indicating the error or it will present dialog explaining the error.

Edit menu: Select all
Choosing Select all from the Edit menu causes the entire contents of the active field to be selected.

Edit menu: Find…
Find… is used to search the active field for the text entered into the dialog. Kyma begins the search after
the current selection, and selects the next occurrence of the text that it finds. Kyma will cause the host
computer to beep if the text cannot be found.

Edit menu: Find again
Find again searches the active field for the text that was last entered in Find… dialog. Kyma begins the
search after the current selection, and selects the next occurrence of the text that it finds. Kyma will cause
the host computer to beep if the text cannot be found.

Edit menu: Replace…
Replace… is used to replace an occurrence of one text with another text. Enter the text to be replaced and
the replacement text, and then click Replace to replace the first occurrence or click Replace all to replace
all occurrences. Kyma will cause the computer to beep if the text cannot be found.

Edit menu: Replace again
Replace again replaces the next occurrence of the text to be replaced with the replacement text. Kyma
will cause the computer to beep if the text cannot be found.

Edit menu: Large window…
Large window… expands the active field to fill the entire screen. Click Accept to save the contents of the
large window back into the active field, or click Cancel to discard the changes.

429

Edit menu: Zoom in
Certain parameter fields in the Sound editor (for example, the Envelope field of GraphicalEnvelope) and
certain fields of other editors (the spectrum area in the spectrum editor) can be viewed with different
magnifications. Zoom in increases the magnification of the field, showing more detail.

Edit menu: Zoom out
Zoom out performs the opposite of Zoom in : it decreases the magnification of the field, showing less de-
tail.

Edit menu: Clean up
In fields or windows that contain Sounds, Clean up positions the Sounds into straight rows while at-
tempting to keep them from overlapping. When applied to the signal flow diagram in the Sound editor,
Clean up restores the original layout of the signal flow diagram.

Edit menu: View…
View… controls the appearance of a Sound file window, a Sound editor, or the file organizer. For Sound
file windows, View… controls the size of the icons in the window. For Sound editors, View… controls
icon size and icon connection style. For file organizers, View… controls how folders are displayed.

Edit menu: Preferences…
The global preference items can be set by choosing Preferences… from the Edit menu. These preferences
are automatically saved in a file (Kyma Preferences on the Macintosh or kyma.pre on Windows)
when exiting Kyma.

The six categories of preferences are explained in detail below.

The Kyma release number and release date is shown in the lower left of the dialog.

Appearance…

The appearance preferences control the appearance of certain items in the parameter fields of Sounds:

430

♦ Icon Size in Sound Editor Fields controls the size of Sound icons in Input or other Sound fields.

♦ Show Full Path Names controls whether fields that display file names (for example, Sample) show
the entire file path or only the name of the file.

♦ Show All Digits in Double Floating Point Numbers controls whether double precision floating
point numbers are displayed with all twelve digits or with only six digits.

Performance…

The performance preferences control how Kyma should behave when compiling, loading and starting
Sounds.

Update Display during Disk Operations controls whether Kyma will allow editing and other forms of
user interaction when playing a Sound that uses the host computer’s hard disk (for example, DiskPlayer
or DiskRecorder).

Optimize Sample RAM Use controls how efficiently Kyma will use the Capybara sample RAM. If turned
off, the Kyma compiler will operate more quickly, but each sample file referenced will be loaded into all
Capybara expansion cards, possibly wasting sample RAM. If this option is turned on, the Kyma compiler
will load each sample file referenced into the Capybara expansion cards that use the sample.

Time Code frames / sec controls how Kyma interprets SMPTE times and durations (for example,
1:23:45.12 SMPTE) in the parameter fields of Sounds. (Use 30 fps for either 29.97 or 30 fps).

Virtual Control Surface controls whether the virtual control surface should be opened and brought into
view or left in its current state whenever a Sound is played.

File Editors…

431

The file editors preferences control the selection of editors for different kinds of files. If the box is checked
in front of a file type, then Kyma will use a different application to edit files of that type. On computers
using Windows, the application chosen will be the same as the one that the Windows File Manager or
Windows Explorer uses when a file is opened. On computers using the Macintosh operating system,
Kyma will prompt for the application to use.

Choosing Open… from the File menu (see page 420) and selecting a file will always use Kyma’s built-in
editor for files of that type. The editors described here are used when editing a file from the File Organ-
izer (see page 424) or when editing a file from the parameter field of a Sound (by clicking on the field’s
disk button while holding down either the Option or Control keys).

Frequently Used Folders…
The frequently used folders (or directories) preferences controls where Kyma looks to locate files. Select
folders in the upper list and click Open to display any folders inside of the selected folder. Click Add to
add the selected folder to the list of frequently used folders. To remove a folder from the list of frequently
used folders, select the folder in the bottom list and click Remove.

Kyma will use these folders and the folders that they contain to locate files it cannot find immediately.
Therefore, it is unnecessary to add folders contained in any folder already in the frequently used folders
list.

Because Kyma removes any path information from files that it cannot locate immediately, it is important
that there is only one file with a given name among all of the folders and subfolders of the frequently used
folders. Keep in mind that Kyma may select any of the files with the same name among the frequently
used folders.

 How Kyma locates files

While Kyma is locating a file, it changes the cursor to some eyeglasses; the eyeballs within the lens move
as Kyma searches folders for the desired file.

Kyma uses the following procedure to locate files:

432

♦ If the file name has a complete path and the file exists, Kyma uses the file name directly.

♦ Kyma removes any path information from the name.

♦ If that file name has been found recently, Kyma uses the file that was found at that time.

♦ Kyma checks the most recently used folders for a file with the same name.

♦ Kyma checks each folder and subfolder in the list of frequently used folders for a file with the same
name. During this process, Kyma will periodically put up this dialog:

♦ Click Keep looking to have Kyma continue checking the frequently used folders list, click Use file
dialog to locate the file using a file list, or click Cancel to stop Kyma.

♦ At this point, Kyma has exhausted all automatic ways of finding the file and opens a file list.

Because Kyma keeps track of recently accessed files and folders, it is important to inform Kyma whenever
a file or folder has been changed using another application (for example, renaming or deleting files using
the Finder on the Macintosh, File Manager on Windows 3.1, or Windows Explorer on Widows 95). To do
this, click on the Recycle button in the Status window (see File menu: Status on page 425).

 Substituting for missing files

If you use Sounds developed by someone else on another computer, that person might have used a dif-
ferent set of files or might have created some files you do not have on your computer. When you try to
load a Sound that uses a file you do not have, a dialog box will prompt you to locate the file. The same
thing could happen if you rename a file on the host computer’s hard disk but have not changed the refer-
ence to that file name in the Sounds’ parameter fields.

To have Kyma substitute a different file in place of the missing file, choose the replacement file from the
file list. This substitution will remain in effect until either the Recycle button in the Status window is
clicked or the Capybara is initialized via Initialize DSP under the DSP menu.

Spectrum Analyzer…

The spectrum analyzer preferences control the settings for the spectrum analyzer that Kyma creates when
Spectrum analyzer from the Info menu is chosen. (Kyma also includes a separate SpectrumAnalyzer
Sound that displays the spectrum of its input, but the Sound is unaffected by the these preference set-
tings.)

Spectrum Analyzer Length controls the length of the FFT used by the spectrum analyzer. The larger the
number the better the frequency resolution.

Spectrum Analyzer Window controls the window function applied to the signal before using the FFT.
Each of the window functions has different properties; in general, resolution increases in the following
order: LinearEnvelope, Hamming, Hann, and Long Kaiser.

433

Miscellaneous

The miscellaneous preferences control a few random items.

♦ Show Help on Startup controls whether a help window will be opened when Kyma is started.

♦ Show Untitled Window on Startup controls whether an untitled Sound file window will be opened
when Kyma is started.

♦ Stack Traces controls whether Kyma allows low-level debugging stack traces when errors occur.
Generally, this should be left set to Disallowed unless instructed to do otherwise by Symbolic Sound.

DSP Menu

Operations under the DSP menu are used to configure and monitor the Capybara.

DSP menu: Stop
To stop a Sound while it is playing, choose Stop from the DSP menu.

If Update Display during Disk Operations in the Performance… preferences (see page 430) is turned off
and the Sound uses the computer’s hard disk, click the mouse while holding down the Shift key to stop
the Sound.

DSP menu: Restart
Once a Sound has been loaded into the Capybara, it can be restarted immediately by choosing Restart
from the DSP menu. This is often used in conjunction with Compile & load from the Action menu (see
page 436).

DSP menu: Status
The DSP status window configures the audio inputs and outputs, and, while a Sound is running, it dis-
plays the expansion card usage and the input and output levels. To open the DSP status window, select
Status from the DSP menu.

434

Time and Time Code Displays
The time display at the upper left of the status window is reset to zero each time you start a Sound. The
display format is hours:minutes:seconds. When the Sound finishes (or when the Sound is stopped by
choosing Stop from the DSP menu), the time display stops.

The time code display in the upper right of the status panel shows incoming MIDI time code. The display
format is hours:minutes:seconds.frames.

Input and Output Levels
The two bars at the left of the window show the left and right input levels. The left and right output lev-
els are shown by the pair of bars to the right of the input level bars. The marks alongside the bars
represent steps of 10 dB.

Between each pair of bars is a peak level indicator. The peak level indicator will show >0< if the signal
may have clipped. The peak level indicators can be reset by clicking the mouse.

Expansion Card Usage
The number of bars displayed in the Expansion Card Usage section of the status window will depend
upon the number of expansion cards installed in your Capybara. Shown above is an example with four
expansion cards. Each bar indicates the current computational load on each expansion card relative to the
card’s ability to compute Sounds in real time. When the expansion cards are in normal operation
(processing in real time), each mark indicates approximately 20% expansion card usage.

If your Capybara is unable to process a complex Sound in real time, you can use these bars to determine
when that happens. The bar representing the most heavily-taxed expansion card will “stick” against the
top of the scale until the card’s processing time catches up with real time. By noting when the bars run
out of headroom, you can pinpoint which part of the Sound needs to be simplified or recorded into a disk
cache to allow the expansion cards to return to real time computation. Alternatively, you can lower the
sample rate and play the Sound again.

When the Capybara is unable to process a complex Sound in real time, the usage bar display does not
accurately display the usage of the expansion cards.

Sample Rate
Use the pull down menu in the Sample Rate field to change the sampling rate of the Capybara. There are
seven sampling rates available via the menu; they are divisions of the compact disk sampling rate: 44100,
22050 and 11025 samples per second; divisions of the digital audio tape sampling rate: 48000, 24000 and
12000 samples per second; and the extended-play DAT sampling rate of 32000 samples per second. The
higher you set the sampling rate, the higher the frequencies that you can synthesize or reproduce; you
can produce frequencies up to half of the sampling rate. However, the higher the sampling rate, the less
time the Capybara has to compute each sample.

In general, use the highest sampling rate that still allows the Capybara enough time to compute each
sample. If an algorithm is particularly complex, it may be necessary to lower the sampling rate (allowing
more computation time per sample) or to store the sound on the host computer’s hard disk for later real
time playback.

Interface
Use the Interface pull down menu to choose between the analog and digital audio interfaces. If a digital
device is plugged into the Capybara’s digital input, the source will determine the sample rate, overriding
Kyma’s setting (the sample rate setting display will not automatically update, however). For example, if
the source is operating at a 32 khz sample rate, Kyma will operate at that sample rate.

Even though the device controls the sample rate of the signal processor, Kyma has no way of finding out
that sample rate value. So, whenever using the digital audio input, remember to make sure that the sam-
ple rate shown in the Sample Rate field is the same as the sample rate of the digital device.

435

Analog EQ
The analog audio output of the Capybara has an equalization section that can be used to adjust the fre-
quency content of the output signal. Click on the Analog EQ button to configure this equalization section.

The upper part of the configuration dialog shows the frequency response of the analog equalizer. The
fields below are used to set the parameters for the overall gain, a low shelving filter, a high shelving filter,
and a presence filter. Click the Set button to update the equalizer and the frequency response graph.
Click Done when finished.

To disable the action of any of the filters specify 0.0 dB for the filter’s gain parameter. The default
equalizer setting has all filters disabled, giving a flat frequency response between DC and 40% of the
sampling rate.

DSP menu: Configure MIDI…
The Capybara’s MIDI interface is configured by choosing Configure MIDI… from the DSP menu.

The Default Input Channel is the MIDI channel used by Sounds that are controlled by MIDI but have no
MIDIVoice, MIDIMapper, or other Sound to specify the MIDI channel to use. MIDIVoices and MIDI-
Mappers with Channel set to 0 use the Default Input Channel as well.

The MIDI Clock Speed Adjustment pull down menu is used to speed up or slow down the Capybara’s
MIDI clock. Some MIDI devices (including some personal computer MIDI interfaces) use a MIDI clock
that is incompatible with the normal clock setting. Use this menu to try slower and faster MIDI clock

436

speeds that may be compatible with the MIDI device. This option has no effect on the responsiveness or
speed of processing of MIDI events on the Capybara.

Clicking the Show MIDI Messages button opens a window that displays information about the continu-
ous controller and keyboard MIDI messages as they are received by the Capybara. This can be useful
when troubleshooting MIDI configurations.

DSP menu: MIDI notes off
MIDI notes off sends a note-off event (key up) for every note on every MIDI channel. The note-off events
are sent to the Capybara MIDI out connector, silencing any MIDI synthesizers attached to the Capybara.

DSP menu: Initialize DSP
Use Initialize DSP from the DSP menu to initialize the Capybara. There are only a few circumstances
where this will be needed. Generally, in any of these circumstances, Kyma will display a dialog (such as
the one below) to indicate a problem.

If you see this warning, click OK, and then choose Initialize DSP from the DSP menu.

Action Menu

Operations under the Action menu are used to manipulate the selected Sound(s) within the active win-
dow.

Action menu: Compile, load, start
Selecting Compile, load, start from the Action menu causes the selected Sound to be compiled and then
loaded into the digital signal processor. -Space Bar or Ctrl+Space Bar are the key-equivalents. Often
the compiler will be able to start the Capybara playing while it loads the rest of the Sound.

If more than one Sound and/or Sound collection is selected, the Sounds will be loaded one after another
in order from top to bottom and left to right.

While the Sound is being compiled, the cursor changes to a watch. If the Sound uses any sample files, the
cursor will change to an animated picture of a waveform being downloaded to the Capybara while the
sample files are being transferred from the hard disk into the RAM. Once Kyma begins sending informa-
tion to the Capybara, the cursor changes to an animation of a Sound transferring data to the Capybara.

While the Sound is playing, the cursor changes:

♦ If the Sound does not use the computer’s hard disk, the cursor will be a hollow arrow.

♦ If the Sound uses the computer’s hard disk, and Update Display during Disk Operations in the Per-
formance… preferences (see page 430) is turned on, the cursor will be a partially-filled arrow.

♦ If the Sound uses the computer’s hard disk, and Update Display during Disk Operations in the Per-
formance… preferences is turned off, the cursor will be a floppy disk.

To stop a Sound while it is playing, choose Stop from the DSP menu. If the cursor looks like a floppy
disk, click the mouse while holding the Shift key down. When the Sound has finished or has been stopped, the
cursor will change back to the normal fully-filled arrow.

Action menu: Compile & load
Choose Compile & load to compile and load the selected Sound into the Capybara without immediately
starting the Sound. Once the Sound has been compiled and loaded, start it by selecting Restart from the

437

DSP menu. This is useful for loading a Sound before a performance or for very dense Sounds with many
structure changes that must be completely downloaded before being started.

Action menu: Record to disk…
Select Record to disk… to make a digital recording of the selected Sound into a sample file on the hard
disk. (See Samples on page 493 for additional information about digital recordings.)

A dialog box asks you to specify how the Sound should be recorded: pick a file format; decide whether to
record in stereo or monaural; and choose a bit resolution of 8, 16, or 24-bits.

If your Sound is the same in the left and right channels, recording in monaural will save disk space.
Similarly, if you know that the recorded samples will only be played back over 16-bit converters, you can
save disk space by choosing the 16-bit recording format.

In monaural mode, only the left channel of the selected Sound is recorded to disk.

Choose the file format, number of channels, and resolution, and click OK or press Enter. Then enter the
name of the sample file in which to place the digital recording:

and click Save or press Enter.

If the selected Sound uses live input (either MIDI or audio input), Kyma will prompt for the length and
tempo of a metronome count-off. When you click OK the Capybara will beep for the specified number of
beats at the specified tempo. Recording begins on the beat after the count-off.

If you don’t want a count-off, enter zero for the number of beats.

Finally, Kyma will compile, load, and start the selected Sound, recording the audio into the sample file.
To stop the recording prematurely, click the mouse button while holding down the Shift key.

438

Even if the selected Sound cannot play in real time (and is heard with clicks in the audio output), the
digital recording made will be correct and will be free of clicks.

Action menu: Compile to disk…
Compile to disk… stores a compiled version of the selected Sound onto the disk. Compiled Sound files
can be played by choosing Play… from the File menu (see page 421). Compiled Sound files are also used
by the compiled Sound grid.

Compiled Sound files and the compiled Sound grid are explained in detail in Compiled Sound Grid
starting on page 485.

Action menu: Collect
Collect… applies only to groups of selected Sounds in Sound file windows. It prompts for the name of
the collection and places the selected Sounds into a new Sound collection (icon shown on the left) with
the given name.

Action menu: Duplicate
Duplicate applies only to the selected Sound in a Sound file window. It makes a copy of the selected
Sound(s) and/or Sound collections(s), and puts them into the Sound file window. A duplicate of a Sound
collection contains a duplicate of each Sound that was in the original collection.

Action menu: Expand
More than half of the prototypes supplied with Kyma are constructed out of other Sounds. Selecting Ex-
pand from the Action menu makes this lower level construction available for editing and inspection.
Expand often is used to debug complex Sounds and Sound classes.

Expand can be applied in the Sound file window and the Sound editor. In the Sound file window, a copy
of the expanded Sound is saved in the window and no changes are made to the selected Sound. However,
in a Sound editor, Expand replaces the selected Sound with its expansion; this operation is not reversible.

Action menu: Revert
Revert applies only to the Sound editor. It discards all changes made to the Sound whose parameters are
displayed in the lower half of the Sound editor.

Action menu: Set default Sound
Kyma keeps a default Sound that it can use as a value for variables that are Sounds. To change the value
of this default Sound, select a Sound and choose Set default sound . See Variables on page 510 for more
information.

Action menu: Set default Sound collection
Kyma also keeps a default Sound collection that it can use as a value for SoundCollectionVariables. To
change the value of this default Sound collection, select a group of Sounds and choose Set default collec-
tion. See Variables on page 510 for more information.

439

Action menu: Find prototype
Find prototype… applies only to prototype windows. Type all or part of the name of a Sound into the
dialog, and click OK or press Enter. Kyma will select the named Sound. If more than one Sound matches
the name entered, choose one of the Sounds from the list.

Action menu: Edit class
Edit class can be applied in Sound file windows and Sound editors. Choose Edit class to modify aspects
of the selected Sound’s class. Class creation and modification are described in The Class Editor on page
536.

Action menu: New class from example
New class from example can be applied only in Sound file windows. It defines a new Sound classes
based upon the selected Sound. Class creation and modification are described in The Class Editor on
page 536.

Action menu: Retrieve example from class
Retrieve example from class, active only in the Sound class editor, saves the original Sound on which
this class was based, preserving any variables that were in the original Sound. Class creation and modifi-
cation are described in The Class Editor on page 536.

Info Menu

Operations under the Info menu are used to obtain information on the selected Sound(s) within the ac-
tive window.

Info menu: Get info
Get info opens a window containing information about the selected Sound, including its Sound class,
duration (in samples and seconds), complexity (useful as a rough estimate of the relative efficiencies of
different Sounds), variable names (if any), Event Value names (if any), sample files, and parameter names
and values.

440

Info menu: Describe sound
Describe sound opens a help window with a description of the selected Sound’s class and its parameters.

Info menu: Structure as text
Structure as text opens a window containing a textual representation of the Sound structure. Each Sound
is represented by the name of the Sound followed by a list of its inputs’ names enclosed in parentheses.
Below each Sound, each of its inputs is listed in the same manner but indented. The level of indenting
indicates the number of levels between the Sound and the final output Sound.

Info menu: Environment
Environment applies only in the Sound editor. It shows the current mapping of Kyma variables to values.
To clear that mapping, select Reset environment. See Variables on page 510 for more information.

Info menu: Reset environment
Reset environment clears the current mapping of Kyma variables to values. See Variables on page 510
for more information.

Info menu: Full waveform
To see a graphic representation of the selected Sound as amplitude versus time, select Full waveform.
The Capybara will play the Sound, recording it into the Capybara’s sample memory. If the Sound’s total
duration is too long to fit into memory, Kyma will ask you to specify the length of time that you would
like to plot. After performing the recording, Kyma reads the waveform out of the memory and displays it
in a newly opened window. Also displayed are the minimum and maximum amplitudes for that Sound.

441

If the minimum and/or maximum are -1 or +1, respectively, and portions of the displayed waveform ap-
pear to be flattened on the top or bottom, it is likely that the Sound is clipping; correct this by attenuating
the amplitudes in the Sound structure. Click in the close box when you are finished with the waveform.

Info menu: Oscilloscope
When Oscilloscope from the Info menu is chosen, Kyma compiles, loads, and starts the selected Sound
and opens an oscilloscope display in the virtual control surface. The oscilloscope displays a mix of the left
and right outputs of the selected Sound.

The buttons across the bottom shrink the time axis, expand the time axis, shrink the amplitude axis, and
expand the amplitude axis, respectively. The amplitude value corresponding to the vertical position of
the cursor is displayed in the upper right of the oscilloscope window as long as the mouse is inside the
window.

The oscilloscope always displays a power-of-two number of samples; a signal with a period that is 1, 2, 4,
8, 16, 32, 64, 128, 256, or 512 samples will be locked on the display.

Info menu: Spectrum analyzer
When Spectrum analyzer is chosen, Kyma compiles, loads, and starts the selected Sound and displays
the spectrum of the selected Sound in real time in the virtual control surface window. The spectrum of a
mix of the left and right outputs of the selected Sound is displayed.

The spectrum window displays the output of an FFT; the horizontal axis is linear frequency and the verti-
cal axis is magnitude in dB. The buttons across the bottom shrink the frequency axis, expand the
frequency axis, shrink the magnitude axis, and expand the magnitude axis, respectively. The length of the

442

FFT and the window function applied before the FFT are both specified in the preferences under Spec-
trum analyzer… (see Spectrum Analyzer… on page 432 for more information).

The image above shows the real-time spectrum analyzer display of a band-limited square wave whose
fundamental frequency is 187.5 hz. The crosshairs are centered on the fundamental. The frequency and
level information are displayed in the upper right.

Kyma also includes Sounds that put oscilloscopes and spectrum analyzers at any point in the signal path,
so that the signal at that point will be displayed in the virtual control surface. See the OscilloscopeDis-
play and SpectrumAnalyzerDisplay Sounds in the Analysis category of the system prototypes.

Tools Menu

Operations under the Tools menu are used to start up high level tools, such as those for designing alter-
nate tunings and for recording and analyzing sample files.

Tools placed into the Tools folder within the Program folder of the Kyma folder are available directly
from the Tools menu. Additionally, you can use a Tool by choosing Open… from the File menu, choos-
ing Use tool as the file type, and selecting the Tool you want to use.

This section describes the Tools that come with Kyma Release 4.5; additional tools are available from
third-party developers and from the Symbolic Sound FTP site.

Tools menu: Tape Recorder
The tape recorder tool provides a way to record the audio signal presented to the signal processor’s ana-
log or digital inputs. To record the output of a Kyma Sound, see Action menu: Record to disk… on page
437.

This tool mimics the operation of a tape recorder: the transport buttons (at the left center of the tool) con-
trol the recording and playback of audio, the faders control the level of the signal being recorded, the
channel select buttons (above the level faders) select the input channels to record, and the metering sec-
tion (to the left of the level faders) shows the current input level and the peak level since last reset.

The Filename button, at the upper left, is used to select the type of digital recording to make, including
the file type (AIFF, WAV, etc.), the resolution (8, 16, or 24 bits), the number of channels in the file, and the
name of the new file. The selected file name is shown in the box immediately below.

443

To record, click the record button (the rightmost transport control button). This automatically depresses
the pause button. The recorder will begin monitoring the input signal. While monitoring, you can adjust
the recording level and choose which input channels to record. When ready to record to the disk, click the
pause button to un-pause the recording. During the recording, the time counter will display the approxi-
mate elapsed time of the recording. To pause the recording, click on the pause button again; to stop the
recording, click on the stop button (the leftmost transport control button).

To play back your recording, click the play button. You can pause the playback at any time by pressing
the pause button. Clicking the stop button will stop the recording. To edit the recording, choose Open…
from the File menu, select Sample file as the file type, and locate the recording in using the file dialog.

Tools menu: Spectral Analysis
Use the Spectral Analysis Tool to create a spectrum file from a sample recorded at a 44.1 khz sample rate.
The spectrum file, when used in conjunction with the SumOfSines Sound, can be used for morphing and
other spectral manipulations. Spectrum files can be manipulated in a graphical editor, see Spectrum Edi-
tor on page 487 for more information.

The Spectral Analysis Tool can create two different kinds of spectrum files: straight spectrum files that
contain the time-varying amplitude information at equally spaced frequencies (between 0 hz and one-half
of the sample rate), and quasi-harmonic files that contain spectral information for the harmonic part of
the sample only.

Both kinds of spectrum files can be used for time scaling, pitch shifting, and morphing,§ however, you
can get quite different results between the two kinds of spectrum files. Additionally, the results you get
are very dependent on the source samples that you analyze: try to use recordings that have very little
background noise and that are as free of reverberation as possible.

Quasi-harmonic files generally work best for morphing between nearly harmonic sources (such as voices
or musical instruments). Because these files store only the harmonic part of the sample, non-harmonic or
noisy sounds (such as church bells, car crashes, or jet fly-bys) and polyphonic or other overlapping
sounds (such as a chorus, a conversation, or an outdoor ambiance) will work best as straight spectra.

Straight spectrum files generally have the fewest artifacts when used for time scaling and pitch shifting.

§ You should always perform morphs between the same kinds of spectrum files: either both straight spectrum files or

both quasi-harmonic files.

444

Using the Tool
Choose Spectral Analysis from the Tools menu to start analyzing a sample. The analysis has several
steps to it, and the Tool guides you through them.

First, you must choose a sample file to be analyzed. Click the Select button and choose the sample from
the file dialog.‡ The name of the file that you select will be displayed immediately above the button and
you will hear the sample played back repeatedly, with a one second delay between repetitions.

In the text field below the button, you can change the number of seconds of silence between repetitions of
the playback when auditioning the analysis. Click Next to proceed to the next step of the analysis proce-
dure.

The next step is to specify the three analysis parameters that are common to both kinds of analysis files.

The first parameter setting is used to set the lowest frequency in the analysis. Choose one of the five set-
tings based on the material you are analyzing. You should select the highest setting that is still below the
fundamental frequency (or the lowest frequency) in the sample. For example, if you are analyzing a sam-
ple of singing and the pitch of the sample is middle C (4 c), then you should choose Above 3F.

The second setting concerns the tradeoff between time and frequency. Whenever a spectral analysis is
performed, when you request high frequency resolution you get poor timing resolution and vice versa.
These settings allow you to choose between favoring frequency resolution and favoring timing resolution
in order: BestFreq, BetterFreq, BetterTime, and BestTime.

The level fader is used to control the overall amplitude level of the analysis.

‡ The Spectral Analysis Tool only works with monaural sample files recorded at a sample rate of 44.1 khz.

445

At any time during the setting of these analysis parameters, you can click the Audition button to hear a
resynthesis based on an analysis with the current settings.§ Generally, you should try different combina-
tions of these parameters and audition them, using your ear to judge which setting is best. Press Next
when you are satisifed with the settings.

The next step requires a decision. If your goal is to create a straight spectrum file, click the Create Spec-
trum File button, and you are done. If you want to create a quasi-harmonic file, click the Set Quasi-
Harmonic Parameters button.

§ The number of sine waves used in the resynthesis depends on the power of your signal processor, and is indicated

immediately below the Audition button.Certain settings of the parameters may require more processing power
than is available on your signal processor. Kyma will warn you when this occurs.

446

If you are unsure which type of file to create, here are some guidelines. Use a quasi-harmonic file for

♦ speech

♦ monophonic (as opposed to polyphonic) musical sounds with clearly identifiable pitch

Use a straight spectrum file for

♦ polyphonic musical sounds

♦ ambient or background sounds

♦ noisy or unpitched sounds

♦ highly reverberant sounds

For straight spectrum files, this is as far as you have to go. The Tool will open up an untitled Sound file
window with an example SumOfSines Sound set up to play the analysis file you just created.

If you want to create a quasi-harmonic spectrum, you should click Set Quasi-Harmonic Parameters to
continue.

There are two more steps involved in creating a quasi-harmonic analysis file. The first step is to identify
the unpitched material in the sample.

Adjust the fader slowly upwards while you listen to the resynthesis. As you move the fader up, more and
more of the pitched material in the sample will be removed. You should adjust the fader until you hear
only the unpitched part of the sample. These unpitched parts include the attack of a musical instrument
note, the consonants (such as “t”, “f”, and “s”) in speech or singing, or noisy parts of a sound effect sam-
ple. Adjust the fader such that you no longer hear any pitched sounds. If you hear some pitched segments
of the signal breaking up, you should adjust the fader higher until the pitched segment disappears en-
tirely. Press Next when you have finished setting the fader.

The last step is to trace the fundamental frequency envelope of the sample using a series of line segments.

The Tool displays a tentative analysis of the sample. The fundamental frequency envelope is indicated by
the white curve drawn in this display. Using the mouse, add points to this curve and adjust the locations
of the points to closely follow the fundamental frequency of the sample.

447

To zoom in on an area, hold down the Command or Control key while clicking and dragging a box
around the area to magnify. To return to a display of the entire spectrum press the Return or Enter key.
To toggle between drawing tracks as unconnected frames or as frames connected by lines, press the L key
(lowercase).

You should try to follow the fundamental with the white curve as closely as possible. You can add points
by clicking the mouse while holding the Shift key down. To delete a point, select it using the mouse and
then press the Delete key. You can move a point by clicking and dragging it.

While you are making adjustments to the curve, you can use the radio buttons to choose between the
original sample, a resynthesized fundamental, and a resynthesis of the sample using the number of par-
tials shown.

448

If you hear clipping in the resynthesis, you can use the level field to reduce the amplitude of the analysis.

If the fundamental frequency envelope of the sample being analyzed is difficult to follow, you can choose
to trace different harmonic. Enter the harmonic number into the Traced Harmonic field, and adjust the
white curve to track that harmonic.

When you have finished tracing the fundamental frequency curve, click Next.

At this point, you have provided all of the parameters needed to create a quasi-harmonic file. Click the
Create Quasi-Harmonic Spectrum File button to do this. Kyma will prompt you for the name of the file,
perform the analysis, and open an untitled Sound file window with a SumOfSines Sound set up to play
the analysis just created.

The other buttons on this page allow you to repeat any of the steps along the way to creating the analysis.
New sample takes you to the first page, where you can specify a new sample to analyze. Adjust range &
response takes you to the second page, where you can adjust the lowest analysis frequency parameter
and the tradeoff between frequency and timing resolution. Adjust pitched/unpitched takes you to the
fourth page, where you made an adjustment to leave only unpitched material audible. Adjust fundamen-
tal takes you to the penultimate page, where you traced the fundamental frequency envelope.

Tools menu: Synchronizing Spectra
It is important to tightly synchronize the spectra used in performing certain kinds of morphs. For exam-
ple, morphing between the voices of two people speaking the same text has the fewest artifacts when the
voices are very well synchronized in time.

The Synchronizing Spectra Tool provides a way to specify how two spectra should align in time. In this
tool, you enter color coded markers at corresponding time points in two different spectra. The Tool can
then produce an example of either a mix or a morph of the two spectra in which the corresponding points
line up in time.

To open the Synchronizing Spectra Tool, choose Synchronizing Spectra from the Tools menu.

449

The two spectra to be synchronized are displayed in the Guide View and Warped View fields. Using
markers, you specify the time points in the warped spectrum file that will be shifted to align with the cor-
responding points in the guide spectrum file. For example, you could mark the beginning and the ending
of each feature in the guide spectrum and then mark the beginning and ending of those same features in
the warped spectrum. “Features” would be things like the attack of an instrument tone, each phoneme in
a sample of human speech, or each note in a musical passage.

Click the Guide… button and the Warped… button to choose these two spectra using file dialogs. If the
files already contain markers, the markers will be displayed along with the spectrum.

Only one of the spectrum views can be active at a time — the one with the white border. To switch to the
other spectrum view, you can either click the mouse in the view, or you can press the Tab key.

To zoom in on an area in the active spectrum view, hold down the Command or Control key while
clicking and dragging a box around the area to magnify. To return to a display of the entire spectrum,
click in the marker area to deselect the markers and press the Return or Enter key.

To audition the active spectrum file, press the Space Bar. Use either pitch bend on a MIDI controller or
drag the yellow scrub bar to scrub through the spectrum.

To add a marker at the scrub bar position, press the m key. To let Kyma choose these markers automati-
cally, press the a key. Then add or remove markers as necessary.

To make it easier to see the correspondence between markers in the two files, the markers are color coded
in order from left to right: red, green, blue, red, green, etc. A red marker in the warped spectrum will be
shifted ahead or behind in time to line up with the corresponding red marker in the guide spectrum.

To name a marker, select the marker with the mouse, and press Enter. To delete a marker, select it and
press the Delete key. Press the s key to save the markers into the spectrum file in the active view.

Click the Save markers button to save the markers you have entered.

The Mix and Morph buttons construct example Sounds to perform a mix of the resynthesized spectra or a
morph between the two spectrum files. In order for these examples to be generated, the two files must
have the same number of markers.

Tools menu: RE Analysis
The RE Analysis Tool is used to create files for resynthesis using the Resonator/Excitation synthesis
method (RE synthesis) found in the REResonators Sound.

450

The Tool performs an analysis that breaks down the sample into a time-varying filter (the resonator) and
an input to the filter (the excitation) that exactly recreates the sample. The description of the resonator is
placed into an RE file, and the excitation is placed into an EX file.

The RE file can be used to control an REResonators filter operating on an entirely different input in order
to perform cross synthesis. In this case, the REResonators will impose the formant (or filter characteris-
tics) of the analyzed sample onto its input.

To use the RE Analysis Tool, choose RE Analysis from the Tools menu.

Click on the Browse… button to choose from a file dialog the sample to be analyzed. Kyma will play the
sample that you selected.

The other parameters control the analysis. Try the default parameters first. Then you can try adjusting
them:

♦ Filter order is approximately twice the number of resonant peaks in the time-varying filter. The
larger this number, the larger the number of formants or harmonics that can be tracked, but the
longer it will take to complete the analysis.

♦ Filter updates per second controls the number of individual filters that are created each second. For
improved time resolution in the resynthesis, make this number larger.

♦ Averaging time controls how much of the sample at any one time should be used by the analyzer to
determine the filter. This number should be about twice the period of the input signal (in other
words, twice the duration of a typical cycle of the sample). If you know the fundamental frequency of
the sample, you can take the inverse of that and multiply by two to get an approximate averaging
time.

Click Create RE file only to create just the file containing the description of the time-varying filter, or
click Create RE and EX files to create both the filter description and the filter input files. In either case,
after the analysis has completed, an example Sound will be placed into an untitled Sound file window for
your use.

The resulting filter is extremely sensitive to overflow when not using the corresponding EX file as its in-
put. You should use an Attenuator to attenuate the REResonators Input (sometimes by as much as
0.001).

451

Tools menu: GA Analysis from Spectrum
The group additive synthesis oscillator (called GAOscillator in Kyma) resynthesizes a sound from a
small set of complex waveforms. It offers many of the advantages of both sampling and sine wave addi-
tive synthesis. Using GA synthesis you can independently scale time and frequency, and you can morph
between two analyses. While not general enough to resynthesize speech or long musical passages, GA
synthesis is more computationally efficient than full additive synthesis, and, for individual harmonic
tones, can sound just as good.

Use the GA Analysis from Spectrum Tool (choose GA Analysis from Spectrum from the Tools menu) to
create an analysis file for use with the GAOscillator.

Click on the Browse… button to choose the quasi-harmonic analysis from a file dialog. Kyma will play a
resynthesis of the file that you selected.

The other parameters control the GA analysis algorithm. Try the other parameters first. Then you can try
adjusting them:

♦ Number of harmonics controls the number of harmonics to be included in the complex waveforms.

♦ Number of waveforms controls the number of complex waveforms used in the group additive re-
synthesis.

When choosing the parameters for GA analysis, keep in mind that the larger the numbers, the longer the
analysis will take.

Click Create GA file to create the file containing the complex waveforms and their corresponding am-
plitude envelopes. After the analysis has completed, an example Sound will be placed into an untitled
Sound file window for your use.

Tools menu: Design Alternate Tunings
The Design Alternate Tunings Tool (choose Design Alternate Tunings from the Tools menu) lets you
interactively design certain kinds of tuning systems. Throughout the use of this Tool, a MIDI keyboard
can be used to try out the tuning in real time.§

§ Thanks to Marcus Hobbs for motivating the work on this Tool. Marcus, Ervin Wilson, and Stephen Taylor are

working on more advanced tuning systems and a special 500+ key keyboard for controlling Kyma. You can reach
Marcus at: marcus@fa.disney.com.

452

The main page of the Tool contains a few global settings, as well as buttons to display pages for designing
specific kinds of tunings.

Tonic Key Number and Tonic Frequency specify a MIDI key number and the corresponding frequency
in hertz. These two parameters are used to specify a “fixed point” between all of the tunings; no matter
which tuning is selected, the specified key number will always play at the specified frequency. The de-
fault value specifies middle C and its frequency in the conventional equal tempered tuning system.

In the middle of this page, you can specify the kind of sound to be used for auditioning the scale. Use the
radio buttons to choose between a 21 harmonic sawtooth oscillator, a sine wave oscillator, or a sample.
Click the Choose… button to choose the sample to be used from a file dialog. The Volume fader (active at
all times through MIDI continuous controller 7) controls the volume of the sound being played.

The five buttons provide access to the five different ways to design tunings in this Tool:

♦ Ratio Scale is used to design 12-note octave scales by specifying the ratio of each scale degree to the
tonic.

♦ Cents Scale is used to design 12-note octave scales by specifying the number of cents difference be-
tween each scale degree and the tonic.

♦ Equal Tempered is used to design equal tempered scales with an arbitrary number of scale degrees
per octave.

♦ Two Interval is used to design scales with an arbitrary number of scale degrees per octave, where the
scale is made up by raising an interval to successively larger powers. Also called a y

x scale.

♦ From Text File is used to design completely arbitrary scales.

453

Clicking on Ratio Scale brings up this page. Across the top are twelve fields for the numerator and
twelve fields for the denominator of the twelve ratios that define the scale. The buttons at the lower left
are used to preset the ratios to three different example ratio scales.‡ To change a value, click the mouse in
the field, and type in the new value. To cause the tuning to be updated with the new value, either press
Enter, press Tab to go to the next field, or click in a different field.

The central view is common to all of the tuning pages in this Tool. It describes an octave starting on the
tonic key number specified on the main page. It lists the MIDI key number, the absolute frequency of that
key number in this scale, the ratio of the scale degree to the tonic, and the cents difference in pitch be-
tween the tonic and the scale degree.

The buttons at the lower right are also common to all of the tuning pages in this Tool:

♦ Create Example opens an untitled Sound file window containing an example using the current tun-
ing and currently selected instrument.

♦ Load allows you to select a text file containing a tuning that you had saved earlier. The information in
the file is then used to set the parameters in the current tuning method. The Tool either uses the in-
formation in the file directly (if the current tuning method is the same as the one used when saving
the file), or it comes up with a set of parameters for this tuning method that approximates the tuning
in the text file.

♦ Save saves the parameters for the current tuning into a text file. Even though the Tool shows only one
octave of the scale, the text file contains a listing of the frequencies in hertz of the 128 MIDI key num-
bers. You may find it useful to open this file with a text editor to view or edit that information.

♦ Back takes you back to the main tuning page.

‡ Thanks to Brian Belet of the San Jose State University for providing the ratios of the “BB Sharp Chromatic (5-limit)

Just Scale” used for the Just scale example.

454

Clicking on Cents Scale brings up this page. Across the top are twelve fields for the pitch difference in
cents between the tonic key number and each scale degree. The buttons at the lower left are used to preset
the fields with a few different example scales. To change a value, click the mouse in the field, and type in
the new value. To cause the tuning to be updated with the new value, either press Enter, press Tab to go
to the next field, or click in a different field.

Clicking on Equal Tempered brings up this page. The only parameter for an octave-based equal tem-
pered scale is the number of scale degrees per octave.

455

Clicking on Two Interval brings up this page.§ There are two parameters for this tuning: the number of
scale degrees per octave, and the generating interval. This scale is constructed by raising the generating
interval to successively higher powers. Whenever the value exceeds two, it is reduced by a factor of two
so that it falls within the same octave as the other scale degrees.

Clicking on From Text File brings up this page. There are no parameters for this tuning; all pitches come
directly from the file. Scales made with this part of the Tool can have completely arbitrary tunings.

§ The name Two Interval comes from the fact that the each scale degree is generated by multiplying the previous

scale degree by one of two intervals: either the generating interval or one-half of the generating interval. Thanks to
tuning theorist Ervin Wilson for introducing us to this kind of scale.

456

This part of the tool reads lines from the file consisting of the MIDI key number and the corresponding
frequency in hertz. The last line has a key number of 999. The easiest way to prepare a file for use here is
to save a tuning file from any of the other methods, and edit it using a text editor.

Here is an example of one such prepared file:

 0 8.17581 hz
 1 9.51787 hz
 2 9.7463 hz
 3 9.98021 hz
 4 10.2198 hz
 5 11.8974 hz
 6 12.1829 hz
 7 12.4753 hz
 8 12.7747 hz
 9 15.2287 hz
 10 15.5941 hz
 11 15.9683 hz
 12 16.3516 hz
 13 19.0357 hz
 14 19.4926 hz
 15 19.9604 hz
 16 20.4395 hz
 17 23.7947 hz
 18 24.3659 hz
 19 24.9506 hz
 20 25.5494 hz
 21 30.4574 hz
 22 31.1883 hz
 23 31.9367 hz
 24 32.7033 hz
 25 38.0715 hz
 26 38.9852 hz
 27 39.9209 hz
 28 40.8791 hz
 29 47.5894 hz
 30 48.7318 hz
 31 49.9012 hz
 32 51.0988 hz
 33 60.9147 hz
 34 62.3765 hz
 35 63.8734 hz
 36 65.4065 hz
 37 76.143 hz
 38 77.9704 hz
 39 79.8417 hz
 40 81.7581 hz
 41 95.1789 hz
 42 97.4635 hz
 43 99.8025 hz
 44 102.198 hz
 45 121.829 hz
 46 124.753 hz
 47 127.747 hz
 48 130.813 hz
 49 152.286 hz
 50 155.941 hz
 51 159.683 hz
 52 163.516 hz
 53 190.358 hz
 54 194.927 hz
 55 199.605 hz
 56 204.395 hz
 57 243.659 hz
 58 249.506 hz
 59 255.493 hz
 60 261.626 hz
 61 304.572 hz
 62 311.882 hz
 63 319.367 hz
 64 327.032 hz
 65 380.716 hz
 66 389.854 hz
 67 399.21 hz
 68 408.791 hz
 69 487.318 hz
 70 499.012 hz
 71 510.987 hz
 72 523.252 hz
 73 609.144 hz
 74 623.763 hz
 75 638.734 hz

 76 654.065 hz
 77 761.431 hz
 78 779.708 hz
 79 798.42 hz
 80 817.581 hz
 81 974.635 hz
 82 998.025 hz
 83 1021.97 hz
 84 1046.5 hz
 85 1218.29 hz
 86 1247.53 hz
 87 1277.47 hz
 88 1308.13 hz
 89 1522.86 hz
 90 1559.42 hz
 91 1596.84 hz
 92 1635.16 hz
 93 1949.27 hz
 94 1996.05 hz
 95 2043.95 hz
 96 2093.01 hz
 97 2436.58 hz
 98 2495.05 hz
 99 2554.93 hz
100 2616.26 hz
101 3045.72 hz
102 3118.83 hz
103 3193.68 hz
104 3270.33 hz
105 3898.54 hz
106 3992.1 hz
107 4087.9 hz
108 4186.02 hz
109 4873.15 hz
110 4990.11 hz
111 5109.87 hz
112 5232.52 hz
113 6091.45 hz
114 6237.67 hz
115 6387.36 hz
116 6540.65 hz
117 7797.08 hz
118 7984.2 hz
119 8175.79 hz
120 8372.03 hz
121 9746.3 hz
122 9980.22 hz
123 10219.7 hz
124 10465.0 hz
125 12182.9 hz
126 12475.3 hz
127 12774.7 hz
999 END

System Prototypes and the Sound File Window

The system prototypes window contains an example of each kind of Sound included with the Kyma system.
The system prototypes can be used to supply the components you need to build new sound designs.

A Sound file window allows you to examine and manipulate the Sounds contained in a Sound file. It is
used as a workspace for creating new Sounds and editing old Sounds.

Prototype Strips

A prototype strip (or prototypes window) is a collection of Sounds that you can use as templates for new
Sounds. There are two types of prototype strips in Kyma: the system prototypes and custom prototype
strips.

The system prototypes contains an example of each kind of Sound included with the Kyma system. The
system prototypes are organized into categories. The categories are identified in the scrolling list at the
left of the system prototype strip; the Sounds in the selected category are displayed in the horizontal
scrolling strip. See Prototypes Reference beginning on page 218 for descriptions of each system prototype
Sound. To open the system prototypes, choose System prototypes from the File menu.

By exploring the system prototypes using Describe Sound from the Info menu and Compile, load, start
from the Action menu, you can learn about the different prototypes provided in Kyma. Each prototype
serves as an example of a Kyma Sound, so experimenting with the prototypes is one way to learn about
the Kyma System.

459

As you start to design your own Sounds, you will probably want to use some of them as templates. To
use one of your customized Sounds as a template, open the Sound file that contains the template as a
custom prototype strip. To open a Sound file as a custom prototype strip, choose Open… from the File
menu, select Custom prototypes as the file type, and select the Sound file to be opened. Any Sound col-
lections in the Sound file will show up as categories in the custom prototype strip; other Sounds will
show up under the General category in the custom prototype strip.

Sound File Windows

While you are in Kyma, a Sound file window allows you to examine and manipulate the Sounds con-
tained in a Sound file. It serves as a workspace for creating new Sounds and editing old Sounds.

When you leave Kyma, you have the option of saving your work in the Sound file on the disk. Sounds
stored in a Sound file are not sample files or digital recordings but instructions for producing sound on
the digital signal processor (DSP). This representation is much more compact than a digital recording.

A Sound file can contain individual Sounds and/or Sound collections. A Sound collection is itself a col-
lection of individual Sounds and/or other Sound collections. A Sound collection is a convenient way to
categorize or organize the objects in a Sound file.

The operations in the Action , Info and Edit menus (see pages 436, 439, and 425) affect the selected
Sound(s). Click a Sound to select it. Press Enter to change the name of a selected Sound. Use standard
click and drag techniques to select and move Sounds in the Sound file window or between windows.

Clicking and dragging the mouse in the background of the Sound file window lets you draw a box
around many Sounds at once, selecting all Sounds within the box. If you hold down the shift key while
performing any of these mouse operations, you will add to or remove from the current selection, rather
than starting a new selection.

To move a Sound, hold down the Control or Option key as you click and drag. Normally, you will not
want to move a Sound; it is safer to move a copy. To move a copy of a Sound, click on the Sound (without
pressing the Option or Control keys) and drag the Sound’s icon.

460

Creating and Editing Sounds

In Kyma, you do not start from scratch when designing a new Sound. Instead, you use an existing Sound
as a template for your new Sound, substituting new components for the old. Any existing Sound can
function as a template for a new Sound.

To create a new Sound, first choose an existing Sound to serve as a template. Drag the template’s icon to
the Sound file window from either a prototype strip or another Sound file window. In Kyma, when you
drag a Sound’s icon from one window to another, you are actually dragging a duplicate of that Sound.
The original Sound remains unchanged, ready to be reused.

Whenever you drag a Sound from a prototype strip, you are really creating and dragging a duplicate of
the Sound. Kyma automatically appends a number to the name of the Sound that you drag from the
prototype strip to indicate that you have a copy of the original. The number Kyma appends to the
Sound’s name corresponds to the number of times you have dragged that Sound from a prototype strip.

Once the Sound you have chosen as a template is in a Sound file window, double-click on the Sound to
begin editing it. A Sound editor window will open, allowing you to make changes to the Sound’s pa-
rameters. When you close the Sound editor window after making changes, a dialog will allow you to
choose between saving or discarding your changes to the Sound.

Sound Editor Window

In Kyma you construct new Sounds by combining and modifying other Sounds in a Sound editor win-
dow. To open a Sound editor, go to the Sound file window and double-click on the Sound you would like
to edit. A Sound editor window will appear. Only one editor at a time can be open on any particular
Sound, but any number of editors can be open at once. Opening or double-clicking a Sound that is al-
ready being edited will bring its Sound editor to the front.

The Sound editor is divided into two parts; the top section shows the signal flow diagram, and the lower
section shows the parameter settings.

Select a Sound in the signal flow diagram by clicking on it once; the Sound will be highlighted in gray to
indicate that it has been selected. Operations in the Action and Info menus apply to the Sound that is se-
lected in the signal flow diagram.

You can edit the parameters of a Sound in the signal flow diagram by double-clicking on it. The parame-
ter area of the Sound editor will change to the parameters of the double-clicked Sound and the double-
clicked Sound’s icon will be replaced with a gray pattern.

Operations in the Edit menu apply to the active field in the Sound editor. The active field is the field with
a border drawn just inside its editing area. You can click inside a field to make it active, or press Tab to
cycle through all of the editable fields.

Signal Flow Diagram

The top half of the Sound editor window is the signal flow diagram. The signal flows from left to right.
The rightmost Sound is the “output” Sound, the one you double-clicked in the Sound file window to
open the Sound editor. The output Sound’s immediate inputs appear to its left.

Viewing Inputs
In the Sound editor, an arrow tab on the left side of a Sound’s icon indicates that the Sound has inputs.
The arrow tab acts as a toggle — click once to see the input(s) of a Sound, and click again to hide the in-
puts. Clicking on the arrow tab while holding down the Control or Command key displays the entire
signal flow path leading into that Sound.

462

Clicking the arrow tab on Vocoder1, shown here:

reveals that it has several inputs:

Several Sounds can share an input. In this case, there is a connection drawn from each Sound to the
shared input. In the example above, compressor is an input to both Vocoder1 and PeakDetector1.

463

Clicking on the arrow tab of compressor reveals its inputs:

If a Sound and its input are connected with a thick line labeled with a number, that means the input is
used more than once within that Sound. The number of times the input is used is indicated by the label
displayed on the connection. In the example above, count is used twice as an input to compressor.

Signal Flow Diagram Layout
You can change the appearance of the signal flow diagram by selecting View… from the Edit menu and
selecting the desired layout attributes.

Sounds can be displayed as large or small icons. Small icons take up one quarter the area of large icons.
The radial and right angle attributes refer to the contour of the connections between the Sounds. Radial
edges fan out radially from the left edge of a Sound to points at the right edges of its inputs. Right angle
connections use only straight lines and right angles.

464

You can adjust the layout of the signal flow diagram by dragging the Sound icons around with the
mouse. Dragging an icon moves its position relative to the rest of the signal flow diagram; dragging an
icon while holding down the Shift key moves the Sound and all of its inputs simultaneously.

When you move a Sound to a new position within the same signal flow diagram, you are producing only
a cosmetic change not a change to the Sound. Clean up (in the Edit menu) restores the signal flow dia-
gram to its original layout.

Editing the Signal Flow Diagram
You can edit the signal flow diagram by replacing Sounds in the diagram with other Sounds and by in-
serting new Sounds into the diagram. You can replace a Sound in the signal flow diagram by dragging
another Sound over its icon. To insert a Sound between two Sounds in the signal flow, drag and drop the
Sound onto a line in the signal flow diagram. To remove a Sound that is between two other Sounds, select
the Sound and press Delete or Backspace. To change the name of the selected Sound, press Enter, then
type the new name in the dialog box.

Replacing Sounds in the Signal Flow Diagram
To replace a Sound in the signal flow diagram:

1. select the new Sound with the mouse

2. while holding the mouse button down, drag the icon on top of the Sound that you want to replace

3. release the mouse button

You will be prompted to confirm the replacement. If the Sound has inputs, you will be given a choice
between replacing the Sound and keeping any inputs with the same name (Replace), or to replace the
Sound and its inputs (Replace all).

465

Inserting Sounds to the Signal Flow Diagram
To insert a Sound between two others in the signal flow diagram:

1. select the new Sound with the mouse

2. while holding the mouse button down, drag the icon on top of the line connecting the two Sounds

3. release the mouse button

Only Sounds that have input fields can be inserted into the signal flow diagram in this way. If the new
Sound has several inputs, you will be asked to choose which input the existing Sound should be placed
into.‡

Removing Sounds from the Signal Flow Diagram
To remove a Sound from the signal flow diagram, select the Sound and press the Delete or Backspace
key. Only Sounds with visible inputs can be removed in this way.

Internally, Kyma implements this by replacing the Sound to be deleted with one of its inputs, so you will
be asked to confirm the replacement and to decide which input should be used as the replacement.

Renaming Sounds in the Signal Flow Diagram
To rename a Sound in the signal flow diagram, select the Sound and press Enter. You will be asked for
the new name.

Parameter Settings

In addition to editing a Sound by changing its signal flow diagram, the Sound editor window also allows
you to edit the Sound’s parameters.

‡ To change the number of inputs to a Sound that takes multiple input Sounds, edit the Inputs field of that Sound;

you can drag additional Sounds in the Inputs field or delete Sounds that are already in the Inputs field.

466

Double-click a Sound in the signal flow diagram to edit its parameters. While a Sound’s parameter fields
are being edited, the Sound’s icon is gray, and its parameters are shown in the lower section of the Sound
editor window. You can edit the parameters of only one Sound at a time. To close the parameters of a
Sound, double-click on either an empty area of the signal flow diagram or double-click on another Sound
in the signal flow diagram.

Each parameter field has the parameter name above it. To see a description of the parameter, click on the
parameter name. To see a complete description of the Sound, click on the Sound class name in the lower
right of the window (Oscillator in the image above). To expand the active parameter field to the full size
of the screen, choose Large window… from the Edit menu. Alternatively, to make more space for the pa-
rameter fields, you can either resize the window (by clicking and dragging the mouse in the lower right
corner of the window), or you can click and drag the thick line that divides the upper and lower halves of
the Sound editor window.

Operations in the Edit menu apply to the active field in the Sound editor. The active field is the field with
a border drawn just inside its editing area (Reset in the image above). You can click inside a field to
make it active, or press Tab to cycle through all of the editable fields.

In parameter fields that contain text, all of the standard text editing operations are available, including the
keyboard arrow keys (←, →, ↑, ↓) for positioning the cursor and the operations listed in the Edit menu.
To select text that is enclosed within parentheses, brackets, or quotes, place the blinking insertion point
just within the enclosing punctuation, and double-click the mouse.

To set a parameter field to the same value it has in another Sound, drag the other Sound into the pa-
rameter field. (If the dragged Sound doesn’t have a parameter of that name, the Sound is rejected and the
parameter field is unchanged.)

Variables as Parameter Values
Variables are names preceded by question marks; they are green on color monitors and bold on other
monitors. A variable is a kind of place holder in a parameter field of a Sound. The variable must be set to
a real value before the Sound can be compiled; if you try to load a Sound that still has some free variables
in it, a series of dialog boxes will prompt you to enter a value for each variable. Once the variable has
been assigned a value, that variable takes on that value for the full duration of the Sound.

A variable or an expression containing variables can appear in any parameter field. For more information
about variables, see Variables on page 510.

If you set an array parameter to a variable, Kyma will ask whether you want an array containing that one
variable or whether you want the variable to represent the entire array:

467

Evaluating the Parameters
When you change a parameter of a Sound, Kyma will test the new value to make sure that it is a legal
value. This test will not occur until you double click a different Sound, or until you select one of the op-
erations in the Action or Info menus. If a parameter value is illegal, the field will flash and the computer
will beep twice. The most common problems with parameters are leaving the units off frequency or du-
ration parameters, specifying a negative or zero value where it does not make sense, and introducing a
syntax error (such as an extra space or a hidden character).

As long as there is an illegal parameter value, you cannot edit the parameters of another Sound. If you
click in the close box of the Sound editor while there is a problem in a parameter field, Kyma will ask you
if you would like to drop the changes made to the Sound being edited.

If there is trouble with a value entered into a parameter, you can either fix the parameter or use Revert
from the Action menu. Revert drops any changes that have been made to the parameters since the last
time the Sound was double-clicked.

Working with the Parameter Fields
There are several different types of parameter fields: file name, disk file segment, envelope breakpoint,
radio button, check box, input, text, script, value, array, and others.§ You are probably familiar with how
to use many of these fields, so only the unfamiliar field types will be explained here.

A file name field consists of a text field together with a disk button:

You can either type in a file name (with or without the path information, see How Kyma locates files on
page 431), or click the disk button to choose the file from a file list. Hold down Command or Control
while clicking the disk button to open an editor on the file.

A disk file segment field is used in the DiskSplicer Sound, see DiskSplicer on page 495 for more informa-
tion.

§ A complete list of parameter field types can be found in Parameter Types and Ranges on page 540.

468

An envelope breakpoint field is used in the GraphicalEnvelope Sound. Time is displayed horizontally, and
the envelope value (between 0 and 1) is displayed vertically. The heavy lines indicate one second
boundaries, the thin lines are one-tenth of a second apart. The duration of each segment is scaled by the
inverse of the value in the Rate field. For example, if Rate is 0.5, then the heavy lines are two seconds
apart. Use Zoom in and Zoom out from the Edit menu to change the magnification of the display.

To select a breakpoint, click the mouse on a square marker; the selected breakpoint is always shown as a
hollow square, and its location is shown in the upper right. To add a breakpoint, click the mouse at the
new breakpoint location while holding down the Shift key. To remove a breakpoint, select the breakpoint
and press the Delete or Backspace key. To move a breakpoint, click on the breakpoint and drag it to its
new location; the coordinates of the breakpoint will be displayed as you move it around.

Breakpoints with arrows within them indicate loop points for the envelope. To add or remove a loop
point, select a breakpoint and click on the loop button at the lower right of the field. The behavior of the
envelope when there are right and left loop points is as follows

Right Left Action

no no no looping

no yes illegal

yes no on trigger off, jumps to right-arrow breakpoint

yes yes if trigger on, jumps to right-arrow breakpoint upon reaching left-arrow break-
point; on trigger off, jumps to left-arrow breakpoint

An input field accepts Sounds that are to be used as signal input or inputs to the edited Sound. Some input
fields will accept an arbitrary number of Sounds. Other Sound fields place some restrictions on the num-
ber or kinds of Sounds they will accept.

You can drag Sounds into and out of input fields, as well as use any of the operations in the Edit menu
(when the input field is active, that is, when it has the black border drawn within it). Selecting one or
more Sounds and pressing Delete or Backspace is a quick way to remove Sounds from an input field.

In Sounds where the ordering of inputs is important (Concatenation, for example), the inputs are ar-
ranged within the parameter field from left to right and from top to bottom. To change the order of the
inputs, change their positions in the parameter field.

Sounds in input fields (as well as Sounds used as control signals in other parameter fields) also show up
in the signal flow diagram. Remember to double click a different Sound (or double click in the back-
ground of the signal flow diagram) to update the signal flow diagram after making changes to an input
parameter field.

469

You can create shared inputs between Sounds in several ways using an input field:

♦ Use Copy from the Edit menu to place the input Sound into the clipboard. Then repeatedly use Paste
special… from the Edit menu to place the input Sound into each of the parameter fields that need
that input Sound.

♦ Hold the Control or Option key while dragging the input Sound from the parameter field where the
Sound is used on top of the Sound you want to replace in the signal flow diagram.

♦ Hold the Control or Option key while dragging the input Sound from the signal flow diagram into
the parameter field where you want to share that Sound.

Script fields are text fields that contain a script for Kyma to evaluate when it is compiling a Sound. For
more information about scripts, see Scripting on page 522.

Value fields are text fields that contain a numeric value. The numeric value may be given directly, or it
may be the result of a Smalltalk-80 calculation. Certain value fields (with cyan colored backgrounds) are
hot; hot value fields can be set to a time-varying numeric value. Some value fields require units to be sup-
plied along with the numeric value. You can add explanatory comments to value fields by enclosing the
comments within double quotes.

Array fields are value fields that contain a list of numeric values. The numeric values are simply listed one
after another, separated by spaces. If the value is complex or the result of a calculation, it must be en-
closed in curly braces so that Kyma can find where one value ends and the next begins. For example,

1 !Fader1 {2 + 3} {!Frequency * 2}

could be used in an array parameter to specify four different values.

More about Value Fields
A value fields is a text field that contains a numeric value. These fields can contain anything from a sim-
ple constant value to a complete Smalltalk program. The value of the field is calculated when the Sound
that contains the field is compiled.

There are two types of value parameters: hot and cold. Cold parameters are fixed values, set when you
first load the Sound and never altered again. Cold parameter values can be constants, variables, or
Smalltalk expressions that evaluate to constant values. Hot parameters can be continuously updated even
after the Sound has been loaded into the signal processor. Using hot parameters, you can control Kyma
Sound parameters in real time. Hot parameter fields can be identified by their light cyan background
color and italicized parameter names. Hot parameter fields can take all the same kinds of values that cold
parameters can; in addition, they can be controlled by Event Values or the output of other Kyma Sounds.
See Event Values, Virtual Control Surface, and Global Map on page 472 for more information.

Duration and Sample are cold parameters; Frequency, Gate, etc. are hot parameters.

470

 Specifying Numbers

You specify numbers in Kyma much as you would in any other application. The particulars of the syntax
are as follows:

Whenever you enter a number between 1 and -1 that has a decimal point, you should include the leading
zero. For example, you should use 0.1, or -0.005 not .1 or .005.

Floating point numbers can be entered as a mantissa and an exponent. For example, 44.1E3 = 44100, or
1.0E-6 = 0.000001. This notation can also be used to specify large integers. For example, 2E32 or 1e6.

In general, an integer can be expressed in any radix (or base) by preceding it with the radix and the letter
r. For example, hexadecimal (i.e., base 16) numbers are preceded by 16r. Similarly, to specify an integer
as a binary number, precede it with 2r as in 2r1011. Numerals greater than nine are represented by the
letters A, B, C, etc. Some examples are 16rFFEF, 12rBAABAA and 3r211.

If you enter a number as the ratio of two integers, the number will be retained as a fraction, or, if the nu-
merator is evenly divisible by the denominator, as an integer; for example 3 / 2 will remain as the
fraction 3/2, whereas 4 / 2 will become 2.

 Specifying Units

You must specify units in any parameter setting that involves frequency or duration, using one of the
following abbreviations:

Abbreviation Meaning

days days

h hours

m minutes

s seconds

ms milliseconds

usec microseconds

samp samples

beat (default BPM setting is quarter note = 60)

SMPTE SMPTE time code

hz hertz

nn MIDI note number

For example,

440 hz
60 nn
1 s
1 day + 3 m + 17 s

To specify frequency, you can also type the octave followed by the lettername of the pitch class. For ex-
ample,

4 c sharp

indicates middle C sharp (MIDI note number 61 nn). The solfeggio names for the pitch class are also ac-
cepted: do, re, mi, fa, so or sol, la, ti or si.

To specify an arbitrarily long duration, use on. ON is equivalent to 730 days or 2 years.

471

 Using Values with Units in Calculations

The rules of regular arithmetic with units apply to parameters that have units of time or frequency. For
instance, you can multiply a value with units by a number with no units, but if you are adding two val-
ues, one of the following conditions must apply: both must be in units of time, both must be in units of
frequency, or both must be without units.

If the values being combined are of the same type (both in units of time or both in units of frequency), but
are not the same units, the calculation will be performed in units of hertz or seconds:

Example Value

60 nn hz 261.6256 hz

100 hz nn 43.35 nn

60 nn + 100 hz 361.6256 hz

60 nn + 100 hz nn 103.35 nn

60 nn hz + 100 hz 361.6256 hz

If you want to remove the units after performing a conversion or calculation, use removeUnits. For ex-
ample, if you needed to use a pitch in units of hertz in computing the value of a non-frequency field, you
would need to remove the units, as in the following code:

4 c hz removeUnits / SignalProcessor sampleRate.

A SMPTE time or duration can be specified as

hours:minutes:seconds.frames SMPTE

as in the following example:

1:04:32.2 SMPTE

Closing the Sound Editor and Saving Changes

To close the Sound editor, click in the close box at the upper left. Kyma will ask whether or not you want
to keep the changes you have made. At this point you have a choice of replacing the old Sound with the
edited version, dropping the changes that you just made, or changing your mind and canceling.

If you want to save the edited Sound as a new Sound while keeping the original Sound unchanged, drag
the rightmost Sound from the signal flow diagram into a Sound file window; then close the Sound editor,
and choose No when it asks if you want to save the changes.

Note that changes made to a Sound are not saved onto the disk until you have saved the entire Sound file
window. To do this, choose Save or Save as… from the File menu.

Event Values, Virtual Control Surface, and Global Map

Placing Event Values and Sounds into hot parameter fields of a Sound lets you control the parameters of
the Sound in real time. You can exercise this real-time control when you link the Event Values to the vir-
tual control surface, external MIDI controllers, or programmed events. In effect, you create custom, real-
time controls of your patch by using Event Values in the parameter fields of your Sounds.

The virtual control surface allows you to monitor and control Event Values in the currently loaded Sound.

Event Values are like hardware controls (a volume control, for instance) in that they have initial positions
that you can adjust within specified ranges. Event Values are also like most hardware controls in that
they remain at the value where you last set them until you reset them. But unlike hardware knobs and
buttons, these software controls are easily remapped. This mapping is contained in the global map.

Event Values

Event Values can be used as real-time “hot-links” between your Kyma Sound and the outside world. You
can set an Event Value to be updated by external event sources such as MIDI, the virtual control surface,
or programs other than Kyma. Event Values can be linked to sources of events by MIDIVoice, MIDIMap-
per, SoundToEvent or AnalogSequencer Sounds. If your Sound does not include any of these Sounds, the
Event Value will be associated with a source in the global map. This global map is initially set to a default
map. Later, you may want to devise your own maps that correspond to the controllers in your studio.

473

An Event Value is displayed as a name preceded by an exclamation point; Event Values are red on color
monitors and bold on other monitors. If you use an Event Value that is defined in the global map or the
Map of a MIDIMapper, the map transparently connects the source of events as defined in the map to that
Event Value. If you use an Event Value that is not defined in any map, Kyma will only allow that Event
Value to be controlled from the virtual control surface.

Events Values and expressions involving Event Values can appear only in hot parameter fields.‡ There
are several ways to enter Event Values:

♦ Press the Escape key once and play a chord of one, two, or three keys on a MIDI keyboard to obtain
!Pitch, !KeyDown, or !KeyVelocity.

♦ Press the Escape key once and move a MIDI continuous controller to enter the name of that con-
tinuous controller.

♦ Choose Paste hot… from the Edit menu to select an Event Value or expression from a list and paste it
into the parameter field.

♦ Type the name of the Event Value (preceded by an exclamation point) directly into the field.

Sources of Event Values
All Event Values are made up of combinations of Event Sources. The mapping specified in the global
map or in a MIDIMapper Sound (see Global and Local Maps on page 482) provides a memorable name
(the Event Value) for a combination of hardware and software sources (the Event Sources).

An Event Source is one of the following

♦ a value derived from MIDI continuous controller events

♦ a value derived from MIDI keyboard (note) events

♦ a value derived from other MIDI events (for example, MIDI time code)

♦ a value derived from the signal processor (such as the current time)

♦ a value derived from the output of a Sound (the Value of a SoundToEvent)

♦ a value derived from the virtual control surface or other software running on the host computer

‡ A hot parameter field has a cyan colored background and an italics label. The Frequency field of a Sample is an

example of a hot parameter field.

474

Event Sources are specified by preceding the name of the Event Source by an accent grave (̀). They are
displayed in blue in the user interface.

The only way to control an Event Value externally (for example, by a MIDI keyboard, fader, sequencer,
etc.) is to map it to one of the following Event Sources:

`MIDIKeyDown `MIDIKeyNumber `MIDIKeyVelocity

`MIDIController00 thru `MIDIController127

`MIDIPitchBend `MIDITimeCode `MIDIChannelPressure

`MIDIProgramNumber

MIDI Continuous Controller Sources
MIDI continuous controller Event Sources are designated as `MIDIController00 through `MIDI-
Controller127. The signal processor automatically scales the continuous controller values received via
MIDI control change messages (which are in the range of (0,127)) to the range of (0,1).

MIDI Keyboard Sources
MIDI note on and off messages control the Event Sources `MIDIKeyDown, `MIDIKeyNumber, and
`MIDIKeyVelocity. Kyma treats MIDI note on messages with zero velocity in the same way as MIDI
note off messages with a velocity equal to the velocity of the original note on message.

`MIDIKeyDown is set in the following way:

♦ a note off message causes it to be set to 0

♦ a note on message causes it to first be set to -1, and then, five milliseconds later, to be set to +1

A value of -1 in the trigger of an envelope (for example, ADSR) tells the envelope to rapidly decay the
envelope to zero. The later value of +1 tells the envelope to begin its attack.

`MIDIKeyNumber contains the key number from the note on message. It is set at the same time that
`MIDIKeyDown is set to +1.

The velocity part of a MIDI note message is scaled from its range of (0,127) to the range of (0,1).
`MIDIKeyVelocity is set to this scaled value at the same time that `MIDIKeyDown is set to +1.

MIDI note events are allocated to individual voices within a MIDIMapper or MIDIVoice according to the
polyphony, MIDI channel and pitch range specified in the mapping Sound. A note is allocated to the old-
est voice that is not in use, or, if all voices are currently in use, the voice that has been on for the longest
amount of time.

Other MIDI Sources
The remaining MIDI messages are mapped in the following way:

♦ MIDI program change messages cause the Event Source `MIDIProgramNumber to be set to the new
program number. Program numbers are in the range of 1 to 128.

♦ MIDI channel aftertouch messages cause the Event Source `MIDIChannelPressure to be set to the
channel pressure value (scaled from (0,127) to (0,1)).

♦ MIDI pitch bend messages set `MIDIPitchBend. Its range of (-2048,2048) is scaled to the range
of (-1,1).

♦ MIDI time code messages cause `MIDITimeCode to be set to the time received. Additionally,
`RealTime (the time in seconds since the Sound was started) is updated whenever these messages
are received.

Signal Processor Sources
The signal processor itself is the source of some Event Sources:

♦ `Time is the time in seconds since the entire Sound structure was started.

♦ `LocalTime is the time in seconds since the Sound using `LocalTime was started.

475

Other Event Source names can be used, but can only be controlled through Kyma:

Kyma Event Sources
SoundToEvent acts as a source of Event Values. Changes to its Value parameter cause the Generat-
edEvent Event Value to change in response. AnalogSequencer can also act as a source of the values of the
Event Values listed in its ExtraValues field, as can MIDIVoice and MIDIMapper when you have
FromScript checked.

Other Sources
All sources (except `MIDIKeyDown, `MIDIKeyNumber, and `MIDIKeyVelocity) can additionally ob-
tain their value from the virtual control surface, a tool, or a third party program that uses the Capybara
driver. Any source not listed above can only obtain its value in this way.

Using Sounds in Hot Parameter Fields
Hot parameter fields can also use Sounds as their values. This is like connecting the output of one module
to the input of another in a voltage-controlled analog synthesizer. As with the analog synthesizer, the
control signal is never actually heard; it just supplies a constantly changing value for the parameter of a
Sound which is heard.

When you paste a Sound into a hot parameter field, it appears in the field as the Sound’s name enclosed
in a box followed by an L to indicate the left channel. Once you update the signal flow diagram (by dou-
ble-clicking in a white space), the Sound will also show up in the signal flow diagram.

You can combine Sounds, Event Values, and numbers in arithmetic expressions. Since the output of a
Sound is a stereo pair, when you use Sounds with numbers and Event Values, you must specify which
channel to use as the source of the control signal. Use L to indicate the left channel of the Sound, R to in-
dicate the right channel, and M to indicate the monophonic mix of the two channels.

476

By default, Sounds in hot parameter fields are treated as control signals and update once every millisec-
ond (so the maximum frequency without aliasing of an LFO is 500 hz). To use a lower update rate, append
a colon and a number to indicate the number of milliseconds between updates. For example,

Oscillator L: 5

updates once every five milliseconds (200 hz sample rate).

Arithmetic with Event Values and Sounds
The signal processor contains a real-time evaluator that can calculate the value of expressions involving
Event Values and/or Sounds in “hot” parameter fields. The real-time evaluator calculates the value of an
expression whenever it receives a new value for a Sound or Event Value used in the expression.

The real-time evaluator implements a subset of the operations available to the Smalltalk evaluator on the
host computer. The following is a list of all operations available to the real-time evaluator. Examples are
given using constants, to make it easier to see exactly what the operation does, but any of these opera-
tions can also be used on Sounds or Event Values.

Arithmetic Operators
Plus, minus, times, and divide-by are standard arithmetic operators and behave just as you would expect
them to behave.

Message Example Result

+ 3 + 2, -3 + 2 5, -1

- 3 - 2, -3 - 2 1, -5

* 3 * 2, -3 * 2 6, -6

/ 3 / 2, -3 / 2, 3.0 / 2 3/2, -3/2, 1.5

** means raise to a power, the // takes the floor of the result of a division (rounds toward negative in-
finity), the \\ is the first argument modulo the second, and negated toggles the sign of its argument.
mod: is the same as the double-backslash operator.

Message Example Result

** 3 ** 2, -3 ** 2 9, ERROR

// 3 // 2, -3 // 2 1, -2

\\ 3 \\ 2, -3 \\ 2, 3 \\ -2 1, 1, -1

mod: 3 mod: 2, -3 mod: 2, 3 mod: -2 1, 1, -1

negated 3 negated, -3 negated -3, 3

inverse is one divided by its argument. abs gives the absolute value (the magnitude) of its argument.
sqrt is the square root of its argument.

Message Example Result

inverse 3 inverse, -3 inverse, 3.0 inverse (1/3), (-1/3), 0.333333

abs 3 abs, -3 abs 3, 3

sqrt 3 sqrt, -3 sqrt 1.73205, ERROR

477

truncated drops any fractional part of the number (towards zero, not minus infinity). rounded rounds
to the nearest integer. sign returns -1 for negative numbers, 0 for zero, and 1 for positive arguments.
clipTo01 returns 0 for all arguments less than or equal to zero, and it returns 1 for all arguments
greater than or equal to one; arguments between zero and one are unaffected.

Message Example Result

truncated 3.1 truncated, -2.1 truncated 3, -2

rounded 3.5 rounded, -2.1 rounded 4, -2

sign -3 sign, 0 sign, 2 sign -1, 0, 1

clipTo01 -3 clipTo01, 0.5 clipTo01, 2 clipTo01 0, 0.5, 1

vmin: returns the smaller of two numbers and vmax: returns the larger of two numbers.

Message Example Result

vmin: 3 vmin: 2, 2 vmin: 3 2

vmax: 3 vmax: 2, 2 vmax: 3 3

Transcendental Functions
cos and sin return the cosine and sine of a number. normCos returns the cosine of the number multi-
plied by π (and similarly normSin returns the sine of a number multiplied by π). normCos and normSin
come in handy because Kyma controllers have a range of (0,1), but typically you would like to take the
sine or cosine of values between 0 and π. normCos and normSin scale your fader value to between
(0,π) before taking the cosine or sine.

exp gives you e raised to the power of the argument. twoExp gives you 2 raised to the power of the ar-
gument. log is the power of 10 which would evaluate to the argument. twoLog is the power of 2 which
would evaluate to the argument.

Message Example Result

cos (Float pi) cos, 0 cos -1.0, 1.0

sin (Float pi * -0.5) sin, (Float pi * 0.5) sin -1.0, 1.0

normCos 0 normCos, 1 normCos 1.0, -1.0

normSin 0.5 normSin, -0.5 normSin 1.0. -1.0

exp 0, 1.0 1.0, 2.71828

twoExp 0, 9 twoExp, 10 twoExp 1.0, 512.0, 1024.0

log 1.0 log, 10 log, 100 log, 0.1 log 0.0, 1.0, 2.0, -1.0

twoLog 1.0 twoLog, 2 twoLog, 0.5 twoLog 0.0, 1.0, -1.0

Array Accessing
The first argument of the of: message is an index, and the second argument is the array. The first ele-
ment of the array is considered to be at index zero, not at index one. The index can be a real-time
expression, but the array must consist of numbers. Since the index is typically a continuous controller
whose range is (0,1), it should in most cases be scaled by the size of the array less one (since the index-
ing goes from (0 ,size-1)).

Message Example Result

of: 1 of: #(8 9 10 11), (0 of: #(1 3)) of: #(4 3 2 1) 9, 3

478

Booleans
The real-time evaluator can perform all of the standard comparison operators. They return 0 for false and
1 for true.

Message Example Result

ne: (not equal) 3 ne: 2, 3 ne: 3 1, 0

eq: (equal) 3 eq: 2, 3 eq: 3 0, 1

gt: (greater than) 3 gt: 2, 3 gt: 3 1, 0

lt: (less than) 3 lt: 2, 3 lt: 3 0, 0

ge: (greater or equal) 3 ge: 2, 3 ge: 3 1, 1

le: (less or equal) 3 le: 2, 3 le: 3 0, 1

Conditionals
neg:zero:pos: takes on one of three values, depending upon the value of the message receiver. All
expressions are evaluated, but only one of the results is used, depending on whether the first expression
has a negative, zero, or positive value. neg:zero:pos:initially: is the same as neg:zero:pos:
except that you can specify the initial value of the entire expression. In neg:zero:pos:, the initial value
of the entire expression is always 0. The expression takes on the initial value only for as long as the mes-
sage receiver does not yet have a value (e.g. if it depends on an event that has not yet occurred).

true:false: or false:true: does conditional evaluation of either the true argument or the false ar-
gument depending upon the value of a test expression. It evaluates only one, not both of the true and
false arguments. For this conditional, true is considered to be any positive number, false is any zero or
negative number.

Message Example Result

neg:zero:pos: -1 neg: 4 zero: 3 pos: 2 4

neg:zero:pos:initially: 1 neg: 4 zero: 3 pos: 2 initially: 8 2

true:false: 0 true: 3 false: 2, 0.5 true: 5 false: 6 2, 5

false:true -2 false: 0 true: 100, 10 false: 40 true: 60 0, 60

Conversions
Kyma considers positive numbers as boolean true values and zero or negative numbers as boolean false
values. asLogicValue maps all true values to 1 and all false values to 0.

You can use db to convert a decibel value into its linear equivalent. 0 db is equal to 1 or full amplitude,
and increases of 6 db double the amplitude, and decreases of 6 db halve the amplitude.

inSOSPitch converts a frequency in hertz or pitch in note numbers to a pitch in the same format and
range as the output of the spectral sources (e.g. SpectrumInRAM, SyntheticSpectrumFromArray, etc.).
These pitches map the range from 0 hz through 22050 hz to a log curve drawn between 0 and 1. Every
doubling of the frequency in hertz corresponds to adding 1/15 to the number in SOS pitch, so at 22050 hz,
the SOS pitch is 1, at 11025 hz it is 1-(1/15), and so on.

Message Example Result

asLogicValue -2 asLogicValue, 0 asLogicValue, 3 asLogicValue 0, 0, 1

db 0 db, 6 db, -6 db, -12 db 1.0, 1.99, 0.5, 0.25

inSOSPitch 22050.0 hz inSOSPitch, 1378.12 hz inSOSPitch 1.0d, 0.73

479

You can use asLogicValue to perform logic operations using arithmetic:

Logic Kyma Equivalent

a AND b a asLogicValue * b asLogicValue

a OR b (a asLogicValue + b asLogicValue) asLogicValue

NOT a 1 - a asLogicValue

a XOR b a asLogicValue ne: b asLogicValue

a EQV b a asLogicValue eq: b asLogicValue

Units
Units of frequency, amplitude and time are also understood by the real-time evaluator. The following are
units of time for seconds, minutes, hours, days, milliseconds, samples, and microseconds:

Message Example Result

s 3 s 3 s

m 3 m 180.0 s

h 3 h 10800.0 s

days 3 days 259200.0 s

ms 3 ms 0.003 s

samp 3 samp 3 samp

usec 3 usec 3.0d-6 s

The following are the messages for specifying hertz (cycles per second), MIDI note number (where mid-
dle C is note number 60), and octave pitch class (where 4 c is middle C).

Message Example Result

hz 440 hz 440 hz

nn 69 nn 69 nn

4 a 69 nn

4 mi flat 63 nn

 Unit Conversions

To convert between seconds and samples or hertz and note number, cascade the unit messages. To strip
off the units (e.g. for parameter fields like Scale that do not expect a number with units), use remove-
Units.

Example Result

1 s samp 44100 samp

4410 samps 0.1 s

4 c hz 261.6256 hz

269.2918152432d hz nn 60.5 nn

4 a removeUnits 69

480

 Symbolic Times and Frequencies

Use on in a Duration field to indicate (virtually) infinite duration. Use default in a Duration field of
a Sample, DiskPlayer, or GenericSource to indicate the “natural” duration, i.e. the duration of the original
recording. If used in the Frequency field, it represents the “natural” frequency or the originally recorded
frequency as stored in the header of the AIFF or WAV file (if no base pitch has been indicated in the
header, it will be set to 60 nn for you). The symbolic durations and frequencies can be used only in the
context of a Sound that is playing back a digital recording.

Functions of time
ramp has a resting value of 1. When the message receiver becomes positive, this expression will grow
linearly from 0 up to 1 over the course of one second, and then stick at its resting value of 1. It cannot be
triggered again until the message receiver becomes zero or negative. For example

1 ramp

will immediately go from 0 to 1 in one second and stick at 1 forever, and

!KeyDown ramp

will start at 1, and go from 0 to 1 over the course of one second whenever a MIDI key down event is re-
ceived.

ramp: is like ramp except that you can specify the amount of time it takes to get from 0 to 1. For example

1 ramp: 3 s

will take three seconds to go from 0 to 1 and then stick at the value of 1 forever.

fullRamp is like ramp except that it goes from -1 up to 1. fullRamp: is like ramp: except it goes from
-1 to 1 in the amount of time specified after the colon.

repeatingRamp: is like ramp: except that instead of sticking at its resting value at the end, it continu-
ously repeats the ramp for as long as it is triggered (i.e. for as long as its message receiver is positive).
There exist repeating versions of all of the ramp-like functions: repeatingRamp, repeatingRamp:,
repeatingFullRamp, and repeatingFullRamp:.

bpm: has a resting value of 0 and changes to 1 periodically, at a rate specified in beats-per-minute (the
same way you would specify a tempo using a metronome marking). It remains at 1 for half the time be-
tween beats and then returns to 0 before the next beat. These expressions are typically used in Gate or
Trigger fields in order to periodically trigger the Sound. For example,

!KeyDown bpm: 60

would become 1 once per second whenever and for as long as a MIDI key is held down, and

1 bpm: (!Rate * 208)

would repeat at an adjustable rate from 0 up to 208 beats per minute. To convert a rate in terms the num-
ber of seconds between beats into a value in beats per minute, divide 60 by the number of seconds
between beats. For example

1 bpm: (60.0/3)

would trigger your Sound once every three seconds. You can use this is in a DiskPlayer to “loop” a sam-
ple being read from disk by putting the natural duration (without units) of your recording in as the
number of seconds between repetitions,

1 bpm: (60.0 / durationOfSample)

bpm:dutyCycle: is like bpm: except that you can control the amount of time that it remains at a value
of 1. A duty cycle of 0.5 means that it stays at 1 for half of the duration between beats. A smaller duty
cycle means that it will stay at 1 for less time, and a larger duty cycle means it will stay at 1 for a longer
amount of time. A duty cycle of 0 means that it will never go to 1 and a duty cycle of 1 would mean that
it sticks at 1 forever.

1 bpm: 120 dutyCycle: 0.25

481

Random Numbers
random is a message sent to a time. It generates a new random number between -1 and 1 at the periodic
rate. For example,

2 s random

would generate a new number once every 2 seconds.

nextRandom is typically sent to an Event Value that is acting as a trigger. It generates a random number
between -1 and 1 each time the trigger becomes positive. For example,

!KeyDown nextRandom

would generate a new random number each time you pressed a key on the MIDI keyboard.

Smoothing
There are two operations that smooth out or filter the changes between sequential real-time expression
values.

!Fader1 smooth: 2 s

will take two seconds to get from the old value of !Fader1 to its new value, rather than jumping in-
stantly to its new value.

!Fader1 smoothed

will use a default value of 100 milliseconds as the time it takes to get from the old value to the new value.

For example, to add portamento to a Sound, you can smooth its frequency parameter using

!Pitch smoothed

or,

!Pitch smooth: 25 ms

for a quicker portamento.

Virtual Control Surface

To open the virtual control surface, choose Virtual control surface from the File menu.§ The virtual con-
trol surface allows you to monitor and control Event Values in the currently loaded Sound. The virtual
control surface is global; it will change whenever you load a different Sound.

The faders, toggles and gates in the virtual control surface serve two functions: they can be used to con-
trol Event Values directly from the virtual control surface; they also display any changes made to the

§ By default, Kyma opens the virtual control surface automatically for you whenever a Sound is played, see

Performance… on page 430.

482

Event Value via the MIDI input of the signal processor or by some other software running on your com-
puter. ‡

The Event Values displayed in the virtual control surface are organized alphabetically from left to right.
Each type of control: annotations, oscilloscope and spectrum analyzer displays, faders, gates, small fad-
ers, and toggles occupies a separate row on the virtual control surface. The type of display a particular
Event Value will have depends on the settings in the local or global map that defines the Event Value; see
Virtual Control Surface and Mappings on page 483. Any Event Value not defined in a map will be dis-
played as a fader. See the quick reference on page 212 for information on how to use the controls within
the virtual control surface.

When you use an Event Value that is defined in the global map, the specified Event Source will supply
values to that Event Value. If you use an Event Value not defined in the global map, Kyma will create a
new Event Source that gets its value from the virtual control surface.

Global and Local Maps

Unless you specify otherwise, Event Values in your Sounds are evaluated in the context of a global map
that associates Event Values with Event Sources. You can override the global map by using a local map
specified in the Map field of a MIDIMapper Sound.

The Global Map
To edit a global map, choose Open… from the File menu, select Global map as the file type and select the
global map file to edit. You can create a new global map by choosing New… from the File menu and by
selecting Global map as the new file type.

The global map editor is simply a text editor. Make changes to the global map as you would to any text
file, choosing Save, Save as…, or Close from the File menu to save any changes that you have made. Use
Choose global map… from the File menu to tell Kyma which global map to use when compiling Sounds.

Your system arrives with a default global map, but you may find that a customized global map is helpful
when working with the MIDI controllers found in your studio. To see the default map on-line, choose
Open… from the File menu, select Global map as the file type, then select the file named Default (in
the Global Maps folder) from the file list.

You can create your own customized global map that corresponds to the specific MIDI devices that you
use with Kyma. For example, Kyma comes with example global maps for use with the Peavey PC 1600
MIDI controller (called PC1600) and the Buchla Lighting wand-based controller (called Lighting).

It is a good idea to create a new map rather than modifying the default map and saving it; that way you
always have the original map to use as a reference.

You can also override the global map locally. To override or extend the global map, use a MIDIMapper
Sound. In the Map parameter of the MIDIMapper, you only need to enter the associations that are differ-
ent from the associations in the global map. When you use a MIDIMapper to change the global map, the
changes you make affect only Sounds to the left of the MIDIMapper in the signal flow diagram and only
for the duration of those Sounds — not in any permanent way.

Specifying the Map
A map (whether in the global map file or in the Map field of a MIDIMapper Sound) associates Event Val-
ues with Event Sources.

There are several ways to specify this association, all variants of the following syntax:

!anEventValue is: `anEventSourceOrExpression.

‡ To send MIDI data to Kyma from another program, connect your keyboard controller to the MIDI input on your

computer or MIDI interface, connect the MIDI output of your MIDI interface to the MIDI input of the signal proc-
essor; then run Kyma and the other program simultaneously. (It is recommended that you switch off your
computer when connecting MIDI cables.) Remember that when you want to use Kyma alone you might have to
explicitly patch a MIDI thru connection using a MIDI patcher on your host computer.

483

For example,

!Volume is: `MIDIController07.

You could enter !Volume as the value of the Scale parameter in a Sample; the map would then associ-
ate the Scale parameter with MIDI controller 7 data on the default MIDI channel (as specified in
Configure MIDI… under the DSP menu).

Event Values can be combinations of Event Sources and constants. For example,

!Pitch is: (`MIDIKeyNumber + (`MIDIPitchBend displayAs: #nothing)) nn.

Defines !Pitch to be the key number found in incoming MIDI note-on events offset by the incoming
value of the pitch bend wheel (which will not show up in the virtual control surface). In this example, the
pitch bend can contribute up to a half-step variation in the pitch. You can change the range of pitch bend
to an octave variation by using

!Pitch is: (`MIDIKeyNumber + (12 * `MIDIPitchBend)) nn.

in the global map.

When the global map is used to supply Event Values, Kyma uses the default MIDI channel number given
in Configure MIDI… under the DSP menu. A MIDIVoice or MIDIMapper Sound can override the de-
fault MIDI channel for its input Sound by specifying the channel number in the Channel field.

Event Source Options
The Event Sources on the right side of each association in the map can have additional options controlling
MIDI channel, value scaling, and presentation in the virtual control surface.

You can override the default MIDI channel specification by adding a channel: tag to the specification of
the Event Source:

!Volume is: (`MIDIController07 channel: 5).

This tells Kyma that !Volume is associated with continuous controller number 7 on MIDI channel 5. No-
tice that parentheses must enclose the Event Source whenever a tag is used.

You can specify how the Event Source should be scaled prior to being used as an Event Source:

!Volume is: (`MIDIController07 min: 0.5 max: 0.75).

Kyma will scale the normal (0,1) range of the MIDI continuous controller to the specified range of
(0.5,0.75).

You can also restrict the values to fall on a grid:

!Volume is: (`MIDIController07 min: 0.5 max: 0.75 grid: 0.05).

In this case, !Volume can only be one of the values 0.5, 0.55, 0.6, 0.65, 0.7, or 0.75.

You can specify whether changes in the Event Source result in linear or logarithmic changes in the Event
Value. By default, a change in the Event Source results in a linear change to the Event Value. To cause
logarithmic changes, use:

!Volume is: (`MIDIController07 taper: #log).

You can combine these options by separating them by semicolons, as in:
!Volume is: (`MIDIController07 channel: 5; min: 100 max: 1000 grid: 50; taper: #log).

Virtual Control Surface and Mappings
By defining the controller type in the map, you determine how controllers associated with Event Values
will appear in the virtual control surface. Controllers can be one of three types: faders, toggles, or gates.
Faders are commonly associated with continuous controllers. Toggles are typically used to switch from
one state to another (i.e., you can use a toggle to switch something on until you want to switch it off).
Gates are like momentary buttons; they are on for as long as they are held down, and they turn off as
soon as the button is released. (For example, the damper pedal is typically interpreted as a gate.)

484

Defining a controller type in the global map affects only the way in which the control appears in the vir-
tual control surface; faders show up as (you guessed it) faders, gates show up as buttons, and toggles
show up as check boxes.

If you want a controller to show up as a fader in the virtual control surface, you would use

!Brightness is : (`MIDIController64 displayAs: #fader).

If you want a controller to show up as a numeric entry box in the virtual control surface, you would use

!Brightness is : (`MIDIController64 displayAs: #smallFader).

You can use this kind of screen control as a fader as well. Hold down the Command or Control key
while pressing the mouse button in the numeric entry box; vertical mouse movements will then be inter-
preted as if you were moving an invisible fader.

If you want the controller to show up in the virtual control surface as a check box (allowing only values of
0 or 1 for brightness), use

!Brightness is : (`MIDIController64 displayAs: #toggle).

If you want it to show up in the virtual control surface as a button (i.e., so that its output is 1 when you
hold down the button and 0 otherwise), use

!Brightness is : (`MIDIController64 displayAs: #gate).

If you do not want the controller to be displayed in the virtual control surface, use

!Brightness is : (`MIDIController64 displayAs: #nothing).

Compiled Sound Grid

The Compiled Sound grid is useful for organizing Sounds to be used in an interactive performance envi-
ronment (which could include musical performances, psychoacoustic tests, classroom demonstrations, or
any other environment where a user selectively loads Sounds whose ordering and timing are not prede-
termined). The grid provides a means for quickly loading and starting Sounds that have already been
compiled, simply by clicking in a box in the grid or by sending a MIDI program change with the number
indicated in the box.

Creating a Compiled Sound Grid

To create a compiled Sound grid, select New… from the File menu, then choose Compiled Sound grid as
the file type. The interface for a compiled Sound grid consists of a grid of 128 boxes, a program channel
field, and an On check box. Each numbered box in the grid corresponds to a MIDI program number. To
associate a Kyma Sound with a specific MIDI program number, drag the Sound into the corresponding
box. To edit a Sound in the grid, make sure the On box is unchecked and then double-click the Sound in
the grid.

The Program Channel Field
The value you enter in the program channel field determines the MIDI channel on which Kyma looks for
program changes. To set the channel, type in the number of a MIDI channel and press Enter. This setting
does not affect the MIDI channels on which the Sound(s) can receive or send MIDI information other than
program changes. In other words, all other MIDI events are received on the default MIDI channel. This
default channel need not be the same channel on which you choose to receive program changes.

Using the Compiled Sound Grid

When you have finished making the associations between Sounds and program numbers, choose Com-
pile to disk… from the Action menu; this compiles each Sound, stores the compiled Sound on the disk in
Kyma’s temporary folder, and names each file using a unique number. Compiling also stores copies of
the samples that would be loaded into sample RAM and copies of any MIDI files needed to play the
Sounds, as well as saving the global map, the current number of expansion cards, the available wavetable
memory, and the full file names of any sample files (such as digital recordings) used in the Sound.

486

Because the compiled Sounds do not automatically update if you make changes to the original Sounds or
any of the samples or MIDI files the Sounds may depend upon, you should recompile the compiled
Sound grid if you make changes to these files or any time you update your Kyma software or hardware
to a different version. To force all Sounds in the grid to compile, choose Compile to disk… from the Ac-
tion menu and click on the All Sounds button.

Once you have compiled the Sounds in the grid, you can use the grid by clicking in the On check box.
When the On box is checked, an incoming MIDI program change causes Kyma to load the corresponding
Sound. You can also load any Sound in the grid by clicking once in its box in the grid.

Since you can play Sounds, save Sounds, edit Sounds, and organize Sounds in a compiled Sound grid,
you may prefer to use these grids in place of Sound file windows as your basic workspace in Kyma.

Spectrum Editor

A spectrum file contains a collection of tracks; each track consists of an amplitude and a frequency enve-
lope that describe the change over time of the amplitude and frequency of a single sine wave oscillator.
The amplitude and frequency values at one specific point in time for all of the tracks is called a frame.
Spectrum files are typically created using the Spectrum Analysis Tool or a third-party program such as
Lemur.§

Opening a Spectrum File

Open the spectrum editor on a file using Open… from the File menu or by double-clicking a spectrum
file in the file organizer.

The band across the top is reserved for showing marker positions and track information. The large color
area in the center is for displaying the spectrum.‡ The buttons across the bottom are for editing and dis-
play operations. They are grouped to correspond with the function keys on your computer keyboard.

Spectrum Display

In the center area of the editor, time is shown from left to right, frequency from bottom to top, and am-
plitude is mapped to color: the bright colors like yellow and green are the largest amplitude, then the
blues and purples, with red (and black) showing the smallest amplitudes.

The horizontal lines are the tracks. Each track corresponds to an amplitude and frequency envelope for a
sine wave oscillator. The change in the color of a track as you trace it from left to right corresponds to the
amplitude envelope on that oscillator. The change in vertical position from left to right corresponds to the
frequency envelope.

To display information on a particular track at a particular point in time, place the mouse over that track
(without clicking down). The track number and the time in seconds corresponding to the mouse location,
the amplitude in dB (where 0 dB is the maximum), the raw amplitude value§ (where 127 is the maxi-
mum), and the frequency in hertz are displayed in the upper part of the editor.

§ For more information on the Spectrum Analysis Tool, see Tools menu: Spectral Analysis on page 443. Lemur is

available from http://datura.cerl.uiuc.edu.
‡ Since the spectrum editor uses color extensively, some of the screen images in this section may not reproduce well

in the printed version of this manual.
§ Raw amplitude values are used by the track selection and track filtering options.

488

Display Amplitude Envelopes
By default, the spectrum editor displays frequency on the vertical axis and time on the horizontal axis. To
switch to showing amplitude on the vertical axis, use the button that toggles between amplitude and fre-
quency. In this mode, frequency is not shown at all (other than the general tendency that the higher
numbered tracks are centered at higher frequencies). This mode makes it possible for you to change an
amplitude envelope by drawing all or part of it in by hand.

When you are displaying in amplitude mode, the vertical axis is labeled AMP in red (rather than FREQ in
green).

Join the Dots
Pressing the join-the-dots button toggles between displaying each time point (frame) for each track as an
isolated dot, or by connecting the time points (frames) for each track by lines. Join-the-dots mode only
takes effect at higher magnifications where there are large gaps between the frames (and thus, between
the dots).

Selecting and Deselecting

To select a single track, click on it. You will hear that track and its color will become brighter to indicate
that it is selected. To extend the selection, hold the Shift key down while making another selection. Oth-
erwise, the current selection will be deselected before a new selection is made. To select any of tracks 1
through 10, type the corresponding number on the computer keyboard (use 0 to select track ten). To se-
lect the track above the currently selected one, use the up-arrow key (and similarly to select the track
below the selected one, use the down-arrow key).

Anytime you make a selection, the selected tracks or portions of tracks are immediately played so you
can hear what you just selected.

Selecting Regions
To select a region that includes several tracks, use the mouse to draw a box around the region. You can
extend boxed selections in the same way that you extend single track selections, by holding the Shift key
down when you make the new selection.

To deselect a smaller box contained within a selected region, hold the shift-key down and draw a box
around the region to be deselected. This will leave a “hole” in the middle of the selected area. As long as
you begin drawing the new box inside a selected region, the new box will be deselected and leave a hole
in the selected area. If you begin drawing a new box from a point outside the selected area, the new box
will extend the current selection (even if it intersects the selected region).

F10

F11

489

Using Selection Criteria
To select tracks according to some criteria, press the selection criteria button. This presents you with a list
of options for selecting tracks:

Amplitudes within a range selects only those tracks and frames whose raw amplitude values§

fall within the specified range

Above amplitude threshold selects only those tracks and frames whose raw amplitude value ex-
ceeds the given threshold

Complement selection selects all tracks and frames that are not currently selected

Even tracks selects the even numbered tracks only

Odd tracks selects the odd numbered tracks only

Octave harmonics selects tracks whose numbers are a power-of-two

Fibonacci tracks selects tracks numbered (1, 2, 3, 5, 8, 13…)

Prime numbered tracks selects tracks whose numbers are prime (1, 2, 3, 5, 7, 11, 13…)

Playing

The leftmost play button plays all tracks. Pressing the F1 key also plays all tracks. The button to the right
of that one is for playing the selected regions only. Pressing F2 also plays the selected tracks only. To play
the segment marked by begin and end loop markers, use the button third from the left, and the button
fourth from the left is used for playing everything but the segment marked by the begin and end loop
markers.

F1 F2 F3 F4

When you move the scrub bar with the mouse, with MIDI pitch bend, or using the left/right arrow keys,
you will hear either all tracks or the selected tracks only, depending upon which of the play buttons was
used last.

Scrubbing

To hear different sections of the file, use the mouse to drag the vertical yellow scrub bar over the regions
you would like to hear. If you hold down the Shift key while dragging the scrub bar, the scrub bar will
always jump to the mouse location rather than smoothly approach the mouse location.

You can also use MIDI pitch bend to move the scrub bar. To step the scrub bar one frame to the left or one
frame to the right use the left and right arrow keys.

Zooming in/out

To zoom closer, that is, to look in more detail at a smaller region of the display, use Zoom in (Ctrl+]) from
the Edit menu.

Alternatively, you can zoom in on a region of interest by holding down the Control or Command key
while drawing a box around the area of interest. The editor will magnify the boxed region so that it fills
the entire area of the display.

To zoom back out again use Zoom out (Ctrl+[) to zoom out in steps, or press the full display button to
zoom all the way out.

§ The raw amplitude value is the value shown in parenthesis in the information area when you pass the mouse over a

track.

F12

F9

490

Markers

You can use markers to label different time points in the spectrum file. Click the marker button to place a
marker at the current location of the scrub bar. The markers are associated with labels (strings) and stored
in the header of the spectrum file the next time you save the file. By default the name of a marker is ‘m’
followed by the time in frames. To change the label, select the marker and hit Enter or Return.

The next two buttons place special markers for the beginning and ending points of a loop. The SumOfSi-
nes Sound uses the begin and end loop markers to loop the analysis file during resynthesis.

The button with a circle on it lets you set a pre- and post-roll time. This is the amount of time prior to the
loop start and after the loop end that you will hear when you hit the play-between-loop-markers button.

Clearing and Deleting

There are two ways to “remove” material from the spectrum. One is to simply set the amplitude of the
track to zero for all or part of its duration. The other is to actually delete the material from the analysis
file.

Clearing
To zero the amplitude of the selected tracks or portions of tracks, use Clear from the Edit menu. To zero
the amplitudes of everything but the selected region, use Trim from the Edit menu. Zeroed tracks are
displayed in dark gray and no longer contribute to the resynthesis.

To restore a grayed-out track to its original amplitude, select it. To permanently zero the amplitude in
such a way that it can no longer be restored through selection, save the file to disk (choose Save or Save
as… from the File menu).

Deleting
Deleting time frames from a file is done in two steps.

The first step is to mark the beginning and ending of the segment of time that is to be deleted using the
begin loop and end loop markers. To place the start marker at the current position of the scrub bar, press
the start loop button.

Similarly to place an end loop marker at the current position of the scrub bar, press the end loop button.

To listen to the marked time segment, use the play-between-markers button.

To delete the marked time frames use the scissors button. This will remove the marked time frames. To
effect a permanent removal of the time frames, choose Save or a Save as… from the File menu.

Copy and Paste

To create a new spectrum file based only on the tracks and times within the selected region, use Copy
(Ctrl+C) from the Edit menu. Kyma will prompt you for a name for the new spectrum file. To create a
Kyma Sound based on this new spectrum file, click in a Sound file window and Paste (Ctrl+V).

Modifying

The amplitude and frequency envelopes associated with each track can be modified by redrawing them
or by applying a “filter” or algorithm to all tracks within the selected region.

F5

F6 F7

F8

F6

F7

F3

F14

491

Drawing Mode
You can redraw any part of a single amplitude or frequency envelope using the mouse. To redraw part of
an envelope, first choose whether you want to edit amplitude or frequency envelope by toggling the A/F
button. Then select the envelope to be edited and zoom in on it so you can see it in detail. When you are
ready to start drawing, click on the draw button.

While in draw-mode, you can use the mouse as a pen, redrawing sections of the selected envelope. You
will also hear the results of your redrawing as you edit. Be careful to turn off draw-mode by hitting the
pencil button again before you use the mouse for anything else (because you can inadvertently alter the
envelope by clicking anywhere in the display while in draw mode).

When you are in drawing mode, you hear exactly what you are drawing in either the amplitude or the
frequency envelope.

Algorithmic Modifications to Tracks
By pressing the track-filters button, you can get a list of algorithmic modifications that can be applied to
the selected tracks. These are filters, not in the audio sense, but in the graphical sense that they smooth or
otherwise modify the graphical representation of the amplitude or frequency envelope.

Scale amplitudes Scale the amplitudes of the selected by the given amount.

Replace amplitude with average For each selected track, replace the amplitude envelope with a constant
envelope of the average amplitude value.

Smooth amplitude For each selected track, replace each single amplitude envelope value
with the average (mean) of the neighboring group of values. You are
prompted for the size of the neighborhood.

Remove outliers in amplitude For each selected track, replace each single amplitude envelope value
with the middle value (median) of the neighboring group of values. You
are prompted for the size of the neighborhood.

Force to harmonic frequency You are prompted for the number of a “harmonic” guide track. The fre-
quency envelope of each track in the selection is replaced with a copy of
the guide track frequency envelope that has been scaled according to the
ratio of the track number to the guide track number.

For example, if track 4 is selected, and track 2 is the guide track, track 4’s
frequency envelope will be set to a copy of track 2’s frequency envelope
moved an octave higher (two times the frequency of track 2).

Replace frequency with average For each selected track, replace the frequency envelope with a constant
envelope of the average frequency value.

Smooth frequency For each selected track, replace each single frequency envelope value
with the average (mean) of the neighboring group of values. You are
prompted for the size of the neighborhood.

Remove outliers in frequency For each selected track, replace each single frequency envelope value
with the middle value (median) of the neighboring group of values. You
are prompted for the size of the neighborhood.

Add noise to frequency You are prompted for the amount of frequency deviation and the rate of
change of the deviation. For each selected track, this track filter adds a
random amount of frequency deviation.

Arpeggiate Staggers the selected tracks in time, with the higher numbered tracks
delayed by proportionally more time. You are prompted for the amount
of time to delay each track relative to the previous track.

F9

F15

F13

492

Samples

A sample file is a digital recording of a signal; it stores the instantaneous amplitude versus time of the re-
corded signal. A sample file usually contains a header in a specific format; the header contains information
about the way the sample was recorded (for example, the sample rate of the recording, the number of
channels recorded, and the resolution of the recording). Kyma can work with sample files in the AIFF,
SD-I, SD-II, SF/IRCAM/MTU or WAV formats.

The sample memory (also called sample RAM) on the signal processor is like the RAM on your computer; it
is volatile memory that provides only temporary storage, but offers faster access times and more flexibil-
ity than the computer’s hard disk. Kyma uses sample memory for delay lines, samples, and wavetables
(single cycles of standard waveforms, such as sine waves or envelope functions). Sample memory can
either be automatically loaded from a sample file stored on the host computer’s hard disk, or it can be
written in real time by a Sound.

The sample editor provides basic cutting and splicing tools for manipulating sample files.

What is a Wavetable?
There are two uses for the word “wavetable” in Kyma. One use refers to the size of a block of memory in
the Capybara sample RAM and the other use refers to how a sample file is intended to be used.

When Kyma uses the Capybara sample memory, it allocates the memory in chunks of 4096 samples.
These 4096 sample long chunks are called wavetables. Standard configurations have either 255 or 1023
wavetables. Sometimes you will see messages referring to the amount of sample RAM in terms of these
wavetables.

The parameter names of the Sound modules have been chosen to assist you in understanding how Kyma
will use the recording stored in the sample file. Typically, a Wavetable field is used to specify a mono-
phonic sample file that contains exactly one cycle of a waveform of exactly 4096 sample points (one
wavetable long). Other fields (for example, Sample) in which you specify sample files generally assume
that the file contains an arbitrary digital recording of arbitrary length. To be sure of the kind of digital
recording a specific Sound requires, see the on-line help for that parameter by clicking on the name of the
parameter in the Sound editor.

Using Sample Files

Kyma Sounds are not digital recordings. The typical Kyma Sound is a set of instructions telling the Capy-
bara how to generate an audio signal in real time. There are two fundamental advantages to this
approach: an instruction list takes up much less memory than the equivalent digital recording, and in-
structions can be more flexibly modified than digital recordings.

There are times, however, when you will want to create, store and play digital recordings stored in sam-
ple files. In Kyma, recording to the hard disk allows you to

♦ sample live input from the A/D converter or other sources

♦ record any Kyma Sound as a sample

♦ export samples to other programs

♦ build up complex textures through multi-tracking, or

♦ pre-compute subsections of a Sound that is too complex to compute in real time

Kyma also has the complementary ability to play digital recordings stored on the hard disk, so you can
listen to Sounds you have recorded in previous sessions. Because Kyma can recognize sample files in a
variety of formats, the program’s ability to play disk recordings also allows you to import samples from
other sources (CD-ROM sample collections and hard disk recording software, for example).

494

Exporting, Importing and Post-Processing
Kyma’s ability to record and play sample files allows you to exchange files between Kyma and other
synthesis and editing environments. For example, you can use Kyma to design Sounds, record the
Sounds into sample files, then edit, mix and sequence the sample files using a different program (like a
DAW or an audio sequencer). You could also exchange Sounds with a colleague who doesn’t have Kyma.

Kyma can exchange sample files with any program that recognizes AIFF (Audio Interchange File For-
mat), WAV (Microsoft Wave), SF/IRCAM/MTU, or SD-I and SD-II (Sound Designer I and II) files.

Regardless of whether your sample files were generated in Kyma or another program, Kyma lets you
play them directly from the hard disk using a DiskPlayer, MultifileDiskPlayer, KeyMappedMultisample,
or a DiskSplicer (all found in the Disk category of the system prototypes), or from sample memory using
Sample, MultiSample, or KeyMappedMultiSample (all found in the Sampling category), or from either
the hard disk or sample memory using the GenericSource (found in the Sources category). You can add
reverberation, mix it with Sounds generated in Kyma, do filtering; in short, you can treat these Sounds
like any other Sound in Kyma. Then, once you have processed the sample file to your satisfaction, you
can record the processed version to the hard disk as a new file.

Playing and Editing
You can play back sample files by choosing Play… from the File menu and then selecting the sample file
you wish to play from the file dialog. To see the files graphically and make minor edits, select Open…
from the File menu and choose Sample file as the file type (see Sample Editor on page 501 for more in-
formation). You can also play sample files using the DiskPlayer, MultifileDiskPlayer, DiskSplicer,
Sample, MultiSample, KeyMappedMultiSample, and GenericSource Sounds. Alternatively, you can play
and edit sample files from the file organizer, see File menu: File organizer on page 424.

DiskPlayer, MultifileDiskPlayer, DiskSplicer, and KeyMappedMultisample and GenericSource (if set to
play from disk) play sample files directly from the hard disk of your computer. The number of sample
files you can play directly from disk at any one time depends on the speed of your computer’s hard disk
and disk driver software. (At a 44.1 khz sample rate, you should be able to play three or four simultane-
ous monaural sample files.) You can, however, build up arbitrarily complex Sounds by recording to disk,
playing back from the disk with modifications and additions, and recording the modified Sound into an-
other disk file, ad infinitum (or at least until you run out of disk space).

Sample, MultiSample, KeyMappedMultiSample, and KeyMappedMultisample and GenericSource (if set
to play from RAM) play sample files from the RAM of the signal processor. Because of this, these Sounds
are restricted to playing sample files that can fit in the sample memory. However, when the sample is
stored in sample memory, it is possible to play through the sample in different ways, including in reverse
and with arbitrary, moveable loop points.

495

DiskPlayer
You can play back a recording from the hard disk by using a DiskPlayer Sound. A DiskPlayer can be
treated like any other Kyma Sound.

MultifileDiskPlayer
The MultifileDiskPlayer is similar to the DiskPlayer, except that you provide it with a list of sample files.
The Index field provides a real time way of choosing which sample file to play when the MultifileDisk-
Player is triggered. See the Prototypes Reference beginning on page 218, the on-line help, and the
examples that come with Kyma for more information about this Sound.

DiskSplicer
Another way to play back sample files is to use a DiskSplicer. A DiskSplicer Sound allows you to play all
or part of a samples file; it also lets you splice together segments from one or more samples files. With a
DiskSplicer Sound you can perform non-destructive graphic edits on multiple samples files.

 Segments Fields and Controls

The left half of the Segments field provides an overview of all of the sample files as they are currently
spliced together. Click and drag in this part of the field to select the portion to be displayed in the right
half of the Segments field. Click and drag in the right half of the Segments field to make a selection.
Cut, Copy, Paste, Clear, and Trim from the Edit menu operate on this selection.

496

The icon buttons perform actions that apply to the selection (with the exception of the left and right arrow
buttons). From left to right, the buttons perform the following actions:

scrolls one page of samples to the left

plays the currently selected samples

pastes a disk file over the selection

causes selection to exactly fill the display area

contracts the display in the time direction

expands the display in the time direction

contracts the display in the amplitude direction

expands the display in the amplitude direction

scrolls one page of samples to the right

Information on the selection is also shown in the field below the overview display. The value on the left
displays the magnification of the selection. The values on the right displays the size and range of the se-
lection. Click these fields to change their units.

To play a sample file using a DiskSplicer, drag one from the system prototypes into a Sound file window
and open it. To replace the default samples provided in the prototype with the sample file you wish to
play, select the entire right half of the Segments field using Select all from the Edit menu. Click the disk
button and select the sample file you want to play from the file list. The samples from this sample file will
appear in the Segments field.

Unlike a DiskPlayer, a DiskSplicer does not automatically change the sample rate of a sample file to
match that of the current sample rate or to match the sample rates of the other files in the same
DiskSplicer. For example, if your signal processor is set to a sample rate of 44.1 khz and you splice in part
of a file that was originally recorded at a sample rate of 22.05 khz, the spliced section will play back at
twice the speed and frequency of the original recording.

Sample, MultiSample and KeyMappedMultiSample
A Sample plays back the sample file after first loading it into the sample memory. It can play its sample
back in reverse, and it has real-time adjustable loop points.

The MultiSample and the KeyMappedMultiSample are similar to the Sample, except that you can provide
a list of sample files. See the Prototypes Reference beginning on page 218, the on-line help, and the exam-
ples that come with Kyma for more information about these Sounds.

497

GenericSource
A GenericSource can play back a sample file either directly from the hard disk or from RAM after the
sample file has been loaded into the sample memory. It can play either or both channels of the sample
file, and includes an attack/release envelope.

Recording to the Hard Disk
You can make recordings to the hard disk using the tape recorder tool (see Tools menu: Tape Recorder on
page 442), Record to disk… from the Action menu (see Action menu: Record to disk… on page 437), the
DiskRecorder Sound, or the DiskCache Sound. Like other Kyma Sounds, DiskRecorder and DiskCache
can be placed anywhere in a Sound’s structure, allowing you to schedule a recording to disk at a certain
time during a Sound. You can also have multiple and simultaneous DiskRecording and DiskCache
Sounds within the same Sound structure.

 DiskRecorder Sound

You can use a DiskRecorder Sound to make digital recordings. Using a DiskRecorder as an input in a
larger Sound structure allows you to record to disk at a specific point in time and a specific point in the
signal flow diagram within a complex Sound.

To use a DiskRecorder, edit its parameters, make your recording format choices, name the destination
sample file, and drag the Sound you want to record into the DiskRecorder’s Input field. Choose 0 s for
the CaptureDuration if you want to record for the duration of the DiskRecorder’s input, otherwise,

498

enter the length of time you want to record. The recording will take place when the Trigger becomes
positive; if Gated is checked, the recording will stop when Trigger becomes zero or negative, and will
resume when Trigger becomes positive again.

 DiskCache Sound

If your Sound is too complex to be played in real time, you can ease the computational burden on your
Capybara by replacing part of the Sound with a DiskCache Sound. A DiskCache computes its input and
records it to disk only if Record is checked. When the Record parameter is unchecked, the DiskCache
reads the recording stored on the disk.

In the following example, everything to the left of the DiskCache has been computed ahead of time and
recorded in a disk file. When you play the Sound, the cached part of the structure can be read from the
disk rather than generated in real time — thus easing the computational load on the signal processor.

Traditionally, when you make a recording you lose the history of how the recorded sound was created.
Using the DiskCache in Kyma, you can preserve the structure that you used to generate the samples,
making it easier for you to come back later and make changes to the parameters of the generating Sound.

Using Sample Memory

Many Sound modules in Kyma use sample memory in order to carry out their functions. For example,
Sample plays a sample out of sample memory, and GrainCloud uses the grain waveform and the grain
envelope stored in sample memory to create its output.

There are several different ways that the Capybara uses sample memory:

♦ for storing an entire digital recording

♦ for storing one cycle of periodic functions

♦ for storing control parameters

♦ for delay lines

♦ to hold the intermediate results of a calculation

In all cases, Kyma manages the memory allocation automatically.

To use a sample file in a Sound, click on the disk button in the parameter field and select the name of that
sample from the file list, or simply type the name into the field.

499

The Kyma Sound compiler allocates a portion of sample memory for every parameter field in which you
specify a sample file. The compiler can then do one of several different things:

♦ If the Sound has FromMemoryWriter checked, the compiler tries to make this Sound use the same
sample memory that a MemoryWriter in the same Sound structure and with the same name for its
RecordingName parameter has written, see Writing Sample Memory In Real Time, below.

♦ If the parameter field is set to Private, the compiler will not allow the sample memory to be shared.
Private memory is typically used as delay lines for filters or reverberators, or in other situations
where the sample memory is only needed internally for the duration of the Sound.

♦ Otherwise, Kyma assumes the parameter field names a sample file on the hard disk and tries to locate
it. (See How Kyma locates files on page 431 for more information.) If Optimize Sample RAM Use
(see Performance… on page 430) is on, Kyma will load the sample file onto only the expansion cards
that require it; otherwise, Kyma will load the sample file onto all expansion cards. Note that all
Sounds that use a sample file on a particular expansion card will share the same sample.

Writing Sample Memory In Real Time
If you are using Kyma as a real-time performance tool, there can be situations in which you might want to
capture a sound and play it back later during the performance. You can use a MemoryWriter Sound to
write the output of any other Sound (including ADInput) into sample memory in real time. Once written,
that section of sample memory can be read by any Sound that can access sample memory as long as that
Sound has FromMemoryWriter checked.

In the following example (a Concatenation of a MemoryWriter followed by a Sample), the inputs write to
and read from sample memory:

MemoryWriter captures one second of the ADInput in a segment of sample memory named recTable.
After that the Sample reads recTable for a duration of one second, thus playing back the recording that
was just made. When you load this Sound, Kyma reserves one second of time in the sample memory, and
it protects this memory until the last time it is read by the Sample at time 2 s. Then it releases the memory
for use by other Sounds.

A sample written by MemoryWriter Sounds is ephemeral by nature; it is protected in sample memory
only for the duration of the Sound(s) for which it is a parameter. When the last Sound to reference that
sample finishes playing, the sample memory used by the recording is made available for recycling. To
guarantee that a sample persists for longer than the Sound in which it is recorded, use a DiskRecorder or
a DiskCache Sound to write the sample to disk rather than to sample memory.

500

Feedback
Typically, you use the FeedbackLoopInput and FeedbackLoopOutput Sounds to feed back the output of a
Sound back into its input.

You can also use MemoryWriters to create regeneration effects and other types of feedback. For example,
to specify the following system:

+u(n) y(n)

z-1A

as a Sound, you could use a MemoryWriter to write into the sample memory and an Oscillator to read
out of that same memory after a one-sample delay:

Sample Memory Warning Messages
Each of the expansion cards in your Capybara has its own sample memory. If a MemoryWriter writes
into the sample memory on one expansion card and the Sound that reads out of that sample memory
cannot be scheduled on the same expansion card, you will get an error message. The easiest solution to

501

this problem is to write the samples to the sample memory of all the expansion cards by checking
Global in the MemoryWriter.

If you inadvertently try to read from memory before you have written anything there (or if you write to
memory and never read what you have written), you will also get a warning message. You can usually
solve this problem by putting a TimeOffset on the Sound that reads the memory.

Sample Editor

The sample editor can be used to edit or create AIFF, SD-I, SD-II, SF/IRCAM/MTU or WAV format sam-
ple files stored on the hard disk of your computer.

Select New… from the File menu, choose Sample file as the file type, and press Enter or click OK to cre-
ate a new sample file. Select Open… from the File menu and choose Sample file as the file type to open a
sample editor on an existing sample file. Alternatively, double-click a sample file name in the file organ-
izer, or click the Disk button while holding down the Command or Control key in a parameter field of
the Sound editor.

There are two parts to the editor: the graphic editor (top half) and the generator templates (bottom half).
The graphic editor displays a graphic view of the samples versus time and is primarily used for editing
what is already there. The generator templates section provides both templates and short Smalltalk pro-
grams for generating new samples.

Graphic Editor
The top half of the graphic editor provides an overview of the entire sample file. Click and drag in this
part of the editor to choose the portion of the sample file to be displayed in the lower half of the graphic
editor. Click and drag in the lower half of the graphic editor to select the samples you wish to manipulate
or play. Cut, Copy, Paste, Clear, and Trim from the Edit menu all operate on this selection.

The numbers to the right of the overview provide information on the selection. The upper number tells
you the magnification of the waveform shown in the lower half of the graphic editor. The lower numbers
tell you the beginning and ending times of the current selection, with the total duration indicated in pa-
rentheses. Click on the numbers to switch between dB and linear scales and between seconds and
samples.

The buttons between the top and bottom sections of the graphic editor perform operations on the selec-
tion and control the placement and size of the detailed view in the lower half of the editor.

From left to right, the buttons perform the following actions:

scrolls one page of samples to the left

plays the currently selected samples

pastes a disk file over the selection

causes selection to exactly fill the display area

contracts the display in the time direction

502

expands the display in the time direction

contracts the display in the amplitude direction

expands the display in the amplitude direction

additional options (e.g. edit header information)

scrolls one page of samples to the right

To edit the information in the file’s header, click on the additional options button (…) and select Edit
info.

In this dialog, you can change the file’s format and the information stored in its header. For example, you
can select the start and end times of a sustain loop (this loop information is used by the Sample Sound).

Generator Templates
The generator templates generate new waveform segments that replace the selection in the graphic editor
when you click the Insert button. If nothing is selected in the graphic editor, the new segment will be in-
serted into the file at the insertion point when you click Insert.

The pop-up menu in the upper left of the generator section includes several templates for generating
standard shapes or functions. The pop-up list also includes a short Smalltalk program corresponding to
each of the templates, so you can modify the code or use the template code as an example or starting
point for writing your own function-generating program.

To select a template, click on the arrow to the right of the list. You will see a hierarchical pop-up list. Se-
lect the desired template.

The following templates are available in the sample editor.

Buzz
Generates the specified number of harmonic sine waves, starting with the Lowest Harmonic. The am-
plitude of each harmonic is the AmpBase raised to the power of the harmonic number. For example, if
you specified an AmpBase of 0.5, then the amplitude of the third harmonic would be 0.125.

503

Use Gain to adjust the overall amplitude of the waveform until it is close as possible to a range of -1 to 1
without clipping. Test the Gain setting by using the Insert button; if the inserted segment looks clipped,
adjust Gain and press Insert again.

Cubic Spline
Indicate the total length of the segment in the Duration field (4096 samp is the length of a standard
wavetable). Enter a list of points that the spline should pass through (range is -1 to 1). Then indicate the
proportion of the total duration taken up by each segment. The number of segments should always be
one less than the number of end points.

Exponential Segments
Indicate the total length of the waveform in the Duration field (4096 samp is the length of a standard
wavetable). Enter a list of end points for the exponential segments (remember that exponential functions
are undefined at 0, so keep the values between 0 and 1). Then indicate the proportion of the total duration
taken up by each segment. The number of segments should be one less than the number of end points.

Fourier
This lets you specify a waveform by specifying its component sine waves. Enter the list of desired har-
monics by number (where 1 is the fundamental, 3 is the third harmonic, etc.). Then enter the relative
amplitudes of each harmonic (range of -1 to 1), and the relative phase (in radians) of each harmonic. To
specify π, use {Float pi}. Do any arithmetic on π within curly braces, e.g., {2 * Float pi}. For wave-
forms requiring a large number of partials and/or to get inharmonic partials, modify the Fourier Program
template (found in the hierarchical list under Programs).

Impulse Response
This generates the impulse response of a filter that you specify. Set the number of formants and the center
frequency, bandwidth, and relative amplitude of each formant of the filter. Use Gain to adjust the overall
amplitude to be as close as possible to the full range (-1 to 1) without clipping. You may have to try Insert
several times to adjust the Gain to the optimum level.

Interpolate Selection
This is used to time-stretch or time-compress the selection. It can be used, for example, to take a single
cycle from a recording and stretch or compress it to exactly 4096 samples so that it can be used as the
wavetable of an Oscillator. You can also use this to shift a sample down in frequency without aliasing
(by time-stretching it).

The selection will be sinc-interpolated to the length specified in the template parameters. Gain is used to
scale the samples. Interpolation Points controls how many points are used in the sinc interpolation;
use larger numbers than the default for better results, especially when changing the length drastically.
(This operation can take a long time).

Line Segments
Indicate the total length of the waveform or function in the Duration field (4096 samp is the length of a
standard wavetable). Enter a list of end points for the linear segments (in the range of -1 to 1). Then indi-
cate the proportion of the total duration taken up by each segment. The number of segments should be
one less than the number of end points.

Normalize Selection
This scales all amplitudes in the selected portion of the sample to the maximum indicated in the Ampli-
tude field.

Polynomial
This generates the polynomial whose x values range over the interval you provide and whose coefficients
are supplied in the Coefficients field. Polynomial is particularly useful for generating wavetables

504

that can be used as waveshapers by the Waveshaper Sound. For example, if you typed in the coefficients
5, 4, and -2.5 you would be specifying the polynomial

 4 + 4x − 2.5x 2

If the interval you enter is -1 to 1, then the editor will evaluate this polynomial for x values ranging from -
1 to 1.

Random
This generates a random waveform whose amplitude ranges from -1 to 1. Specify a seed so that you can
get repeatable results. Change the seed when you want to generate a different random waveform. To
generate different kinds of noise, modify the Random Program template.

Window Selection
This template applies a fade-in and fade-out curve to the selection in the graphic editor. The Transi-
tion Duration is the duration of the fade in and fade out.

Viewing the Template Code
The hierarchical list of templates also contains the subheading Programs, which contains Smalltalk code
for each of the template types. If you like a particular template but want to make a minor change in the
algorithm, you can modify (but not save) its Smalltalk implementation. If you are not sure you under-
stand one of the templates, you can read its Smalltalk code to see what it does.

If you want to write your own Smalltalk code for generating a wavetable, you can use the existing
Smalltalk programs as models or starting points for your own code. To save your modified wavetable
generator, copy the text and paste it into a newly created text file.

Wavetables Provided with Kyma

Compress
When used in a MultiplyingWaveshaper, this waveform can be used to do computationally inexpensive
compression and expansion. Think of the curves as output-attenuation-as-a-function-of-input-amplitude.
To create new curves, use the InputOutputCharacteristic Program template in the sample editor.

C5_01_1

Control
These are typically used in FunctionGenerators to generate envelopes or “control signals” for hot pa-
rameters. If you want a periodically repeating control signal, use one of these samples in a low frequency
oscillator. To generate your own, use any of the templates in the sample editor or modify template code
to compute an arbitrary mathematical function and store it as a sample.

Exponential

ExponRev

FourExpons

505

FullRamp

Gaussian

Ramp

Random

EX
The RE analysis tool separates a sample into two parts: a time-varying filter (the resonator) and the signal
(the excitation) to feed through this filter to recreate the original sample. These files are the excitations
from various samples, and can be used as an input to the REResonator Sound.

GA
The GA (group additive) analysis tool reduces a spectral analysis file (consisting of potentially hundreds
of sine waves with different frequency and amplitude envelopes) into a smaller set of more complex
waveforms with corresponding amplitude envelopes. These files are derived from various musical in-
strument samples, and can be used in the Analysis0 or Analysis1 parameter in the GAOscillators
Sound.

This is a display of a GA file for a harp pluck. The GA analysis tool reduced a spectral analysis file with
128 partials into three complex waveforms (shown above in the left two-thirds of the display), three cor-
responding amplitude envelopes, and a frequency deviation envelope (all shown in the right one-third of
the display above).

Impulse Responses
These files contain the responses of various filters to an impulsive input. They are typically used in Func-
tionGenerators, Samples, or Oscillators.

ah

ahhhhhhh

FilteredPulse

506

oo

Internal
These are used internally by Kyma Sounds. You don’t want to delete or modify any of these tables or
some of the Sounds will stop working!

Cosine Inverse Kym3 SpecLPF2 SpecLPF8

FTrkrTbl Kym1 MiscTbls SpecLPF4 VocodExp

Greeting Kym2 SOSExp SpecLPF6 Zero

Iterated Functions
These files can be used with the IteratedWaveshaper Sound to perform Functional Iteration Synthesis.§

These files can also be used with Waveshaper to create variable-width oscillators.

RE
The RE analysis tool separates a sample into two parts: a time-varying filter (the resonator) and the signal
(the excitation) to feed through this filter to recreate the original sample. These files are the time-varying
filters from various samples, and can be used as the Wavetable for the REResonator Sound.

Samples
These digital recordings are typically used in a Sample or in a DiskPlayer Sound. Some of these files are
grouped in folders for use directly in KeyMappedMultiSample.

Spectra
These files are used by the SpectrumInRAM, SpectrumOnDisk, and SumOfSines Sounds. Each of these
files represents a spectral analysis of a sample. When you use one of them to control an OscillatorBank,
you can resynthesize the original signal through additive synthesis. To generate your own spectral analy-
ses, see Tools menu: Spectral Analysis on page 443.

Spectral Shapes
These are typically used in SpectralShape Sounds and then used to control the spectrum of an Oscilla-
torBank. Think of these as showing amplitude as a function of frequency.

Aformnts

BPF500

Waveforms
These are typically used in Oscillators but can also be used in Samples with looping turned on. Think of
them as single cycles of periodic waveforms. The files in the Buzzes, Saws, and Squares folders contain
band-limited approximations to those waveforms, each constructed using a different number of harmon-
ics; these files are appropriate for use with the KeyMappedMultiSample.

§ See Agostino Di Scipio’s paper for information about Functional Iteration Synthesis.

507

Buzz

Buzzes Folder

Cosine

GlottalPulse

Saw21

Saws Folder

Sine

Square21

Squares Folder

Triangle

Waveshapers
These are typically used a Waveshaper Sound as the shaping function. Think of these shapes as output-
sample-as-a-function-of-input-sample.

ATAN20

ATAN40

Pentaton

508

Pythag

Windows
These are symmetric waveshapes that can be used in FunctionGenerators or Oscillators as control signals
or amplitude envelopes. They can also be useful in other Sounds that have window parameters like Sam-
pleCloud, GrainCloud, FormantBankOscillator, and the SpectrumAnalyzerDisplay.

BristowJohnson

Hamming

Hann

LinearEnvelope

Rectangular

Advanced Topics

Variables

By introducing variables, we can generalize one particular Sound to describe a whole class of Sounds.
Such an abstracted Sound is called a lifted Sound, so-called because it is at a “higher” level of abstraction
than is any specific Sound.

A single lifted Sound represents an infinite number of real Sounds. Lifting a Sound by introducing vari-
ables is similar to introducing variables into an arithmetic expression. While 4 + 5 is just one expression,
x + y represents a whole class of expressions — all possible sums of two numbers.

There are two places you might want to use variables: when encapsulating a complex Sound (see The
Class Editor on page 536), or in a Script or in one of the various FileInterpreters (see Scripting on page
522).

Kyma Variables

In Kyma there are three kinds of variables: variables, Variable Sounds, and SoundCollectionVariables . A
variable is used to represent values you can type into parameter fields, a Variable Sound acts as a place
holder for Sounds, and a SoundCollectionVariable represents a collection of Sounds.

Variables
The typeable parameters of a Sound can be represented by variables or expressions involving variables.
To assign a variable to a parameter, type a name for the variable preceded by a question mark:

The variable will be displayed in green in the parameter field.

Variable Sounds
A Variable functions as a place holder for an actual Sound that may be assigned to it later on. You can use
a Variable anywhere you would use any other Sound.

SoundCollectionVariables
Sometimes you may want to set an entire collection of Sounds (rather than the individual Sounds of a
collection) to a variable — for example, in the Inputs field of a Concatenation or a Sum. To do this, drag
SoundCollectionVariable from the system prototypes into the Inputs parameter field. The SoundCollec-
tionVariable acts as a place holder for a collection of Sounds. It can be placed only in fields that accept
more than one Sound.

You can use SoundCollectionVariables in defining a new kind of Sound that can take multiple inputs (see
The Class Editor on page 536 for more information). You can also use a Script to set the value of a
SoundCollectionVariable. Its value should be a collection of Sounds (for example, an Array). See
Scripting on page 522 and The Smalltalk-80 Language on page 513 for more information.

511

Like the Variable Sound, you can refer to a SoundCollectionVariable by name elsewhere in the structure.
See The Smalltalk-80 Language on page 513 or one of the recommended Smalltalk texts listed there for
messages that you can send to collections.

Despite the fact that a SoundCollectionVariable is not a Sound (it represents a collection of Sounds), it
will appear as a Sound in the Sound structure, and you can edit its name just as you would edit a Sound’s
name.

Syntax
Variables typed into parameter fields are indicated by a leading ? character followed by a string of num-
bers or letters; the first character in the string must be a letter. Variable names should contain no internal
spaces. Variables are displayed with a green color in the Kyma user interface.

The names of Variables and SoundCollectionVariables are not preceded by question marks, since it is
clear from the context that these are variables. Otherwise, they should follow the same syntactical guide-
lines as typed variables.

Some examples of legal variables are:

?freq

?formant2

?theDaysAreAhead123456789

?syntheseVirtuelle

?fumoBianco

and some illegal examples would be:

gaaf

?20Jahrhunderts

?table Lookup

512

Playing a Lifted Sound

When you play a lifted Sound, Kyma prompts you to supply a value for each of the variable parameters.
Before you can hear the lifted Sound, a specific value must be assigned to each variable.

If the requested value is a number, string, symbol, or array, enter the value and click Value or press En-
ter.

If the requested value is a Sound, click the button labeled Default Sound.

If the requested value is a Sound collection, click the button labeled Default Collection. Use Set default
Sound and Set default collection from the Action menu to set the selected Sound or collection of Sounds
to be the defaults used by these dialogs. The default Sound should always be a single Sound. The default
Sound collection can be a set of one or more Sounds or collections.

Environments
In the Sound file window, you will be asked to supply values for the variables each time you play a lifted
Sound. In the Sound editor, you only have to supply values for the variables once. The Sound editor re-
members the associations of variables to values in what is called the environment. To see the state of the
current environment, select Environment from the Info menu.

If you want to change the values associated with the variables, select Reset environment from the Info
menu. The next time you play the Sound, Kyma will ask you to supply values for the variables again.

The Smalltalk-80 Language

This chapter is intended to provide you with just enough background to get you started in writing your
own algorithmically constructed Sounds. Once you start using Smalltalk extensively, you should keep the
book Smalltalk-80: The Language and Its Implementation by Adele Goldberg and David Robson around for
reference.

Learning Smalltalk

If you have never programmed before, Smalltalk is an excellent first programming language. It has a
simple syntax and reflects a natural way of thinking about problems, the properties of objects, and the
interactions between objects. If you are already familiar with a procedural programming language like C
or Pascal, you will find that, once you spend a little time familiarizing yourself with the syntax, Smalltalk
is not very different from the languages you are using now.

Smalltalk has its roots in the work of the Learning Research Group at the Xerox Palo Alto Research Cen-
ter in the early 1970’s. The mandate of this group was to come up with ways in which people of different
backgrounds might effectively and joyfully make use of computers. This group later evolved into the
Software Concepts Group (SCG). The goal of the SCG was to design a system that could grow as its user’s
knowledge of the system grew.

Sending Messages to Objects

You can think of a Smalltalk program as a miniature universe of your own creation. The universe con-
tains objects that you, as the master of the universe, can order around. For example, suppose the universe
contains the object 10 and you wanted that object to negate itself. You would evaluate the following
statement:

10 negated

This is an example of a message–send; the message is negated and the receiver of the message is the object
10. This particular kind of message–send is called a unary message send, since there is only one receiver
and one message. You can test the effects of this statement by typing it into the Script field of a Script,
highlighting it, and then selecting Evaluate from the Edit menu.

If a message has particular values associated with it, it is called a keyword message and consists of pairs
of keywords and values separated by colons. For example, if you wanted the string object 'smalltalk'
to tell you the value of its third character, you would type

'smalltalk' at: 3.

Try evaluating this in the script field of a Script.

A keyword message can consist of any number of keyword:value pairs, for example

'smalltalk' copyFrom: 3 to: 5.

The simplest examples of binary messages are the binary operations of arithmetic. For example

3 + 5

is technically a keyword + with the value 5 sent to the receiver 3. This would be an awkward way to de-
scribe something as straightforward as the addition of two numbers, so it is simply referred to as a binary
message instead.

Precedence
Messages are cumulative. For example the message–send,

60 nn hz

would first send the message nn to the object 60. The result would be a FrequencyInPitch object. Then
the message hz is sent to the FrequencyInPitch object. The result is a FrequencyInHertz object. Try
evaluating this in the script field of a Script.

514

Binary messages and keyword messages are also cumulative, but they are evaluated in an order defined
by the following precedence rules:

♦ Unary

♦ Binary

♦ Keyword

You can override the precedence rules by placing an expression within parentheses. For example

2.0 raisedTo: 13 + 3 negated

evaluates to 1024, whereas

((2.0 raisedTo: 13) + 3) negated

evaluates to -8195.

When in doubt, use parentheses to make your intentions clear.

Comments

A comment is some explanatory text that is not evaluated as part of the program. In Smalltalk, comments
are delineated by enclosing them within double quotes. It is important to include comments explaining
each logical step of your program. Not only does this make it easier for others to understand your code,
but it makes it easier for you to remember why you chose to do things the way you did when you look at
your programs later.

Variables

Smalltalk variables must begin with a letter and contain only alphanumeric characters. It is common
practice to begin a variable name with a lower-case letter and to indicate multi-word variable names by
capitalizing the first letter of each new word. For example,

r

x2

tacuma

mrJavelina

theMainEvent

darthBara

tryToEnjoyTheDaylight

are all typical variable names in Smalltalk.

Smalltalk variables are distinct from the Kyma variables described in Variables . The scope of a Smalltalk
variable extends only as far as the parameter field it is contained in. For example, variables declared in a
Script field of a Script Sound are valid only within that Script field.

Variables are declared at the beginning of a program by listing them between vertical lines, for example

| r x2 hybris terminalLight gaaf |

is a variable declaration.

To assign a value to a variable, type the variable name, a space, the assignment symbol :=, another space,
and then the expression whose value is to be assigned to the variable, followed by a period. For example,

| r x2 aSound darthBara |

r := Random newForKymaWithSeed: 1032.
x2 := r next.
darthBara := aSound frequency: x2 * 1000 hz.

515

Numbers

Integers, for example,

7 -9

are written as numerals with no decimal points.

To express an integer in another radix, for example as a binary or hexadecimal number

2r1010 16rEFFF

type the base, followed by the letter r, followed by the number expressed in that radix. For example, a
number expressed in base 2 is a binary number and contains only 1s and 0s. For radix numbers greater
than 10, any numbers represented by letters can be in upper or lower case (e.g. 16rFFF or 16rfff).

Sending the message printStringRadix: to a decimal integer will give a string that contains that
number expressed in the given base. For example:

17 printStringRadix: 2

would evaluate to '10001', which is a string that contains the binary representation of 17.

Floating point numbers are expressed as numerals with decimal points, for example,

1.3 0.1611

Floating point numbers can also be expressed in scientific notation (the following example expresses

 1.14 × 10 10 in scientific notation):

1.14e10

Like integers, a floating point number in another radix is preceded by the radix and an r, for example,

2r10.1

There must be a numeral before the radix point, even if that number is a zero. For example, the number

.5

must be written as

0.5

or it will not be interpreted correctly. In Smalltalk, a period indicates the end of a sentence. A decimal
point that is not preceded by a zero is ambiguous; it could be the period terminating a previous state-
ment, rather than a decimal point. By always making the leading zero explicit, you remove this
ambiguity.

The number

0.991 % 1

is an example of a complex number in Smalltalk; the first number is the real part, and the second number
is the imaginary part.

516

Arithmetic Operations
Besides the usual operations of addition, subtraction, multiplication, and division (+, -, *, and /), here are
some of the arithmetic operators you can use in Smalltalk:

// divide and truncate the result towards negative infinity

\\ mod

** raise to a power

abs absolute value

inverse 1 divided by receiver

quo: divide and truncate the result towards zero

rem: like mod except truncated towards zero

rounded add 0.5 and truncate

truncated round towards negative infinity

vmax: take the maximum of receiver and argument

vmin: take the minimum of receiver and argument

For example,

-7 // 3 -3
7 // 3 2
-7 \\ 3 2
7 \\ 3 1
2 inverse 1/2
-7 quo: 3 -2
7 quo: 3 2
-7 rem: 3 -1
7 rem: 3 1
-2.5 rounded -2.0
-2.5 truncated -3
5 vmax: 2 5
5 vmin: 2 2

Mathematical Functions
The following are some of the more common mathematical functions that are available in Smalltalk:

ln natural log

exp exponent

sqrt square root

sin sine

cos cosine

normCos (receiver * π) cos

normSin (receiver * π) sin

log log of receiver base 10

twoLog log of receiver base 2

twoExp two raised to the receiver

The expression

2 raisedTo: 10

means two raised to the tenth power.

517

For more arithmetic operations, mathematical functions, and bit-level operations, see one of the refer-
enced texts.

Other Literals

Smalltalk constants are called literals. Numbers, symbols, characters, strings, and arrays are all literals.

A single character is prefaced by a dollar sign, for example

$T

Strings of characters are delimited by single quotes, for example,

'this is a string'

You can concatenate two strings by typing a comma between them, for example,

'first half', 'second half'

evaluates to the string

'first half second half'

A symbol is prefaced by a number sign and cannot include any internal blanks, for example,

#thisIsASymbol

You can create a symbol from a string by sending it the message asSymbol, for instance,

'thisIsAString' asSymbol

Two strings of the same characters are not necessarily the same object. However, two symbols with the
same name are actually the same object. Each symbol is unique in the system.

Arrays are enclosed within parentheses and prefaced by a number sign, as in

#(3 5 6 #anArray).

Each object within the array is interpreted as a literal, thus the contents of the array

#(2 $+ 5 #anArray)

would be the number

2

followed by the character

$+

the number

5

and the symbol

#anArray

Leading number and dollar signs are not required within an array literal. For instance, the array defined
earlier could be equivalently written as

#(2 + 5 anArray)

Suppose you wanted to evaluate the expression 2 + 5 before putting it into the array and that anArray
was actually a variable. Then you would need to create the array as in the following example:

| anArray |
anArray := #(a b c).
anotherArray := Array with: 2 + 5 with: anArray.

The value of anotherArray is

#(7 (a b c))

518

Alternatively, you can place expressions to be evaluated within curly braces:

#({2+5} #(abc))

Booleans

A boolean is one of two values: true or false. There are two boolean literals:

true

and

false

Some examples of boolean expressions include:

(2 + 2) = 5

i >= 2

aSet isEmpty

file atEnd

Logical Operations
Boolean expressions can be combined using the logical operators AND and OR.

There are two different kinds of logical operations for both AND and OR. One type evaluates only as
much of the expression as is necessary to determine whether the entire expression is true or false; in this
type of expression, the second alternative is placed within a block, for example:

anArray isEmpty or: [(anArray at: 1) = 0]

aStream atEnd not and: [aStream next == ‘a’]

The other type always evaluates both arguments of the expression; in this type of expression, the two ar-
guments are separated by an ampersand for AND or a vertical bar for OR, for example:

t > 2.5 & (t < 550.0)

r next > 0.5 | (r next = 0.0)

The following expression is true if anArray is empty or if its first entry is 0. If the first expression is true,
then the expression within square brackets is not evaluated, since the entire expression is true if either of
the subexpressions is true. By using this form of the OR, you are protected against trying to access an
empty array.

anArray isEmpty or: [(anArray at: 1) = 0]

In the next example, the OR operation is represented by a vertical bar. Both expressions are evaluated no
matter what the value of the first expression. In this example, the message next returns the next value in a
stream of values. It also has the side effect of advancing the pointer into the stream. In cases where an ex-
pression has a side-effect, you may want to evaluate both expressions even when the first is true.

anArray isEmpty | (aStream next = 0)

In the following example of the AND operator, the second expression is evaluated only if the first expres-
sion is true. In the case of this example, you wouldn’t want to try accessing the ith position of anArray
unless you were sure that anArray had at least i positions in it.

(anArray size >= i) and: [(anArray at: i) = 10]

The ampersand operator is an AND in which both expressions are evaluated even if the first is false. In
this particular case, the message removeFirst returns the first element of aCollection, but it also has
the side effect of changing aCollection by removing the first element.

i > 10 & (aCollection removeFirst = 0)

Blocks

A block is a deferred sequence of instructions having the form

519

[{:blkArg}* |
| {blkVar}+ |

{blkStmnt}*]

where blkArg is an optional list of formal arguments to the block, blkVar is an optional declaration of
variables local to the block and blkStmnt is a series of Smalltalk statements. The Smalltalk statements
within a block are not executed until you send it one of the variants of the message value. In the following
code

| incrBlk i result |

i := 0.
incrBlk := [i := i + 1].
result := incrBlk value.

the variable result ends up with the value 1. Block arguments are declared by typing them preceded by
colons at the beginning of the block and separating the declaration from the rest of the code by a vertical
bar. If the block has arguments, each one must be assigned a value in the evaluation message. In the fol-
lowing code,

| sumBlk result |

sumBlk := [:a :b | a + b].
result := sumBlk value: 3 value: 2.5.

the variable sumBlk contains a block of code that will return the sum of its two arguments (a and b)
when it receives the value:value: message. The variable result ends up with the value 5.5.

Loop Structures
The most common use of blocks is to delineate sequences of instructions that are to be executed condi-
tionally or repetitively.

To simply repeat a sequence of instructions, send the message timesRepeat: to the integer number of
repetitions desired. For example,

4 timesRepeat: [
aSound

start: 0 s
freq: 100 hz
dur: 1 s].

would start up four copies of aSound, all at the same time and having the same frequency and duration.
(Since aSound is being played four times with the same start time and parameters, the result will sound
like aSound being played with an amplitude four times larger.)

To iterate over an collection of values, send the message do: to the collection of values. For example, in

0 to: 3 do: [:i |
aSound

start: i s
freq: ((i + 1) * 100) hz
dur: 1 s].

the block argument i takes on the values 0, 1, 2, and 3. This would start up four copies of aSound with
the respective frequencies 100, 200, 300, and 400 hz , each starting one second after the other. (Refer to
one of the books listed at the end of this appendix for more examples of what you can do with loop
structures and collections in Smalltalk.)

To iterate as long as a condition holds true, send the message whileTrue: to a block that evaluates to
true or false. For example,

| i |

520

i := 0.
[i <= 3] whileTrue: [

aSound
start: i s
freq: ((i + 1) * 100) hz
dur: 1 s.

i := i + 1].

is functionally equivalent to the previous example.

Conditionals
To conditionally evaluate a block, send the message ifTrue: and/or ifFalse: to a boolean expression.
For example, the statements

0 to: 5 do: [:i |
(i \\ 2 = 0)

ifTrue: [evenSound start: i s]
ifFalse: [oddSound start: i s]].

sets i to the values 0 through 5. Whenever i modulo two is 0, i must be an even number. On iterations
when i is an even number, evenSound starts at i s, and on iterations when i is an odd number,
oddSound starts at i s. The result is an alternation between evenSound and oddSound.

If the boolean expression includes Kyma variables, use the messages varIfTrue:ifFalse:, varIf-
False:ifTrue:, varIfTrue:, or varIfFalse:. For example, if you wanted the attack time of an
envelope to depend upon a variable ?dur, you might use

(?dur > 1 s)
varIfTrue: [1 s]
ifFalse: [0.1 * ?dur]

as the value of the attack parameter.

Random Numbers

To obtain random numbers in Smalltalk, you create an object that will supply you with an endless stream
of random numbers. To create a random number generator use

Random newForKymaWithSeed: 3413.

If you assign the random number generator to a variable, you can ask it for the next random value by
sending it the message next.

| r |

r := Random newForKymaWithSeed: 1002.
4 timesRepeat: [r next].

generates four random numbers between zero and one. The following statements,

| r |

r := Random newForKymaWithSeed: 2530.
1 to: 100 do: [:i |

aSound
start: i s
freq: ((r next * 100) + 500) hz].

creates a sequence of 100 instances of aSound, each with a randomly selected frequency between 500 and
600 hz.

Set the seed to an integer value from 0 to 65535, so the Sound will be repeatable.

521

For Further Information

This should give you enough of the basics so that you can get started. For more depth of information on
Smalltalk, consult the following texts:

Smalltalk-80: The Language and Its Implementation by Adele Goldberg and David Robinson, published by
Addison-Wesley.

Inside Smalltalk, Volume I by Wilf R. LaLonde and John R. Pugh, published by Prentice-Hall.

An Introduction to Object-Oriented Programming and Smalltalk by Lewis J. Pinson and Richard S. Wiener,
published by Addison-Wesley.

If you want to dive into Smalltalk as a general purpose programming language, you may want to obtain a
Smalltalk environment. A freely available version of the Smalltalk-80 language is available on the Internet
at http://www.create.ucsb.edu.

Scripting

There are two different kinds of scripts in Kyma: Event Value-generating scripts (found in the MIDIVoice
and the MIDIMapper Sounds), and Sound-constructing scripts (Scripts and FileInterpreters).

MIDIVoice and MIDIMapper scripts provide an algorithmic way to generate events indistinguishable
from events coming from a MIDI file or a MIDI device. You can use these scripts to generate control sig-
nals or note events algorithmically. MIDI scripts are intended to replace the older scripting Sounds in
applications that model an “instrument” playing from a “score”.

MIDIVoice and MIDIMapper scripts do not run in real time. When you compile a MIDI script, the script
is executed first and the generated events are saved. Then the remainder of the Sound is compiled and
loaded along with the events saved from the script. When you start the Sound, the generated events will
be started at the appointed time.

The Script and FileInterpreter Sounds construct new Sounds that are combinations of Mixers and
TimeOffsets. Scripting Sounds do not generate events. Instead, they assist you in the process of building
Sounds the way you would build them in the graphic Sound editor. When there is a describable pattern
to the Sound parameters and the way the Sounds are put together, you can use a scripting Sound to con-
struct complex Sound structures automatically. For example, say you wanted to construct a reverberation
algorithm out of six ReverbSection Sounds, each with a slightly different DecayTime and Delay. Using a
scripting Sound, you could use a loop to construct a Mixer of ReverbSection Sounds, each with its own
DecayTime and Delay. That way, you could save time by writing a single loop instead of setting all
twelve parameters by hand.

When you compile a scripting Sound, it first constructs the equivalent combination of Mixers and
TimeOffsets; then it compiles, loads and starts that automatically-constructed Sound.

MIDI Scripts

The MIDIVoice and MIDIMapper modules give you three choices for the source of MIDI events: the live
MIDI input stream (originating from external controllers, or from a sequencer or other software running
in parallel with Kyma), a MIDI file stored on disk, or a script (which generates events algorithmically and
then emits them). To the Kyma Sound, events coming from a script are indistinguishable from events
coming from a MIDI file.

There are two main ways of working with the MIDI scripts:

1. Creating low-level notes and controller events at specific times

2. Creating and manipulating high level EventCollections: combinations of Note and Rest objects

Creating Notes and Controller Events
The syntax for a basic note event is:

self keyDownAt: aTime duration: aDur frequency: aFreq velocity: aVel.

Where aTime is a time specified with units (for example, 1 s or 2 beats), aDur is a duration specified
with units, aFreq is a frequency specified with units (for example, 440 hz, 60 nn, or 4c), and aVel is a
velocity value between 0 and 1. The duration:, frequency:, and velocity: tags are optional, the
default values are 10 ms, 0 nn, and 1, respectively.

For example, to send a note event for a middle C lasting for one second, you would use:

self keyDownAt: 0 s duration: 1 s frequency: 4 c.

Note events cause the following to happen:

♦ At the given time, !KeyDown is set to -1.

♦ After 5 ms, !KeyDown is set to 1, !KeyNumber is set to the pitch equivalent of the frequency, and
!KeyVelocity is set to the velocity value.

♦ After the given duration has passed, !KeyDown is set to 0.

523

Note that !KeyNumber can take on non-integer values and has 16 fractional bits, giving a pitch accuracy
of 0.0015 cents for events generated by MIDVoice and MIDIMapper scripts. !PitchBend is not used to
get these non-integer values.

To specify a value for a continuous controller in a MIDI script, use either:

self controller: aName setTo: aValue atTime: aTime.

to cause the controller to jump immediately to a specified value at a specified time, or

self controller: aName slideTo: aValue steps: nbrSteps byTime: aTime.

to cause the controller to slide from its previous value to the specified value by the specified time in the
specified number of steps, or

self controller: aName slideTo: aValue stepSize: step byTime: aTime.

if you prefer to specify the size of each step, rather than the total number of steps.

For example, to cause !Frequency to move from 100 to 1000 over 10 seconds, starting at 30 seconds, you
could use:

self controller: !Frequency setTo: 100 atTime: 30 s.
self controller: !Frequency slideTo: 1000 steps: 100 byTime: 40 s.

Event Collections
Sometimes it is more convenient to specify the MIDI events as collections of notes and rests, without
having to specify start times for each event. The actual start times can be inferred from the duration of the
Note or Rest and where it occurs in the collection of events. This corresponds more closely to written mu-
sic notation, where note and rest symbols arranged horizontally are interpreted as a sequence of events in
time (where each event’s start time occurs immediately after the previous event’s duration has expired),
and notes or rests arranged vertically are interpreted as all starting at the same time.

In the MIDI script language, an EventSequence is a collection of Notes, Rests, or other EventCollections
that occur one after another in time (corresponding to horizontal placement in music notation). Since you
can also construct sequences of other collections, you can create higher level structures as well. For exam-
ple, sequences of Notes and Rests could be collected in a measure; sequences of measures could be
collected into a phrase; sequences of phrases could be collected into sections; sequences of sections could
be collected into movements, etc. until you run out of traditional musical names for the structures(!)

An EventMix is a collection of Notes, Rests, or other EventCollections that occur all at the same time
(corresponding to vertical placement in music notation). Like an EventSequence, the EventMix is recur-
sively defined (i.e. you could have an EventMix of EventMixes), allowing you to define hierarchical
structures, somewhat analogously to the way you can define Sounds.

You can also create a generic EventCollection of Notes, Rests, or other EventCollections, specifying that
you haven’t yet decided whether the events should be simultaneous or sequential but will send a mes-
sage to the object later to specify actual start times and turn it into a sequence or a mix of other events.

Notes and Rests
The syntax for creating a single Rest is:

Rest durationInBeats: aDurInBeatsWithNoUnits.

To create a Note, you can use:

Note durationInBeats: aDur frequency: freqWithUnits velocity: aVel.

You can leave off any of the tags if you don’t mind using the default values for those parameters.

Examples of creating Rests and Notes:

| n1 n2 n3 |
n1 := Note durationInBeats: 2 frequency: 2 g.
r2 := Rest durationInBeats: 1.
n3 := Note durationInBeats: 2 frequency: 2 d.

524

Sequences and Mixes
An EventSequence is a collection of events that occur in time order. The syntax for creating an EventSe-
quence is:

EventSequence events: anArray.

An EventMix is a collection of events that occur at the same time. The syntax for creating an EventMix is:

EventMix events: anArray.

There are several ways to create the Array. You can specify each item in the array:

EventSequence events:
(Array

with: (Note durationInBeats: 1 frequency: 3 g)
with: (Note durationInBeats: 1 frequency: 4 e)
with: (Note durationInBeats: 2 frequency: 4 c))

You can collect items that you create within a loop:

EventSequence events:
((1 to: 100) collect: [:i |

Note durationInBeats: 2 frequency: 4 c + (i * 2) nn])

Or you can put literal values within parentheses preceded by a sharp sign. If you create the Array this
way, remember to enclose the Notes and Rests within curly braces to make them literal values:

EventMix events:
#({Note durationInBeats: 1 frequency: 3 g}
{Note durationInBeats: 1 frequency: 4 e}
{Note durationInBeats: 2 frequency: 4 c})

TimedEventCollections
A TimedEventCollection is a collection of events together with the starting beat for each event. One way
to create a TimedEventCollection is:

TimedEventCollection startingBeats: beats events: events.

where beats is a collection of the starting beat numbers for each event in the events collection.

You can also create a TimedEventCollection by reading in the events and starting beats from a MIDI file.
If all you want to do is play exactly what’s in the MIDI file, then it would be quicker and more straight-
forward to simply select MIDI file as the Source in your MIDIVoice. However, once you have read the
MIDI file into a TimedEventCollection you can transform it, twist it, distort it, in short, do all the kinds
of things composers love to do!

The syntax for reading a MIDI file is:

TimedEventCollection timesAndEventsFromMIDIFile: 'file.mid' channel: 1.

Generic EventCollections
An EventCollection is a collection of Notes and Rests without any ordering. To create an EventCollec-
tion, use:

EventCollection events: anArray.

Where anArray is a collection of Notes, Rests and other collections of events.

The message randomizeUsing:totalBeats:quantizeTo:maxSpacing: forces an EventCollection
to become a TimedEventCollection by generating a set of random starting beats and randomly picking a
set of events from the events supplied:

(EventCollection events: anArray)
randomizeUsing: (Random newForKymaWithSeed: 92)
totalBeats: 16

525

quantizeTo: 0.5
maxSpacing: 1.

You specify the total duration in beats of the result, the smallest distance between beats (with the quan-
tizeTo: argument) and the longest time between beats (the maxSpacing: argument).

Alternatively, you can choose the starting beats with one random number generator and the events using
another, for example:

(EventCollection events: anArray)
randomizeTimesUsing: (Random newForKymaWithSeed: 561)
pickingEventsUsing: (OneOverF newForKymaWithSeed: 17661)
totalBeats: 16
quantizeTo: 0.333
maxSpacing: 1.

Manipulating Event Collections
All event collections can be manipulated in various ways:

anEventCollection dim: aScale.
anEventCollection trsp: aTransposition.
anEventCollection inv: aPitch.
anEventCollection retrograde.

dim: applies a scale to the duration of each event in the collection, trsp: transposes each event in the
collection the given number of half-steps, inv: inverts each event in the collection about the given pitch,
and retrograde reverses the time order of the event in the collection.

Finally, to actually output the events for the MIDIVoice to play, use:

anEventCollection playOnVoice: self bpm: 160.

Scripts and FileInterpreters

Scripts and the FileInterpreters are Kyma Sound classes that enable you to construct Sounds algorithmi-
cally. Both Scripts and the FileInterpreters take inputs that can include both Sounds and lifted Sounds. In
a Script, you can combine and manipulate the inputs using Smalltalk. TextFileInterpreters and MIDIFile-
Interpreters let you use Smalltalk code to interpret data from text files and MIDI files.

Script
A Script Sound lets you refer to its inputs by name, assigning them start times and parameter values. In
this respect, you could think of the inputs as “instruments” and the start time and parameter value as-
signments as the “score” (similar in some respects to the instruments and score of a Music–N language).

Unlike Music–N, however, a Script lets you use Smalltalk as part of the score. The script is not just an
event list; it is a Smalltalk program. So you can think of the Script as being more than a score; it is a tool
for constructing complex Sounds algorithmically.

In Kyma’s version of a “score,” not only can you supply start times and other parameters to an instru-
ment, you can also change the instrument itself from the script.

TextFileInterpreter
Using a TextFileInterpreter Sound you can read and interpret text files. One application of the TextFileIn-
terpreter is to use a score file from a Music–N language (like Csound) to control Kyma Sounds as its
instruments. A TextFileInterpreter, however, is not limited to reading Music–N scores. In fact, you can
use it to map any data to the parameters of a Sound. This capability makes a TextFileInterpreter useful for
data sonification and generating signals for psychoacoustic experiments.

526

MIDIFileInterpreter
With a MIDIFileInterpreter, you can read information from a MIDI file and process or reinterpret it using
Smalltalk before mapping it to the parameters of Kyma Sounds.

Events

Assigning Start Times
Each input of a Script forms the basis of an instrument. An instrument is not strictly a Sound; it is a tem-
plate that can be used to create any number of instances of its basis Sound.

Each event in the Script corresponds to an instantiation (i.e., the scheduling of a specific instance) of one
of the instruments. The simplest event is the name of an instrument followed by a start time. For example,
if you had an instrument named anInstr, and you wanted an instance of it to start at time 0, you would
type

anInstr start: 0 s.

Suppose anInstr is based on a Sound whose duration is 5 seconds. Then the following Script

anInstr start: 0 s.
anInstr start: 6 s.

specifies that you will hear anInstr followed by 1 second of silence followed by anInstr. You can also
make the instances of anInstr overlap, for example,

anInstr start: 0 s.
anInstr start: 1 s.
anInstr start: 2 s.
anInstr start: 3 s.

Beats and Metronome Indications
To specify times in beats instead of seconds, indicate the number of beats per minute at the beginning of
the Script. For example,

MM := 90.

specifies that one beat is equivalent to 1/90 of a minute in subsequent events. You can redefine MM any
number of times within a script. If you don’t specify a value for MM in a top level Script, it will default to a
value of 60, or one beat per second.

If you are using multiple Scripts or FileInterpreter Sounds within a shared top Sound, you should explic-
itly specify the desired value for MM in each script.

Setting Parameters

 Parameter:Value Pairs

You can do more than simply assign start times to instruments; if the inputs have variables in them, each
event in the script can also supply parameter values to the variables in the instrument. Any variable pa-
rameter can be set from the script.

To set parameters from the script, type the name of the input, the start time, and then a list of parameter-
Name:value pairs. Each pair consists of the name of a variable in the input and a value for that variable.
(To see a list of the variables in the selected Sound, choose Get info from the Info menu.)

For example, suppose a Sound named anInstr has some variable parameters in it named
?centerFreq, ?dur, and ?bandwidth. Here is an example Script for setting the parameters of an-
Instr.

anInstr
start: 0 s
dur: 2 s
centerFreq: 1000 hz

527

bandwidth: 10 hz.
anInstr start: 2 s.
anInstr start: 3 s freq: 4 a.
anInstr start: 3.2 s centerFreq: 4 a dur: 0.5 s.

Each event consists of the name of a Sound followed by a start time, any number of parameter:value pairs,
and a terminating period. Any number of spaces, tabs, or carriage returns can separate the parameter:value
pairs; carriage returns and tabs are encouraged when they will improve readability.

The unassigned parameter values for an event default to the values assigned to those parameters in the
previous event. If a parameter has never been set in the script, Kyma will prompt you to supply a value
for its variable.

The parameter:value pairs can occur in any order, and any parameter may be omitted. However, if the start
time is omitted, the event is no longer a well-defined event, and it will not be scheduled at all.

 Non-Numeric Parameters

An instrument’s parameter values are not limited to numbers. A parameter’s value can be any Smalltalk
object, including a Sound; thus, strings, symbols, arrays, etc. can all appear as parameter values in a
script. For example, the following is a legal Script:

anInstr start: 0 s wavetable: 'sine'.
anotherInstr start: 1 s weights: #(1 1 1 4).
aScriptingL start: 1 s script: 'intern start: 0 s'.

where the number sign and parentheses indicate an Array and single quotes indicate a String. (See The
Smalltalk-80 Language on page 513 for more information.)

Instrument parameters can be set to Sounds as well. Suppose you have an instrument named aNoise
based on a Sound having a variable ?dur, and an instrument named aFilter based on a Sound having a
variable input (a Variable Sound).

You can set the value of input to aNoise as follows:

aFilter
start: 1 s
input: (aNoise dur: 1 s).

Since aNoise is given no start time, it is a Sound, but it will not be scheduled on the Capybara. It can be
the value for the Variable Sound. Then when you gave aFilter a start time, aNoise would be assigned the
same start time. If you were to use

aFilter start: 1 s input: aNoise.

Because it has not been assigned a value in the script, Kyma would ask you to supply a value for ?dur.

 Referring to the Orchestra

You can refer to a Script instrument in two ways: by its name or by its position in the “orchestra.” In the
following event,

(orchestra at: 3) start: 3 s.

(orchestra at: 3) refers to the instrument based on the third input (counting from top to bottom,
left to right). This can be useful when Inputs has been set to a SoundCollectionVariable or when you
want to make an algorithmic choice of instrument.

Algorithmically-generated Events
A Script can include any Smalltalk-80 statements. For example, the script

anInstr start: 0 s freq: 100 hz dur: 1 s.
anInstr start: 1 s freq: 200 hz dur: 1 s.
anInstr start: 2 s freq: 300 hz dur: 1 s.

528

could be rewritten as a loop:

0 to: 2 do: [:i |
anInstr

start: i s
freq: ((i + 1) * 100) hz
dur: 1 s].

In the loop above, the expression within brackets

anInstr start: i s
freq: ((i + 1) * 100) hz
dur: 1 s

is iteratively evaluated with i set to the values 0, 1, and 2.

To learn more about how you can use Smalltalk in a script, refer to the Script examples in the file
Scripts.

Variables

Kyma Variables
A Kyma variable represents the value of a Sound parameter; it can be a Variable Sound, a SoundCollec-
tionVariable, or a name preceded by a question mark.

You can use Kyma variables in a script. The following example plays a harmonic series (of ?total har-
monics of 100 hz, spaced 1 second apart):

1 to: ?total do: [:i |
pluck start: (i - 1) s freq: (100 * i) hz].

The variable ?total controls the number of times the code within the square brackets is executed; thus,
it determines the number of events in this Script. When you load this Script Sound, Kyma will prompt
you for a value for ?total. As the use of Kyma variables in this sample script suggests, scripts can be
used as inputs of other scripts.

Variables in Scripts and FileInterpreters
Each event in a Script or FileInterpreter script corresponds to a mapping of variable names to values for
those variables. When you load a Script, it binds the variables of its input(s) to the values supplied in the
script.

You can see a list of the selected Sound’s variables by choosing Get info from the Info menu.

If the script fails to map one of the variables to a value, then you must supply a value for that variable in
some other way, either by entering values when prompted, by using the Sound as an example for a new
class, or by making the Sound an input of another Script or FileInterpreter.

Kyma variables in the script of a Script or a FileInterpreter are treated just like variable parameters. These
variables must be set from “outside” (that is, from some Sound to the right of them in the signal flow dia-
gram).

Smalltalk Variables
You can also use Smalltalk variables in a script. A Smalltalk variable has no preceding question mark;
instead it has to be declared at the beginning of the script in which it is used. Smalltalk variables are used
as temporary storage locations within a script. They do not directly represent Sound parameters.

A Smalltalk variable is defined only within the script in which it appears. A Kyma variable is defined
throughout the entire Sound structure in which it appears.

Smalltalk variables must be declared at the beginning of the Script by typing them between vertical lines,

| curTime curFreq |

529

You can assign values to Smalltalk variables using the := assignment operator. For example, in the fol-
lowing Script,

| curTime curFreq |

curTime := 0.
curFreq := 100.

curTime is assigned the value 0 and curFreq is set to the value 100.

Additional kinds of Smalltalk variables (called block arguments and block temporaries) are described in
The Smalltalk-80 Language on page 513.

TextFileInterpreter Messages
A TextFileInterpreter (a version of the Script Sound) reads data from text files. You can use a TextFileIn-
terpreter to read and interpret scores written for a Music–N language. More generally, you can use a
TextFileInterpreter to map any data to sound parameters.

In addition to allowing you to use general Smalltalk messages, a TextFileInterpreter also lets you use the
following specialized messages for accessing text files:

Smalltalk Message Result

atEnd Returns true if at the end of the file, or false if not at the end.

linesInFile Returns the number of lines in the text file.

maxValue Returns the largest number in the file. If there are no numbers in the file,
maxValue returns -∞.

minValue Returns the smallest number in the file. If there are no numbers in the file, min-
Value returns +∞.

nextNumber Returns the next number. Returns 0 at the end of the file or at a letter.

nextParameters Returns the entire next line as an Array. Each item on the line that is separated by
a space is put into a separate entry in the Array.

reset Moves to the beginning of the file.

In the script of a TextFileInterpreter, you refer to the text file by the name file. You can address the file
in its entirety, asking file for the number of lines it has and for its maximum and minimum values. For
example, the following statements assign the largest value in the file to the Smalltalk variable max, the
smallest value to min, and the number of lines to lines:

| max min lines |

max := file maxValue.
min := file minValue.
lines := file linesInFile.

You can also access the data in the file one line at a time. In the following statements, the Smalltalk vari-
able dataArray is assigned an array containing each value found on the next line of the disk file:

| dataArray |

dataArray := file nextParameters.

The TextFileInterpreter keeps track of the last line it read from the file, so you can continue to read the
“next” line until you reach the end of the file. To start over again at the beginning of a file, reset the file by
using

file reset.

in the Script.

530

As a final illustration, let’s take a slightly more complicated problem. Suppose that you have created a
text file that had four items on each line, and that you wanted to interpret these four items as represent-
ing a start time, a duration, a frequency, and a wavetable, for example:

0 1 440.0 sine
0.5 1 453 sine

To interpret such a data file, you might use the following Script:

| event |

[file atEnd] whileFalse: [
event := file nextParameters.
anInstr

start: (event at: 1) s
duration: (event at: 2) s
frequency: (event at: 3) hz
wavetable: (event at: 4)].

The TextFileInterpreter continues to read lines out of the file until reaching the end of the file. Each line of
the file is stored in turn as an array in the variable called event. The first position of the array is accessed
as (event at: 1), the second by (event at: 2), etc.

MIDIFileInterpreter Messages
Much like the manner in which a TextFileInterpreter reads data from text files, a MIDIFileInterpreter
reads data from MIDI files. A MIDIFileInterpreter interprets files using specialized Smalltalk messages
that are sent to the MIDI file object.

Most of the specialized messages that you can use in a MIDIFileInterpreter address a single MIDI event.
To navigate through the MIDI file, a MIDIFileInterpreter can send the following messages to the MIDI
file:

Smalltalk Message Result

nextEvent Returns the next event in the MIDI file.

reset Moves to the beginning of the file.

atEnd Returns true if at the end of the file, or false if not at the end.

After using nextEvent to read the next event of a MIDI file, the MIDIFileInterpreter can send a number
of messages to interpret the data in that MIDI event. (A MIDI “Note On” command coupled with the cor-
responding “Note Off” command constitutes an event.)

The following is a list of Smalltalk messages that can be sent to the event :

Smalltalk Message Result

channel Returns the MIDI channel (1-16) that the event is on.

isChannelPressure Returns true or false depending on whether the event is a
channel pressure.

channelPressureValue If the event is a channel pressure, returns the value (0-127).

isControl Returns true or false.

controlNumber If the event is a control, returns the control number (0-127).

controlValue If event is a control, returns the control value (0-127).

lastControlValueForChannel:
 controlNumber:
 ifNone:

Returns the last control value (0-127) seen for the given chan-
nel. The last argument is a block (i.e. code enclosed in
brackets) that can return a default value if no control change
for the given controller on the given channel has been found.

isNoteOff Returns true or false.

531

isNoteOn Returns true or false.

noteNumber If the event is a note on or note off, returns the note number
(0-127). MIDI note numbers correspond exactly to units of
pitch in Kyma.

duration If the event is a note on, returns the duration to the corre-
sponding note off (in microseconds).

isPitchWheel Returns true or false.

pitchWheelChange If the event is a pitch wheel, returns the value (to ±2048). You
can scale this value in the Script.

lastPitchWheelValueForChannel:
 sensitivityInHalfSteps:
 ifNone:

Returns the last pitch wheel value seen for the given channel.
If there has been no pitch wheel value received, the last ar-
gument is evaluated.

pitchWheelPointsForChannel:
 sensitivityInHalfSteps:
 ifNone:

Returns a collection of time points for the given channel’s
pitch wheel data. The last argument is evaluated if there has
been none.

isPolyphonicKeyPressure Returns true or false.

polyphonicKeyPressureValue If event is a key pressure, returns the value (0-127).

isProgramChange Returns true or false.

programNumber If the event is a program change, returns the program num-
ber (0-127).

isSwitch Returns true or false.

isSwitchOn Returns true or false.

isSwitchOff Returns true or false.

status Returns the status byte as one of the following Symbols:
#noteOff, #noteOn, #polyphonicKeyPressure, #control, #program-
Change, #channelPressure, #pitchWheel, or #unknown.

time Returns the start time of the event (in microseconds).

velocity If the event is a note on or note off, returns the key velocity
(0-127).

Debugging

Inspecting Values
When debugging scripts, it can be useful to inspect the value of a Smalltalk variable as the script is being
evaluated. To inspect the values of the variables, you can include the Smalltalk messages debugWithLa-
bel:value: or debug: in the script. To illustrate, by including the statement

self debugWithLabel: ‘i’ value: i.

in a script, the phrase “i = ” and the value of i will be displayed in a dialog. (debug: returns just the
value, without the label.) For example, in this segment,

0 to: 3 do: [:i |
self debugWithLabel: ‘i’ value: i.
anInstr start: i s freq: (i * 100) hz dur: 1 s].

Kyma will display the following on the first iteration of the loop:

532

If you click OK, the program will proceed, and the next value of i displayed will be 1. To stop evaluating
the script, click Cancel.

Expand
If a Script or one of the FileInterpreters isn’t behaving the way you think it should, try expanding it so
that you can see what kind of structure your script is producing. Choose Expand from the Action menu
to expand a Sound once. You can then select specific inputs for further expansion.

Like many Sounds in Kyma, a Script Sound is actually a shorthand representation for the Sound as it is
actually realized on the Capybara. A Sound may have to expand several times before it consists of only
primitive Sounds, i.e. Sounds that have assembly language representations on the Capybara.

Commented Examples
The following examples can be found in the file called Scripts in the Examples folder.

533

The first example is called Kurt’s Rhythmic Pulsation. It uses a Sound called thump that has variables
?frequency and ?cycles.

"Set the metronome to 300 beats per minute."
MM := 300.

"Set i to the values 0, 1, … 200 on each iteration."
0 to: 200 do: [:i |

"If i mod 4 is 0 (i.e. if i is a multiple of 4), then start the instru-
ment called thump at i beats with a frequency of 100 hertz and 25
cycles within each envelope."

i \\ 4 = 0 ifTrue: [
thump

start: i beats
frequency: 100 hz
cycles: 25].

"etc…"
i \\ 2 = 0 ifTrue: [

thump
start: i beats
frequency: 250 hz
cycles: 25].

i \\ 3 = 0 ifTrue: [
thump

start: i beats
frequency: 150 hz
cycles: 25].

"If i is less than 50 AND i is a multiple of 5, then start the instru-
ment called thump at i beats with a frequency of 400 hertz and 25
cycles within each envelope."

(i < 50 and: [i \\ 5 = 0]) ifTrue: [
thump

start: i beats
frequency: 400 hz
cycles: 25].

i \\ 13 = 0 ifTrue: [
thump

start: i beats
frequency: 700 hz
cycles: 25].

i \\ 7 = 0 ifTrue: [
thump

start: i beats
frequency: 50 hz
cycles: 50].

"If i is greater than 50 AND i is not a multiple of 7, 5 or 3, then
start the instrument called thump at i beats with a frequency of 1000
hertz and 100 cycles within each envelope."

(i > 50 and: [i \\ 7 ~= 0
and: [i \\ 5 ~= 0 and: [i \\ 3 ~= 0]]])

ifTrue: [
thump

start: i beats
frequency: 1000 hz
cycles: 100].

"End of 0 to: 200 do: loop."
].

534

The next example is called Serial Example. In this example, inst takes two arguments: offset and
sound. The argument sound must be another Sound; in this case it is called aPluck. The Sound aPluck
also takes two arguments: left and right. Notice that whenever aPluck is provided as the argument to
inst, aPluck is not assigned a start time.

inst looks at the pitch of its Sound argument and adds the value of offset to that pitch. For instance, if
the frequency of aPluck were 4 a and the offset were 3, the result would be a copy of aPluck whose
frequency was 5 c.

In this example, p0 is an array of intervals that determines the sequence of pitches and the start times of
aPluck.

| p0 start |

MM := 480.

"Set p0 to an array of 12 intervals, expressed as the number of half
steps to be added to the pitch of aPluck."
p0 := #(0 1 11 5 2 4 3 9 10 6 8 7).
start := 0 beats.

"Step forward through p0 by setting i to 1, 2,.., 12 successively and
using it as the index into the array. Each copy of inst starts (p0 at:
i) beats after the previous one. The pitch of each copy of inst is the
pitch of aPluck plus the offset (p0 at: i) halfsteps. For example, on
the third time through the loop, (p0 at: i) = 5. Thus, a copy of inst
will start 5 beats after the previous copy and its pitch will be the
pitch of aPluck plus 5 halfsteps."
1 to: 12 do: [:i |

start := start + (p0 at: i).
inst

start: start beats
offset: (p0 at: i)
sound: (aPluck left: 1 right: 1)].

"r5: This time, step backwards through the array, and start 5 halfsteps
above the base pitch. Reset start so that these events overlap some of
the previously scheduled events."
start := 6.
12 to: 1 by: -1 do: [:i |

start := start + (p0 at: i).
inst start:

start beats
offset: (p0 at: i) + 5
sound: (aPluck left: 0 right: 1)].

"ri0: This time, go through the array backwards, negate each of the
offsets, and subtract 24 (i.e. transpose them two octaves down). Reset
start so that these events occur simultaneously with the events of r5."
start := 6.
12 to: 1 by: -1 do: [:i |

start := start + (p0 at: i).
inst

start: start beats
offset: (p0 at: i) negated - 24
sound: (aPluck left: 0.6 right: 0)].

"Play a low frequency sound starting at 9 seconds."
low

start: 9 s
carFreq: 100 hz

535

cmRatio: 2.0
dur: 0.5 s.

"r0: This time, step backwards through the array. Reset start so that
this group of events begins at 10 seconds."
start := 10 s.
12 to: 1 by: -1 do: [:i |

start := start + (p0 at: i).
inst

start: start beats
offset: (p0 at: i)
sound: (aPluck left: 1 right: 1)].

"p6: Step forward through the array, and start 5 halfsteps above the
base pitch. Reset start so that this group of events begins 6 beats af-
ter 10 seconds."
start := 10 s + 6 beats.
1 to: 12 do: [:i |

start := start + (p0 at: i).
inst

start: start beats
offset: (p0 at: i) + 5
sound: (aPluck left: 0 right: 1)].

"Step backwards through the array, and add the inverted interval to the
base pitch two octaves lower. Reset start so that this group of events
begins simultaneously with the previous group."
start := 10 seconds inBeats + 6.
12 to: 1 by: -1 do: [:i |

start := start + (p0 at: i).
inst

start: start beats
offset: (p0 at: i) negated - 24
sound: (aPluck)].

"Play a final low frequency sound at the end."
low

start: start beats
carFreq: 100 hz
cmRatio: 2.0
dur: 0.5 s.

The Class Editor

In the course of designing new Sounds, you may find that you have constructed a complex Sound with
only a few relevant control parameters. Suppose, for example, that you have constructed a 16-harmonic
additive synthesis Sound. To change the fundamental, you could edit all sixteen frequency fields. How-
ever, since you know the relationship between the harmonics, you could instead specify them
symbolically as (!Frequency, !Frequency*2, …, !Frequency*16). Then when you changed
!Frequency, all the Oscillators would maintain their harmonic relationship to one another. You can
specify the same kind of relationship with variables (i.e., ?freq, ?freq*2, …, ?freq*16).

Since ?freq is the only parameter needed to control the whole Sound, you can hide the low-level details
of the structure by encapsulating the structure into a single, new kind of Sound object. In Kyma, this proc-
ess is called defining a new class of Sounds. This new class can have its own parameters, its own icon, and
its own editor.

Sound Classes and Sounds

Each Sound is a specific instance of a Sound class. There can be any number of instances of each class. The
Sound class contains information that all of its instances have in common. For example, all instances of
class Concatenation share the same icon (shown in the left margin).

They also share the same parameter names: Name, Inputs, Retrograde, Reverse. In Kyma, you never
work directly with the system classes; instead, you modify the instances of the system classes that appear
in the system prototypes window.

Creating and Editing Sound Classes

The Action menu gives you three options for creating and editing classes. The Edit class operation allows
you to edit previously defined classes. New class from example (active only in the Sound file window)
opens an editor on a new class based upon the selected Sound. Retrieve example from class (active only
in the Sound class editor) extracts the Sound that is being used as the template for a user-defined class
and saves it to the Sound file window.

You can create a custom Sound class by introducing variable into an example Sound parameters (see
Variables on page 510). The variables in the example Sound become the parameters of the new Sound
class.

Setting Up the Example
Start with the Sound that you would like to use as an example for a new class of Sounds. The first step is
to decide which of the Sound’s parameters should be constant, which parameters should be variable, and
whether there should be any relations maintained between parameters.

Edit the Sound, replacing the parameters that are allowed to vary from instance to instance with vari-
ables, Variables, or SoundCollectionVariables.

To specify relations between parameters, use expressions involving variables and constant values. For
example, an additive synthesis Sound might consist of a Sum with 16 Oscillators as inputs. By setting
their frequency values to the expressions

?freq, ?freq*2, … , ?freq*16

you stipulate that fifteen Oscillators have frequencies that are harmonics of the first, no matter what the
frequency of the first Oscillator.

Class Editor
After you have saved your newly edited Sound (be sure it is still selected), select New Class from exam-
ple… from the Action menu.

This opens a class editor that will let you define a new Sound class based upon your example.

537

A class editor has several parts:

♦ An icon editor for designing the class icon

♦ An icon editor for designing the class small icon

♦ Field Layout: a miniature version of the Sound editor

♦ A text editor for the new Sound class name

♦ A text editor for the class description

♦ Parameter: a list of the class parameters

♦ Type: the parameter type of the selected parameter

♦ Field: a list of the legal field types for the selected parameter

♦ Field Rectangle: the relative position of the selected parameter’s field within the Sound editor

♦ Comment: a text editor for editing the selected parameter’s description

♦ A check box for specifying that a Sound should expand before transformations are applied to it

Using the Icon Editors
Click in a white area to draw a black dot, and click in a black area to erase. If you hold the mouse button
down as you move the mouse, you can draw or erase continuously. While you are designing the icon,
you can also see an actual size version of it below or to the left of the large version.

There are two icons for each class. The small icon is used whenever you select Small icon in the dialog
under View in the Edit menu. The other icon is the one you see by default.

To set the large and small icons to be the same as those of another Sound, drag that Sound into the icon
editor.

Parameter Types and Fields
When you select a name from the Parameter list, you see its type selected in the Type list and the kind
of parameter field it uses selected in the Field list. The position of the parameter field is shown high-
lighted in the miniature Sound editor labeled Field Layout.

Parameter Types
Each variable name in the example Sound becomes a parameter name in this new class. You can set pa-
rameter types to be the same as those in another Sound by dragging that Sound icon onto the Parameter
list in the Class editor.

To manually set the type of a parameter, first select the parameter name in the list labeled Parameter.
Then choose from among the given list of types under the Type heading. The type of a parameter defines

538

its range of legal values, its default value, its list of units, and whether it requires units (e.g., hz or s). The
type is used by the Sound editor to check whether the values entered in the parameter fields make sense
for those particular parameters. Later, when you compile a Sound of this new class, any parameter fields
with invalid values will flash and the host computer will beep twice.

The best way to learn about types is to use the class editor to inspect the parameter types of some of the
system Sound classes. See the table at the end of this chapter for an exhaustive listing of the types and
their ranges.

Parameter Fields
Field describes the kind of field the parameter will have in the Sound editor. The kind of field deter-
mines how you will be able to enter values for that parameter in the Sound editor. For example, a
hotValue field lets you type Event Values as well as constants, and a soundCollection field allows
you to drag multiple Sounds into the field.

In the Sound class editor, the contents of the Field list depends upon the currently selected Type; only
those fields that are legal for the selected type are shown.

The different kinds of fields available are as follows:

Field Description

array Allows you to type in values separated by spaces; this field accepts them
in order as an array.

boolean A check box that allows you to choose true or false.

codeString Used in Script, the FileInterpreters, and ParameterTransformer for the
Script or Transformation field. It parses what you have entered and
checks its syntax whenever you try to load or edit another Sound. A
codeString provides you with more detailed error messages than a
value field does.

fileName A browse button that opens a file list dialog.

grammar The field used for the production rules of ContextFreeGrammar. See the
Prototypes Reference on page 218.

legalNameSound-
Collection

Accepts any number of Sounds with legal variable names. This is needed
in Script and the FileInterpreters so that you can refer to the Sounds by
name in the Script.

radioButtons Presents built-in choices (depending on the type of field) as a column of
radio buttons. For example, if you choose radio button in the class editor
for the type of the WordSize field in a DiskRecorder, the WordSize field
will display radio buttons corresponding to the three word size choices.

radioButtonsTwoColumns Same as radioButtons, but displays in two columns.

samplesFileList The field used in the Segments parameter of the SamplesFileSplicer.

sound Accepts only one Sound at a time.

soundCollection Accepts any number of Sounds.

string A text editor that will accept any sequence of characters. It cannot be set
to a variable.

symbolList A pop-up list of choices that presents a list of values.

value Allows you to type any value, variable, or expression. The expression is
evaluated when you load or edit another Sound.

wavetable Allows you to select a sample from a file dialog or to type in the name of
a sample file or a variable.

539

Positioning the Fields
Field Layout shows you what the Sound editor for Sounds of this class will look like. When you select
a parameter, its field is highlighted in gray.

To change the position of a field, type the coordinates of a new rectangle in the Field Rectangle text
editor and then press Enter.

The format for specifying rectangle coordinates is as follows:

upperLeftX @ upperLeftY corner: lowerRightX @ lowerRightY

where the parameter fields are laid out in a square whose corner points are as shown below:

1 @ 0

1 @ 1

0 @ 0

0 @ 1

The x and y values are not in absolute units like centimeters or pixels; they just indicate a position rela-
tive to a maximum x and y of 1 @ 1.

Whenever you type in a new rectangle, you should adjust each of the other parameter field positions as
necessary to avoid any overlapping fields.

Class Description and Comments
Each class has a Class Description, a paragraph or two describing how Sounds of that class behave.

In addition to an overall class description, each parameter has its own Comment. A parameter comment
provides later users of Sounds of this class with instructions for how to enter a value for the parameter,
any restrictions on its range of legal values, and an indication of how it relates to the other parameters
and to the class as a whole.

The Edit menu is active in the class editor for editing the class description and the parameter comments.

Expand
When the Expand box is checked, the new class will expand before any transformations are applied to it
(see Controlling Expansion on page 545 for more information).

Closing the Class Editor
The first time you close the editor on a new Sound class, you will be asked whether you want to save an
instance of the new class. Click Yes unless you would like to start over from scratch. An instance of the
new class is created using default values for each of the parameters. To change those values, double-click
on the Sound and edit it.

When you close the class editor window after subsequent editing of that Sound class, you will be asked if
you want to save the changes made to the class. Choose Yes to save the changes, No to discard the
changes, or Cancel to return to the class editor without closing.

Debugging

When a Sound that you have constructed has some unexpected behavior, it can be helpful to expand it, so
that you can see how Kyma is really interpreting your Sound. The Expand operation from the Action
menu expands a Sound one level only. You can then select specific inputs for further expansion.

540

Organizing the New Classes

To keep track of your custom-designed Sound classes, you can keep them all in one Sound file that you
can open as a custom prototype strip. You can organize the Sounds into categories by placing related
Sounds together in collections.

Parameter Types and Ranges

The parameter types and their ranges are listed in the table beginning on the next page. In most cases, the
type of the parameter is the same as its name. If you’re not sure of a parameter’s type, you can find it by
editing the class of the Sound in which it appears.

541

Type Range

almostOneScale 0.9 to 1.0

array any list of one or more objects

boolean true or false

channelNbr Mono or Stereo

className obsolete

codeString Smalltalk code

complex any complex number

delayedSoundCollection obsolete

delayLine wavetable name (see What is a Wavetable? on page 493)

diskFormat SDI, SDII, AIFF, IRCAM or WAVE

doubleScale -2.0 to 2.0

duration 1 to 140737488355327 samp

dynamicsType compressor or expander

envelope a graphical envelope

envelopeSegmentType linear or exponential

feedbackDelayType comb or allpass

fileName any legal file name

filterType obsolete

frequency -25000.0 hz to 25000.0 hz

function obsolete

genericSource Disk, Live, or RAM

grammar see Prototypes Reference for ContextFreeGrammar

halfScale 0.0 to 0.5

hotArray any list of one or more objects; each element in the array can be an
Event Value

hotDoubleScale -2.0 to 2.0

hotFrequency -25000.0 hz to 25000.0 hz

hotPositiveScale 0 to 1.0

hotScale -1.0 to 1.0

hotTime 0 samp to 140737488355327 samp

hotValue number or an Event Value

hotValueList obsolete

integer -2147483647 to 2147483647

interpolation none or linear

legalName a letter followed by zero or more letters and numbers

legalNameSoundCollection one or more Sounds with legal names

limeFileName any legal Lime file name

lowestAnalyzedFreq Above 1F (44 hz), Above 4F (345 hz), Above 2F (87 hz), Above 5F
(690 hz), or Above 3F (173 hz)

lowRateRecording obsolete

mapping OnePerHalfStep, EquallySpaced, ByBasePitch, or ByPitchRange

midiChannel 1 to 16

midiControllerNumber 0 to 127

542

midiFileName any legal MIDI file name

midiSource MIDIInput, MIDIFile, or Script

modulation frequency or none

name one or more characters

object any Smalltalk object

optionalMidiChannel 0 to 16, 0 indicates the default MIDI channel

oscillatorBankInputType SpectralShape or SOSAnalysis (obsolete)

panFunction linear or power

polesAndZeroes any list of complex poles and zeroes

positiveFrequency 0.001 hz to 25000.0 hz

positiveInteger 0 to 214748364

positiveScale 0 to 1.0

processor 1 to 8

recording obsolete

response BestFreq, BetterTime, BetterFreq, or BestTime

samplesFileList any list of sample file segments (used in DiskSplicer)

samplesFileName any legal sample file name

scale -1.0 to 1.0

shapeSource wavetable or polynomial

singleWavetableDelay 0 to 4096 samp

sound any Sound

soundCollection any collection of one or more Sounds

spectrumFileName any legal spectrum file name

spectrumWavetable spectrum wavetable name (see What is a Wavetable? on page 493)

string one or more characters

textFileName any legal text file name

time 0 samp to 140737488355327 samp

upScale -16.0 to 16.0

value any Smalltalk value

wavetable wavetable name (see What is a Wavetable? on page 493)

wavetableAccess none, readWrite, readOnly, or writeOnly

wavetableDelay 0 samp to 4096 samp

wavetableIndex 0 to 1044480 (obsolete)

wavetableLength 0 samp to 1044480 samp (obsolete)

wavetableOfStandardLength name of any 4096-sample wavetable (see What is a Wavetable? on
page 493)

wordSize 8, 16, or 24

The type called object is the least restrictive of all parameter types and can include any Smalltalk object.
The parameter type value includes any number or expression, but it does not include compound struc-
tures such as Sets or Arrays.

Parameter Transformers

Unlike a Script, which can generate any number of events from any number of inputs, a Parameter-
Transformer takes a single input and creates a single transformed version of it. When you play a
ParameterTransformer, it resets or changes the specified parameter values of its input before beginning to
generate sound. Only the initial parameter values are modified; no transformations take place while the
Sound plays.

Because a ParameterTransformer can alter parameter values throughout the entire sound structure of its
input, its use requires careful attention to the details of how each parameter functions within the Sound.

Transformations

The Transformation field of a ParameterTransformer takes any number of transforming statements.
The parameters to be transformed are identified by name, and all parameters of that name throughout the
input’s structure are transformed.

Setting Parameters
To set a parameter in the input, ignoring the current value of the parameter, type the following into the
Transformation field: snd followed by the name of the parameter, a colon, the value for that parame-
ter, and then a period. (Make sure to use the parameter name exactly as it appears above the field in the
Sound editor, but without the first letter capitalized.) For example,

snd left: 0.25.

will set all Left parameters to the value 0.25. Any Sound that has a Left parameter, wherever it is in
the input’s structure, will be set to 0.25. Any Sounds that do not have a left parameter will be un-
changed. (Note that Left is actually the name of the parameter and not the name of a variable or Event
Value within the parameter field.)

Transforming Parameters
You can use the current value of a parameter in computing a new parameter value. In order to obtain the
current value of any parameter, use snd followed by the parameter name. Transforming statements can
then use the current value of a parameter in calculating a new value for the same parameter. For example,
the statement

snd frequency: snd frequency * 2.

would transform the input’s frequency up an octave. One parameter can also be a function of another. For
instance, the following transforming statement makes the input’s duration a function of its frequency:

544

snd duration: (1.0 / snd frequency hz).

In this case, the duration of the input will be exactly one cycle long.

If a transforming statement tries to perform arithmetic on a parameter name that is not present in the in-
put or one of its inputs, Kyma will return an error message, informing you that a message was sent to
nil. For example, suppose the current Sound lacks the parameter CmRatio. When Kyma encounters the
transforming statement

snd frequency: snd cmRatio * 0.5.

you will get an error for trying to multiply nil by 0.5. To protect against using nil in a calculation, test
the value and only perform the calculation if the value is not nil. For example, the following transform-
ing statement is protected against calculating with nil:

snd cmRatio isNil ifFalse: [snd frequency: snd cmRatio * 0.5].

The effect is to set the frequency to cmRatio * 0.5 in Sounds where CmRatio is present and to skip over
Sounds where that parameter is absent.

Time-varying Transformations
Two values, time and totalDuration, are available in ParameterTransformers. The value of time is
the start time in microseconds of the Sound being transformed. The value of totalDuration is the du-
ration in microseconds of the ParameterTransformer’s input. You can use time and totalDuration to
construct transformations that depend on the start time of a input within the structure.

Suppose the input of a ParameterTransformer is a Repetition of an Oscillator.

The result of the transformation

snd frequency: snd frequency * (1 + (time / totalDuration)).

is a sequence of Sounds with higher and higher frequencies.

Transformations are made to the initial values of a Sound’s parameters; thus, any variation in the trans-
formation over time is manifested only at the start time of each Sound, not over the course of a Sound and
not on a sample-by-sample basis.

Skipping Levels
In the default case, a transformation is applied to each level of the input’s structure. If you want to stop
the transformation from continuing beyond a certain level of the sound structure, use

snd doNotTransformSubSounds.

To continue applying transformations to inputs, use

snd transformSubSounds.

545

Similarly, if you would like to transform only the inputs (that is, you would like the transformation to
skip over the current Sound), you would use

snd doNotTransformThisSound.

Controlling Expansion

Most of the system prototypes provided in Kyma are actually combinations of several Sounds. When one
of these prototype Sounds is played, it is first expanded. When you apply a transformation to the pa-
rameters of a Sound, it may make a difference whether you transform the parameters before or after the
Sound has been fully expanded.

When you create a new Sound class from an example (see The Class Editor on page 536), you can choose
whether the new kind of Sound should expand before transformations are applied to its parameters. If
you check the Expand box, the Sound will expand before transformation; if the box is not checked, pa-
rameter transformations will be applied to the Sound parameters before the Sound expands.

For example, a RhythmicCellularAutomaton takes a single input and repeats it in a rhythmic pattern
generated algorithmically according to the Rule that you supply. (See the Prototypes Reference on page
218 or the on-line help for a more detailed explanation of how the Rule is used to generate the pattern.)

A RhythmicCellularAutomaton expands to a Concatenation of TimeOffsets. Each TimeOffset contains a
copy of the RhythmicCellularAutomaton’s input.

546

Suppose you had a ParameterTransformer of a RhythmicCellularAutomaton, and that the Transforma-
tion field read

snd duration isNil ifFalse: [
snd duration: snd duration * (1 - (time / totalDuration))].

You might expect the result to be the rhythmic pattern speeding up linearly over time. On the other hand,
you know that a ParameterTransformer can only affect its input’s initial state — the values of its pa-
rameters at its start time. Since the RhythmicCellularAutomaton has only a single input and since that
input starts at time 0, you might expect the transformation to be

snd duration: snd duration * (1 - (0.0 / totalDuration)).

that is

snd duration: snd duration * 1.

In other words, you might expect the transformed RhythmicCellularAutomaton to be the same as the
untransformed version.

What happens when you apply a time-dependent transformation to a RhythmicCellularAutomaton or, in
fact, to any other Sound that expands when you play it? Since the ParameterTransformer first expands
the RhythmicCellularAutomaton and then applies the transformation to the resulting Concatenation, the
result is a rhythmic pattern that speeds up linearly with time, because each blip has a shorter duration
than the one before it. On the other hand, the SilentTime parameter in the TimeOffsets remains un-
touched because, even though SilentTime is a duration, only the parameter fields named Duration
are affected by the ParameterTransformer.

Suppose you wanted to be able to change the Rule parameter of the RhythmicCellularAutomaton. If you
use the Transformation:

snd rule: 183.

the Rule will be unchanged. Why? Because the ParameterTransformer first expands the RhythmicCel-
lularAutomaton to a Concatenation and then tries to apply the transformation. Since there is no Rule
parameter in a Concatenation, the transformation cannot be applied.

If you wanted to change the Rule parameter, you would have to override the default behavior of the
ParameterTransformer by adding a line to the Transformation:

snd doNotExpandFirst.
snd rule: 183.

Then the ParameterTransformer would apply the transformation before expanding the RhythmicCellu-
larAutomaton, and the rule would be modified.

547

What if you wanted to both transform the rule and cause the rhythmic pattern to speed up over time? In
that case, you would use two nested ParameterTransformers:

The right one would have the Transformation:

snd doNotExpandFirst.
snd rule: 183.

and its input would have the Transformation:

snd duration isNil ifFalse: [
snd duration: snd duration * (1 - (time / totalDuration))].

The first ParameterTransformer would change the Rule parameter of the RhythmicCellularAutomaton,
and the next ParameterTransformer would expand the RhythmicCellularAutomaton using the new rule
and would then apply the duration transformation.

Background Materials

Reference Books and Textbooks

Auditory Display
Blattner, M. & R. B. Dannenberg, editors. 1992. Multimedia Interface Design. New York: ACM Press.

Buxton, W., W. Gaver, and S. Bly. Auditory interfaces: The Use of Non-Speech Audio at the Interface. Cam-
bridge: Press of the University of Cambridge, in final preparation.

Kramer, G., editor. 1994. Auditory Display: The Proceedings of the First International Conference on Auditory
Display. Addison Wesley. CD in a sleeve.

Acoustics
Pierce, John. R. 1992. The Science of Musical Sound, Revised Edition. New York, New York: WH Freeman

and Company.

Rossing, T. D. 1992. The Science of Sound, Second Edition . Reading, MA: Addison-Wesley Publishing Com-
pany.

Sundberg, J. 1992. The Science of Musical Sounds. Academic Press.

Sound Perception and Cognition
Begault, D. 1994. 3-D Sound for Virtual Reality and Multimedia. Cambridge: Academic Press.

Blauert, J. 1983. Spatial Hearing. Cambridge: MIT Press.

Bregman, A. 1990. Auditory Scene Analysis: The Perceptual Organization of Sound. Cambridge: MIT Press.

Deutsch, D. 1982. The Psychology of Music. Academic Press.

Gelfand, S. A. 1990. Hearing: An Introduction to Psychological and Physiological Acoustics, Second Edition.
New York, NY: Marcel Dekker, Inc.

Roederer, J. G. 1975. Introduction to the Physics and Psychophysics of Music, Second Edition. New York:
Springer-Verlag, New York, Heidleberg, and Berlin.

Zwicker, E. and H. Fastl. 1990. Psychoacoustics: Facts and Models. New York: Springer-Verlag.

Representation of Digital Audio Signals
De Poli, G., A. Piccialli, and C. Roads. 1991. Representations of Musical Signals. Cambridge: MIT Press.

Marsden, A. and A. Pople. 1991. Computer Representations and Models in Music. Academic Press.

Software Technology
Pope, S. T., editor. 1991. The Well-Tempered Object: Musical Applications of Object-Oriented Software Technol-

ogy. Cambridge, MA: MIT Press.

Tarabella, L. 1992. Informatica e Musica. Milan: G. E. Jackson.

Sound Synthesis Algorithms
Chamberlin, H. 1987. Musical Applications of Microprocessors, Second Edition. Hayden Books, Indianapolis,

IN.

Dodge, C. and T. A. Jerse. 1985. Computer Music: Synthesis, Composition, and Performance. Schirmer Books:
New York, NY.

Moore, F. R. 1990. Elements of Computer Music. Prentice Hall, Englewood Cliffs, NJ.

Roads, C. 1993. Computer Music Tutorial . The M.I.T. Press, Cambridge, MA.

549

Wells, T. 1981. The Technique of Electronic Music. Schirmer Books, New York.

Digital Audio Signal Processing
Oppenheim, A. V. and R. W. Schafer. 1975. Digital Signal Processing. Englewood Cliffs: Prentice-Hall, Inc.

Proakis, J. G. and D. G. Manolakis. 1988. Introduction to Digital Signal Processing. New York: Macmillan.

Strawn, J. ed. 1985. Digital Audio Signal Processing. Los Altos, CA: William Kaufman, Inc.

Digital Audio Engineering
Ballou, G., editor. 1987. Handbook for Sound Engineers: The New Audio Cyclopedia. Indianapolis, IN: Howard

W. Sams & Company.

Benson, K. B., editor. 1988. Audio Engineering Handbook. New York, NY: McGraw-Hill Book Company.

Chamberlin, H. 1987. Musical Applications of Microprocessors, Second Edition. Hayden Books, Indianapolis,
IN.

Olson, H. F. 1957. Acoustical Engineering. Professional Audio Journals.

Pohlmann, K. C. 1989. Principles of Digital Audio, Second Edition. Indianapolis, IN: Howard W. Sams &
Company.

Strawn, J. 1985. Digital Audio Engineering. William Kaufman, Inc.

Watkinson, J. 1989. The Art of Digital Audio. Boston, MA: Focal Press.

Algorithmic Music Composition
Balaban, M. K. Ebcioglu, O. Laske. Understanding Music with AI: Perspectives on Music Cognition. Cam-

bridge: The AAAI Press / The MIT Press.

Xenakis, I. 1992. Formalized Music: Thought and Mathematics in Composition, Revised Edition. Stuyvesant, NY:
Pendragon Press.

MIDI and Real-time Event Processing
Braut, C. 1994. The Musician’s Guide to MIDI. Sybex.

Rothstein, J. 1991. MIDI: A Comprehensive Introduction. A-R Editions.

Rowe, R. 1993. Interactive Music Systems . MIT Press. (includes CD-ROM with software and sound exam-
ples).

Yavelow, C. 1993. The Macintosh Music and Sound Bible. IDG Books.

History
Chadabe, J. 1997. Electric Sound: The Past and Promise of Electronic Music. Prentice-Hall.

Anthologies
Mathews, M. V., and J. R. Pierce, eds. 1989. Current Directions in Computer Music Research. MIT Press.

Roads, Curtis. 1989. The Music Machine. Cambridge, MA: MIT Press.

Roads, C. and J. Strawn. 1985. Foundations of Computer Music. MIT Press.

Proceedings of the 1977-1997 International Computer Music Conferences. International Computer Music Asso-
ciation.

Professional Societies

ACM SIGSound: the special interest group on sound computation

Audio Engineering Society

IEEE Acoustics Speech and Signal Processing

550

IEEE Task Force on Computer Music

International Computer Music Association (ICMA)

SEAMUS: Society for Electro-Acoustic Music in the United States

Conferences

Audio Engineering Society Conferences and Conventions

Acoustical Society of America Conferences

International Computer Music Conference

International Conference on Auditory Display

IEEE International Conference on Acoustics, Speech, and Signal Processing

SEAMUS Conference

Journals

Computer Music Journal

Journal of the Acoustical Society of America

Journal of the Audio Engineering Society

IEEE Signal Processing Magazine

IEEE Transactions on Signal Processing

IEEE Transactions on Audio

Journal of New Music Research

Leonardo Music Journal

Music Perception

Magazines

Audio Media

Electronic Musician

EQ

Future Music

Keyboard

Keyboards: Claviers–Informatique Musicale–Home Studio

Keys

Mix

Pro Sound News

Sound on Sound

Studio Sound

